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I. Introduction

T HE field of fluid mechanics involves a range of rich and vibrant
problems with complex dynamics stemming from instabilities,

nonlinearities, and turbulence. The analysis of these flows benefits
from having access to high-resolution spatiotemporal data that
capture the intricate physics. With the rapid advancement in
computational hardware and experimental measurement techniques
over the past few decades, studies of ever more complex fluid flows
have become possible. Although these analyses provide great details
of complex unsteady fluid flows, we are now facedwith the challenge
of analyzing vast and growing data and high-dimensional nonlinear
dynamics representing increasingly complex flows.
Although the analysis of these complex flows may appear

daunting, the fact that common flow features emerge across a wide
spectrum of fluid flows or over a large range of nondimensional flow
parameters suggests that there are key underlying phenomena that
serve as the foundation of many flows. The emergence of these
prominent features, including the von Kármán vortex shedding and
theKelvin–Helmholtz instability, provides hope that a lot of the flows

we encounter share low-dimensional features embedded in high-
dimensional dynamics. Shown, as an example, in Fig. 1 is a
photograph taken from the Space Shuttle STS-100 of the vonKármán
vortex street generated by the Rishiri Island in Japan, whose wake is
visualized by the clouds.§§ Let us compare this image with the two-
dimensional (2-D) low-Reynolds-number flow over a circular
cylinder shown in the same figure. The striking similarity between
these two flows suggests the existence of spatial features that capture
the essence of the flow physics. In this work, we present modal-
analysis techniques to mathematically extract the underlying flow
features from flowfield data or the flow evolution operators.
In addition to flow analysis, modal-decomposition techniques can

also be used to facilitate reduced-order flow modeling and control.
Indeed, modal-decomposition techniques offer a powerful means of
identifying an effective low-dimensional coordinate system for
capturing dominant flow mechanisms. The reduction of the system
order corresponds to the choice of an appropriate (reduced basis)
coordinate system to represent the fluid flow. This concept has
implications for nearly every ensuingmodeling and control decision.A
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linear subspace to describe the flow, for example, obtained via proper
orthogonal decomposition (POD), is the most common choice for a
low-dimensional basis. After the choice of a coordinate system, there
are two main distinctions in modeling procedures: depending on
1) whether or not the model is physics based or data driven, and
2)whether or not themodel is linear or nonlinear. Further discussion of
approaches for modeling and controlling fluid flows will be explored
throughout the paper, with particular emphasis in the Outlook section.
The present paper is one of the products from the AIAADiscussion

Group on Modal Decomposition Methods for Aerodynamic Flows
(2015–2018) organized under the support of the AIAA Fluid
DynamicsTechnicalCommittee. Thegoal of this discussion groupwas
to provide an educational service to nonspecialists who seek to gain
greater insights from fluid flows with modal-decomposition and
modal-analysis methods. Since the discussion group started in 2015,
invited sessions were organized at the 2016, 2017, and 2018 AIAA
Aviation meetings. The insights gained from various discussion group
activities led to the previous overview paper on modal-analysis
methods that focused on a broad review at a fundamental level [1]. The
modal-analysis methods described at length in the previous overview
paper make up an arsenal of versatile tools relevant for extracting
concise and interpretable characterizations of complex spatiotemporal
flowfield data, or the operators that generated them. In the first
overview paper, we covered the POD [2,3], balanced POD (BPOD)
[4,5], dynamicmode decomposition (DMD) [6–9], Koopman analysis
[7,10], global stability analysis [11,12], and resolvent analysis [13,14].
The first overview paper [1] focused on the how-to aspects of

modal-analysis methods, whereas the present effort aimed to
demonstrate how the outputs of these modal-analysis techniques can
be interpreted to elucidate physical insights. Indeed, a blind
application of a modal-analysis method is rarely a worthwhile

endeavor. The compilation of the present paper is primarilymotivated
by the fact that the true power of modal-analysis techniques in
practice stems from the user’s ability to appropriately apply these
methods and to interpret the associated outputs. In addition to this
second overview paper, we have assembled a number of modal-
analysis papers to form a special section in the AIAA Journal to
document the efforts of the discussion group. The purpose of this
special section of the present issue is to serve as an educational
support to provide sufficient guidance on how modal-analysis
techniques can be used to extract useful and relevant information
fromotherwise complex flowphysics.We assume here that readers of
this paper are familiar with the basics of modal-decomposition and
modal-analysis techniques covered in the first overview paper [1].
For this reason, we do not reintroduce the algorithms for performing
modal analysis, but rather focus on presenting the interpretations of
the results from these analyses.
In what follows, we select a few applications of modal-analysis

techniques on a number of canonical flows that capture fundamental
flow features in many engineering and scientific settings. In
particular, we consider examples of cylinder wakes, wall-bounded
flows, airfoil wakes, and cavity flows. A short summary of the topics
covered in this paper is compiled in Table 1. The exampleswithin this
overview paper are mostly of a computational nature. However, this
should not discourage users from employing relevant modal-analysis
techniques to analyze experimental fluid flows. Experimental data
sets introduce a unique set of challenges (e.g., noisy and band-limited
data) that must be considered carefully when using data-driven
analysis methods. In this overview, we highlight some of the
prevailing challenges for analyzing experimental data, and point to
best practices and relevant references where applicable. We also note
that the references highlighted in the following examples are not
necessarily the first to perform a modal analysis of the associated
flows. Recent citations are provided in the paper to serve as an
educational guidance, and chosen in hopes of facilitating interested
readers to dive further into past literature. Emphasis of the
discussions is placed on how different modal-analysis techniques can
complement one another to reveal different characteristics of the
flow, build reduced-order models (ROMs), and provide guidance for
flow control. Toward the latter part of the paper, we offer an outlook
on modal analysis within fluid mechanics.

II. Cylinder Wakes

Flow over a circular cylinder is one of the most fundamental flows
in fluid mechanics for its relevance in engineering settings and for
capturing the essential features of bluff-body flows [15,16]. For these
reasons, there have been a tremendous amount of analyses performed
on various aspects of cylinder flows, including its wake [17–22],
aerodynamic forces [23], stability [24–26], compressibility [27],
fluid–structure interactions [28,29], and flow control [30–33]. Over
the past two decades, modal-analysis techniques have played crucial
roles in uncovering additional insights into the cylinder wake
dynamics. Although we cannot provide a complete review of the
modal analyses performed on cylinder flows, we discuss some
modal-analysis studies that describe thewake dynamics and suppress
unsteadiness with flow control using mode-based ROMs.
Over awide range of Reynolds numbers, cylinder flows exhibit the

distinct von Kármán shedding wake, even under the presence of
spanwise instabilities and turbulence [15,16], as shown in Fig. 1. The
fact that von Kármán shedding is identifiable from simple visual
inspection suggests that such flow structures can represent the

Table 1 Outline of the present paper

Sections Keywords

I Introduction
II Cylinder wakes POD, DMD, global stability analysis, flow modeling, Galerkin projection, SINDy
III Wall-bounded flows POD, BPOD, DMD, global stability analysis, resolvent analysis, flow modeling, Galerkin projection, flow control
IV Airfoil wakes POD, DMD, global stability analysis, resolvent analysis, parabolized stability analysis, flow control
V Cavity flows POD, DMD, global stability analysis, resolvent analysis, flow control, aircraft application
VI Outlook Superposition, sparse and randomized algorithms, machine learning, ROMs, closure, hyper-reduction

Fig. 1 Von Kármán vortex street generated by the Rishiri Island in
Hokkaido, Japan (top: photograph from NASA, 2001; STS-100); this
wake produced at a high Reynolds number shares great similarity with
the cylinder wake at a low Reynolds number (bottom).
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flowfield in a low-dimensional manner. In other words, these flows
can be compressed to these dominant flow features. It is worth
mentioning that the cylinder wake provides an ideal setting for
developing and testing modal-analysis techniques. Note that
additional complexity in the flow is often desired to test modal-
analysis techniques for many applications. Nonetheless, cylinder
flow serves as an attractive initial test bed for development and for
educational purposes. Beyond admitting low-dimensional dynamic
representations, cylinder wakes have been widely studied and
numerous investigations have been documented in the scientific and
engineering literature. Furthermore, data from both physical
experiments and numerical simulations are relatively simple to
acquire and reproduce. The results of various modal-analysis
techniques applied to cylinderwake are often among the easier results
to interpret, and thus, provide a convenient entry point for developing
intuition around these methods. For all these reasons, we begin by
introducing various modal-analysis approaches within the context of
the cylinder wake. The first portion of this discussion will be devoted
to guiding the readers through the process of building intuition for
each modal-analysis technique and for developing an appreciation
for how to interpret the outputs of such analyses. The ensuing
sections will focus on more advanced applications, highlighting
recent efforts on uncovering flow physics associated with the
cylinder wake.

A. Proper Orthogonal Decomposition

Let us first consider the data-basedmodal analysis of cylinder flow.
Data-based techniques only need the flowfield data obtained from
numerical simulations or experimental measurements, and do not
require knowledge of the governing dynamics. In particular, we
consider the POD, which can extract modal contents from a
collection of snapshot data. The term snapshot is used in modal
analysis to refer to flowfield data collected at an instance in time.
Before performing POD of the snapshot data, each of the flowfield
data at an instance in time needs to be formatted into a columnvector.
Details on formatting the snapshot to perform the POD analysis (as
well as the DMD analysis) can be found in the appendix of the first
overview paper [1]. Although wemake exclusive use of the snapshot
POD method in the present paper, analytical POD methods are also
commonly employed for flow analysis and modeling.
If the velocity field is analyzed with POD, the modes φi�x�

optimally capture the kinetic energy (KE) of the unsteady flowfield,
and the eigenvalues λi represent the amount ofKEheld by eachmode.
That means that the POD analysis finds the best set of spatial modes

to extract as much KE as possible in the flowfield over time. These
POD modes are orthogonal to each other, ensuring the optimality of
extracting KE by each individual mode. In a mathematically abstract
sense, we can consider the POD analysis to be fitting a low-
dimensional ellipsoid to the given data.
Let us demonstrate the use of POD on the 2-D unsteady laminar

flow over a circular cylinder at a diameter-based Reynolds number of
Re � 100. The cylinder flow analyzed herewas obtained from direct
numerical simulation (DNS) using the immersed boundary
projection method [34,35]. An instantaneous snapshot of the
cylinder flow is shown in Fig. 2 exhibiting von Kármán vortex
shedding. For the POD analysis, we collect 325 snapshots of the
flowfield over eight shedding periods. The data are compiled into a
data matrix, upon which the snapshot POD [36] is applied. The
snapshot-based method enables us to perform the decomposition in a
computationally tractable manner when the dimension of an
individual snapshot is much larger than the total number of snapshots
[2,36]. In performing the POD here, we first subtract the mean from
all snapshots, so that we can focus on modal structures associated
with fluctuations. The extracted spatial POD modes φi�x� capture
regions where fluctuations appear in the flow. Because this cylinder-
flow example is a periodic flow, these spatial modes appear in pairs.
This also suggests that themodes are based on advective physics with
oscillator-type dynamics.
The POD analysis reveals that the fluctuations in the flowfield can

be captured well with only a small number of mode pairs, as
illustrated in Fig. 2. The first two, four, and six modes capture 94.84,
98.68, and 99.85%, respectively, of the flow fluctuations in terms of
the KE. With eight modes, this percentage reaches 99.97%, which is
essentially 100%. This means that the high-dimensional flowfield
can be accurately expressed with only six or eight spatial modes,
suggesting the possibility for significant compression of the flowfield
data. That is, we reduce the representation of the flowfield from the
number of grid points (times the number of flow variables) to merely
the number of POD modes. The mode shapes associated with the
dominant POD modes reveal the dominant energetic spatial
structures in the flow. Interestingly, both PODmodes 1 and 2 possess
a top-down asymmetry, indicating that the dominant energetic
structures are associated with the asymmetry of the von Kármán
wake. As it will be discussed in a latter section, these PODmodes can
serve as a basis to construct an ROM that describes the dynamics of
the flow. One of the important properties of the POD modes is the
orthogonality of the modes (i.e., hφi;φji � δij), which is attractive
for developing sparse reduced-order representation of the flow
dynamics.

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

mode 7 mode 8

0 5 10 15
10-6

10-4

10-2

100

b) POD modes (u velocity)

94.84%

98.68%

99.85%

99.97%

c)

a) Baseline (original) flow

Fig. 2 POD analysis of cylinder flow: a) original flowfield under study (vorticity shown), b) first eight dominant POD modes, and c) amount of KE of
unsteadiness captured by the POD modes.
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The aforementioned eight POD modes can capture the flowfield
very well for the given data. However, if the flow is perturbed and
deviates away from the original flow, additional modes may be
needed to represent the perturbed flow. To better capture the
perturbed flow, the POD analysis may be repeated with the perturbed
flowfield data, or alternative techniques, such as the BPOD analysis
[4], may be used (although an adjoint simulation is needed for the
latter case).We should keep inmind that themodes extracted from the
input flowfield data are optimally determined for the provided data
and may not be so for the perturbed flows. The modes may deform
when the flow is under the influence of perturbation or actuation. This
is an important point to remember if the modal analysis is to be
extended or mode-based models are applied to perform flow control.

B. Dynamic Mode Decomposition

We now consider the second data-based approach, the DMD
analysis, to study the periodic cylinder wake. For the DMD analysis,
the mean subtraction from the snapshots is not necessary, unlike the
POD analysis. The findings from the DMD analysis of the cylinder
wake are shown in Fig. 3. The dominant mode that arises from the
DMD analysis corresponds to a static mode (i.e., DMD eigenvalue
λ � 1), which is the mean flow. The first two rows of Fig. 3a report
the real and imaginary parts of the first two oscillatory DMDmodes,
whereas in the last two rows, we report the magnitude and phase of
each of these modes. Note that oscillatory modes appear in complex-
conjugate pairs. For brevity, only one element of this pair is plotted.
Consider the first oscillatory mode, visualized in different ways
within the first column of Fig. 3a. From both the real/imaginary and
the magnitude/phase representations, it is evident that this mode
captures the top-down asymmetry associated with the von Kármán
vortex shedding, which is consistent with the POD analysis. This is
not a coincidence, which will be described shortly. The second
oscillatory mode is displayed in the second column. The magnitude/
phase plots facilitate the distillation of these physical insights. The
magnitude plots clearly reveal the active regions of each mode,
whereas the phase plot displays the relative phase between spatial
regions.
Let us compare the results from the DMD and POD. Unlike the

oscillatoryDMDmodes, all PODmodes are real-valued. Because the
data here are taken from a limit-cycle oscillation, the POD modes
appear in pairs. A side-by-side comparison of the dominant POD
modes with the first few oscillatory DMD modes reveals a striking
semblance of PODmodes 1 and 2with the real and imaginary parts of
DMD mode 1. The same semblance can be found when comparing
for POD modes 3 and 4 with the real/imaginary parts of DMDmode
2, and so on for the higher-order modes. Indeed, one can quantify the

similarity between these mode shapes by taking an inner product
between the DMD mode and a complex vector whose real and
imaginary components are formed by the associated POD mode.
Performing such an analysis confirms the strong similarity between
POD modes and DMD modes for the periodic cylinder wake [37].
Having established this similarity, it now becomes evident that one
can plot themagnitude and phase of pairs of PODmodes, much in the
way that we had done for the DMD modes. Doing so can provide
additional interpretable insights into the dynamic significance of
these modal structures.
We note that spatial modes from the POD and DMD are not

identical to each other, in general. However, they are identical when
the flow is periodic in time, as is the case for the cylinder wake at
Re � 100 considered here. We further note that DMDmodes are not
necessarily orthogonal to each other,whereas PODmodes are. This is
an important point to remember when spatial modes are used to form
a basis set for use in, for example, reduced-order modeling to be
discussed later in Sec. II.D.1.
Although the POD and DMD yield the same spatial modes in the

context of the periodic cylinder wake, the DMD offers additional
information that the POD is not equipped to provide. Indeed, each
dynamic mode consists of spatial information that is embedded in
each DMD mode (see Fig. 3a) and temporal information that is
embedded in each DMD eigenvalue (see Fig. 3b). Because dynamic
modes correspond to the spectral decomposition of a best-fit linear
operator that maps one snapshot to the next, the dynamics of each
DMD mode comprised only a single oscillation frequency and a
growth/decay rate. To determine the oscillation frequency fi and
growth/decay rate gi of spatial mode i, we can make use of the
associated DMD eigenvalue λi through fi � ∠λi∕�2πδt� and
gi � log jλij∕δt, with δt denoting the uniform sampling increment
between snapshot pairs.
In addition to spatial structures (DMD modes) and their simple

temporal characteristics (DMD eigenvalues), one can also use the so-
calledDMDamplitudes to determine the relative contribution of each
mode to a particular realization of the system. We note here that
different definitions for DMD amplitudes are used throughout the
literature. However, two common definitions are 1)DMDamplitudes
calculated solely from the initial snapshot, which requires the
reciprocal DMD modes; and 2) DMD amplitudes based on all
snapshots, which requires a Vandermonde matrix constructed from
the DMD eigenvalues. For simplicity, we make use of the former
definition in Fig. 3b.
A key lesson to take away from the analysis of a cylinder wake is

that the data-collection step is an important consideration. Although
one may have access to simulation or experimental data from wake
start-up through the periodic evolution on the limit cycle, one rarely

Fig. 3 DMD analysis of cylinder flow: a) the first and second DMDmodes with their real, imaginary, magnitude, and phase distributions; and b) DMD
eigenvalues representing the growth rates and frequencies.
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benefits from “throwing”DMD or another modal-analysis technique
at this full data set when particular physical questions are of interest.
We can consider the study by Chen et al. [37], in which the dynamics
of a cylinder wake are first split into three distinct regimes: near-
equilibrium linear dynamics, post-Hopf bifurcation transient
dynamics, and periodic limit-cycle dynamics. In performing their
analysis, care is taken to consider only snapshots from each of these
three regimes independently. Not doing so would contaminate the
results of the modal analysis and would arguably lose the
interpretability that was being sought. A similar procedure was
performed by Bagheri [38]. In that work, too, the evolution of the
cylinder wake was divided into four intervals of interest, each
associated with a different timescale. Although the cylinder wake is a
commonly studied and fairly well-understood flow, both of these
works demonstrated how supplementary signals, such as force
response data (i.e., lift in [37] and drag in [38]), can be used to
delineate between intervals of flow evolution that should be treated
separately. By collecting snapshots from these distinct intervals, we
can be better equipped to uncover dynamically relevant features and
to better understand the dynamic processes underlying the fluid flow.
Indeed, in our preceding analyses of the cylinder wake, we ensured
that data were only collected once the wake had reached the limit-
cycle state.
Finally, it is important to highlight a practical caution for users who

are interested in conducting a DMD analysis of experimental data
sets. DMD has been observed to exhibit sensitivities [39] and has
been shown to yield biased results [40,41] when the snapshot data
under consideration possess measurement uncertainties (e.g., due to
sensor noise). Thus, users are strongly encouraged to consider noise-
robust variants of DMD when analyzing experimentally acquired
data sets [40–42].

C. Linear Global Stability Analysis

In the preceding discussions, we used the data-based techniques to
study the modal structures generated in thewake of a cylinder. In this
section, we will obtain modal structures directly from the linear
evolution operator of the Navier–Stokes equations. To examine the
cause of unsteadiness in the flow, we resort to a stability analysis.
There are two types of stability analyses that can reveal the
characteristics of flow instabilities: local and global stability
analyses. We focus here on the latter approach, which is suitable for
examining instabilities that have global coupling and coverage over
the domain of interest. The main difference between global stability
analysis [11,12] and the data-based modal-analysis techniques
discussed earlier (POD and DMD) is that the global stability analysis
requires access to the base flow and the linearized Navier–Stokes
operator based on a numerical discretization (e.g., finite difference,
finite volume, or spectral method code), whereas the data-based
methods do not.
For the global stability analysis, we need the base flow q about

which to linearize the Navier–Stokes equations. The base state q
should be the stable or unstable steady-state solution (equilibrium
state). See the first overview paper on how to find these states [1]. By
decomposing the state variable q into the base state and a perturbation
q 0 (i.e., q � q� q 0), we arrive at the linearized Navier–Stokes
equations in discrete form:

dq 0

dt
� Lqq

0 (1)

in which the linear operator Lq is dependent on the base state q.
By expressing the small perturbation jqj 0 ≪ jqj as q 0�x; t� �
q̂�x� exp�iωt�, we arrive at

Lqq̂ � iωq̂ (2)

This equation casts the stability analysis of the flowfield in terms of
an eigenvalue problem. The eigenvalue iω reveals the growth/decay
rate Im�ω� and frequency Re�ω� of each spatial eigenvector q̂ that is
found from this analysis. Thus, we can solve this eigenvalue problem
for the dominant eigenvalues and the corresponding eigenvectors to
determine the spatial profiles of the instabilities. Alternatively, one
can also time integrate Eq. (1) to determine the dominant mode, as an
initial value problem. Note also that the construction of the
eigenvalue problem for the linear stability analysis used here is
standard, but leads to a reversal of roles in the real and imaginary
components of eigenvalues when compared to the DMD analysis.
Although it is possible to consider the use of a time-averaged (or
ensemble-averaged) state as the base flow, the linear stability analysis
would not hold, because such state in general is not an equilibrium
state. However, the use of a time-averaged base flow may provide
some insights as a model, and is used as a precursor to examine the
stability property for its resolvent analysis [43] (see other flow
examples as follows).
Now, let us consider the application of the linear global stability

analysis to cylinder wakes. One of the important insights that can be
gained from this analysis is the onset of the wake instability (i.e., the
von Kármán shedding), which appears at a critical Reynolds number
of Recrit ≈ 46. The onset of instability can be identified when the
eigenvalues from the stability analysis cross over from the stable to
the unstable complex plane, as the Reynolds number Re increases
beyond its critical value Recrit. The appearance of this type of
instability is called the Hopf bifurcation. We compiled the critical
Reynolds numbers, in which the flow is observed to initiate the von
Kármán shedding, in Table 2. Included are the critical Reynolds
numbers found from careful experiments performed by Taneda [44]
and Strykowski and Sreenivasan [45]. On the numerical side of the
studies, the global stability analysis performed by Zebib [46] and
Jackson [47] have predicted the critical transitions well. Here, we
take a broad definition of global stability analysis, especially for
papers from earlier stability studies when computational resources
were limited. In most of the earlier studies, the modes are not
reported, but the eigenvalues are reported in detail.More recently, the
stability modes of the cylinder wake atRe � 50 have been examined
by Abdessemed et al. [48] in a broader context. What is striking from
their analysis is the resemblance of the modal shapes between the
energetic mode (such as the dominant PODmode shown earlier) and
the stabilitymode. This observation suggests that the instability in the
flow causes the wake to oscillate, resulting in the emergence of the
von Kármán shedding in the full nonlinear flow. Because the
Reynolds number considered in this case is near the bifurcation point
of Recrit, the mode shapes of the dominant instability and that of the
POD analysis are expected to be similar [49].

Table 2 Compilation of transitionReynolds numbers determined from experiments and stability analyses

Transition References Recrit Stcrit Analysis

von Kármán shedding (2-D) Taneda [44] 45 —— Experimental
Provansal et al. [50] 47 0.12 Experimental

Strykowski and Sreenivasan [45] 46 0.12 Experimental/Numerical
Zebib [46] 45 0.11–0.13 Stability
Jackson [47] 46.184 0.138 Stability

Mode A (3-D) Williamson [51,52] 170–180 —— Experimental
Barkley and Henderson [53] 189 —— Stability

Mode B (3-D) Williamson [51,52] 230–260 —— Experimental
Barkley and Henderson [53] 259 —— Stability
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The linear global stability analysis can be further extended to
periodic base states through Floquet analysis [1]. Through such an
extension, we can determine the appearance of three-dimensional (3-
D) instabilities known asmodes A and B, which appear atReA ≈ 189
and ReB ≈ 259, respectively [51,52]. Barkley and Henderson [53]
and Abdessemed et al. [48] have examined such transitions carefully
using stability analysis. We append the theoretical prediction of
eigenvalues from the stability analysis in Table 2. The visualizations
of the 3-DA and B modes, although not shown here, can be found in
[53], which agree well with the dye visualizations presented in [52].
With the identification of the 3-D stability modes, we can observe the
regions from which 3-D instabilities are given birth. We also note in
passing that we can further consider modal structures responsible for
transient growth, as reported by Abdessemed et al. [48].

D. Flow Modeling

1. Galerkin Modeling

We have now seen that the POD modes determined from the
snapshots can represent the flowfield accurately with remarkable
reduction in dimensionality. Instead of requiring a large number of
grid points to represent the flow [n � O�105–106�], we can simply
reconstruct the flowfield using a small set of PODmodes. In the case
of a laminar cylinder flow, eight modes can capture the unsteadiness
very well, as discussed earlier. Using the low-dimensional
representation of the flowfield with POD modes, we can model the
dynamics of the flowfield. Here, we present this reduced-order
modeling technique based on the Galerkin projection approach
[2,54,55]. This approach can provide a small set of ordinary
differential equations (ODEs) in terms of the POD coefficients
a ∈ Cr, in which r ≪ n, to describe the dynamics of the flow.
Let us consider the velocity field to be expressed as a superposition

of the POD modes:

u�t; x� � φ0�x� �
Xr

j�1

aj�t�φj�x� (3)

in which a0 � 1 and φ0 represents the mean field. We append a0 to
the coefficient vector a for ease of notation. We substitute this series
into the incompressible Navier–Stokes equations, and found that

∂
∂t

Xr

j�0

aj�t�φj�x� �
Xr

j�0

aj�t�φj�x� ⋅ ∇
Xr

k�0

ak�t�φk�x�

� −∇p� 1

Re
∇2

Xr

j�0

aj�t�φj�x� (4)

∇ ⋅
Xr

j�0

aj�t�φj�x� � 0 (5)

The second equation is the continuity equation, which is automat-
ically satisfied by each and every PODmode. Hence, we only need to
consider themomentum equation. To project these dynamics onto the
PODmodes, we take an inner product of the preceding equation with
φi�x�, which yields

dai
dt

�
Xr

j�0

Fijaj �
Xr

j�0

Xr

k�0

Gijkajak (6)

in which Fij � −Re−1hφi;∇2φji and Gijk � −hφi;φj ⋅ ∇φki
for i � 1; : : : ; r. To arrive at the aforementioned model, we
used the orthogonality property of PODmodes (i.e., hφi;φji � δij).
From the initial condition for the temporal coefficients
ai�t0� � hu�t0; x�;φi�x�i, we can now simply integrate these ODEs
to predict the dynamics of the modes. To reconstruct the full
flowfield,we simply useEq. (3). The pressure gradient termdrops out
from the Galerkin model due to the boundary condition for most
flows. Extensive discussions on the treatment of the pressure term
and its influence on the model are provided by Holmes et al. [2] and

Noack et al. [56]. Modeling efforts by incorporating the pressure
POD modes have also been considered to account for the pressure
effects [57].
For modeling the cylinder wake, Deane et al. [58] noticed that the

use of only four POD modes results in a slow growth of the wake
oscillation amplitudes without bounds. However, the ROM with six
PODmodes improved the accuracy of the model. Deane et al. made a
couple of important observations. First is the validity of the ROM
modes; for a fixed Reynolds number, the model predicts the behavior
of the flow well. However, the use of the mean field and the POD
modes from one Reynolds number does not appear to accurately
extend to other Reynolds numbers. The second observation is the
accuracy of the model over a long time frame. These POD-based
ROMs that predict the dynamics well for a short duration can deviate
over a long time.
Noack et al. [56] noted the importance of the base flow, and

constructed a POD-based ROM that can capture transients from an
unstable equilibrium to an asymptotic shedding state (limit-cycle
oscillation). In addition to the POD modes obtained from the
flowfield data, they supplemented the set of POD basis with the shift
mode φΔ. This additional shift mode amounts to the difference
between the mean flow and the equilibrium state, with the modal
components projected out, such that

φΔ � φb
Δ

kφb
Δk

; in which φb
Δ � φa

Δ −
Xr

i�1

hφa
Δ;φiiφi

and φa
Δ � φ0 − us (7)

Here, us is the steady-state solution to the Navier–Stokes equations.
By adding this shift mode to the set of basis functions, the Galerkin-
based ROM can be improved to model the transient dynamics well.
Such prediction is generally difficult without the shift mode. This
model with the shift mode can capture the transient effects with only
three modes (shift, first, and second modes), which is a significant
reduction in the dimension to describe the emergence of wake
instability. Shown in Fig. 4 are the POD-basedGalerkinmodel results
compared with the full DNS. Shown on the left are the three- and
nine-mode results using the approach of Noack et al. [56].

Fig. 4 Galerkin projection and SINDy models for cylinder flow at
Re � 100; the coefficients capture the transient dynamics of cylinder
flow developing the von Kármán shedding instability from the unstable
steady state at the bottom of the paraboloid; shown are reference (gray)
and model (blue) trajectories. (Reprinted with permission from
Cambridge University Press.)
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The present discussion on the Galerkin projection model was
based on the use of orthogonal POD modes. However, a set of
nonorthogonal modes, such as the DMDmodes, can be used instead.
The resulting model for nonorthogonal modes would include
additional terms, yielding a Petrov–Galerkin model. It is also
possible to introduce adjoint modes to use bi-orthogonality to derive
an ROM [59]. Another approach is to incorporate concepts from
network science and machine learning to construct a modal-network
model [60].
Despite the success of the Galerkin projection, there are a number

of practical issues that arisewhen using it to developROMs. First, the
expansion in Eq. (3) is typically truncated at a low-order r ≪ n to
develop an efficient model in terms of a few dominant coherent
structures. However, truncating the modal expansion removes the
effects of low-energymodes, whichmight be dynamically important.
When these terms are removed, subtle imbalances appear in the
quadratic nonlinearities, which often eventually lead to long-term
instability. It is possible to correct for these issues by enforcing
energy-preserving symmetries in the quadratic terms in the Galerkin
projection process [55,61–63]. It may also be the case that, for
complex, multiscale dynamics, the flow structures are not adequately
captured in a low-dimensional linear subspace. Because Galerkin
projection models typically scale with O�r3�, these models quickly
become more expensive than the original full-order model without
further measures. Finally, POD modes generally deform with
changing flow conditions and geometries, so that a given model
derived at one flow condition may have restricted utility for other
conditions. A number of these issues will be discussed in the next
section and also in the outlook in Sec. VI.

2. Sparse Identification of Nonlinear Dynamics

As an alternative to Galerkin projection of the governing equations
onto an orthogonal POD basis, it is possible to identify a nonlinear
dynamic system in this subspace by data-driven regression. In
particular, the sparse identification of nonlinear dynamics (SINDy)
algorithm [64] may be used to discover a low-order model based on
time-series data of the POD coefficients as the system evolves. Given
a vector of POD coefficients, a, it is possible to represent the right-
hand side of the dynamics of a as a linear combination of basis
functions θj�a� in a library:

da

dt
� f�a� ≈

Xp

j�1

θj�a�ξj (8)

The SINDy algorithm seeks a sparse vector of coefficients ξ,
indicating that as few terms θj�a� are active in the dynamics as
possible. This is achieved via modern methods in sparse regression,
and helps to ensure that the resulting models are both interpretable.
This approach was recently extended to model fluid systems by
Loiseau and Brunton [65] and Loiseau et al. [66]. It was shown that
known constraints can be incorporated in the SINDy regression
framework, such as energy-conserving constraints on the quadratic
nonlinearities for incompressible flows [65]. In particular, it is known
that a particular skew-symmetry in the quadratic nonlinearities gives
rise to energy conservation in incompressible flows, and it is possible
to enforce this model structure in the sparse regression procedure via
Lagrange multipliers. In general, there is a growing effort, especially
in fluid mechanics, to incorporate known symmetries, constraints,
and conservation laws into variousmachine learning algorithms [67].
Furthermore, unlike in the Galerkin projection, in which the

nonlinear terms in the ROM reflect those in the governing equations,
in SINDy, it is possible to include higher-order nonlinearities, which
may serve to account for the effects of truncated terms in the POD
expansion. A comparison of SINDy models and the standard
Galerkin projection is shown in Fig. 4, in which a SINDymodel with
cubic nonlinearities nearly perfectly captures the true dynamics. This
approach was later shown to be effective on sensor-based
coordinates, such as lift and drag measurements, removing the need
for full-state data and POD analysis, and bypassing the mode

deformation associated with changing flow conditions. These ROMs
can be used to stabilize the wake shedding for drag reduction [68].

III. Wall-Bounded Flows

Wall-bounded flows are one of themost ubiquitous flows that arise
in the study of fluids systems. Wall-bounded shear flows have
important differences from those considered in Sec. II, which may
exhibit oscillator-type dynamics characterized by a single dominant
frequency and length scale. In contrast, wall-bounded flows at a
sufficiently largeReynolds number can exhibit energetic structures at
a broad range of lengthscales and timescales. Wall-bounded
configurations, including channel, pipe, Couette, and boundary-layer
flows, share similarities in terms of both flow physics and analysis
methods. Here, the focus will be on flow through a uniform channel
with infinite extent in the streamwise and spanwise directions.
The assumption of spatial homogeneity assumed here is common
in modal analysis, as spatial Fourier modes can be used to
represent these spatially homogenous directions [2]. However, this
simplification can come at the cost of inefficiencies for identifying
and modeling localized or spatiotemporally developing structures.
Nonetheless, we adopt this simplification, as the assumption of
spatial homogeneity typically reduces the amount of data required for
data-drivenmethods, and reduces the computational requirements for
operator-based decompositions.
Famously, a laminar flow in a channel becomes linearly unstable at

a Reynolds number (based on channel half-height) of Re � 5772, as
first computed precisely by Orszag [69]. However, transition to
turbulence may be triggered and sustained at a much lower Reynolds
number than predicted by this linear (modal) stability analysis.
Indeed, the linear dynamics predict that perturbations about the
laminar equilibrium state can exhibit a significant growth prior to
subsequent decay—a phenomenon known as transient energy
growth, which can be studied using a nonmodal stability analysis
[70]. Transient energy growth is commonly attributed to the high
degree of nonnormality of the linearized Navier–Stokes operator,
which is observed in numerous wall-bounded flows. The purpose of
this section is to demonstrate how modal-decomposition techniques
may be applied to this class of flows, and to summarize and compare
typical results from each method. We will not attempt to provide a
comprehensive analysis of every aspect of the flow physics, nor a
complete summary of the substantial body of prior work using
modal-decomposition techniques on this class of problems. In this
section, we will first consider in detail the case of a stable linearized
channel flow in Sec. III.A, before discussing how similar methods
may be extended to study turbulent (Sec. III.B) and spatially
developing (Sec. III.C) wall-bounded flows.

A. Linearly Stable Laminar Channel Flow

We consider a system at a half-height-based Reynolds number of
Re � 2000, as illustrated in Fig. 5. This sectionwill focus only on the
dynamics with streamwise and spanwisewave numbers of kx � 0.25
and kz � 2. The dynamics are linearized about a laminar equilibrium
state (i.e., a parabolic streamwise velocity profile). This simple
example highlights certain features of wall-bounded flows, and
serves as a test bed to compare many of the modal-decomposition
methods considered in this paper. There aremany references that give
a more comprehensive treatment of this system [71,72] with some of
the analysis presented here similar to that described in
[4,70,71,73,74]. For this example, we formulated the problem in
terms of the Orr–Sommerfeld and Squire equations, and show the
results using the wall-normal velocity and vorticity.
In contrast to the approach taken in Sec. II, we first consider an

operator-based analysis of this system, before progressing to a data-
driven analysis (in which the choice of data will be informed by the
results of the operator-driven analysis). To start with, we consider the
stability properties of the linear operator for this system. In addition to
studying the asymptotic stability (governed by the eigenvalues or
spectrum of the operator), we also consider the pseudospectrum,
which can be viewed as a measure of how close a given point in the
complex plane is to being an eigenvalue. More formally, the
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ϵ-pseudospectrum of a linear operator L is the set of values z in the
complex plane satisfying the following equivalent conditions for a
given ϵ:
1) kLq − zqk ≤ ϵ for some pseudoeigenvector q;
2) �L� E�q � zq for some perturbation operator E, with

kEk ≤ ϵ; and
3) k�zI − L�−1k ≥ ϵ−1.

The operator �zI − L�−1 is the resolvent operator associated with L
for a given z, with the associated resolvent norm k�zI − L�−1k.
Detailed discussions of pseudospectral theory in the context of fluid
flows are offered in [70,75].
The eigenvalue spectrum for this stable system, along with

contours of the pseudospectra for various values of ϵ, are shown in
Fig. 6a. By Squire’s theorem, the system would become less stable if
the spanwise wave number were reduced to 0. Evenwhen the system
is asymptotically stable, the nonnormal nature of the associated linear
operator renders it susceptible to both the transient energy growth
over finite time horizons and the high amplification of external
disturbances/inputs. Note that, in the case of a normal operator, the
ϵ-pseudospectrum consists of the union of concentric disks of radius
ϵ about each eigenvalue. For nonnormal operators, such as that
considered in Fig. 6a, the ϵ-pseudospectrum can be far larger and can
deform away from being a union of concentric disks. In this case, the
union of concentric disks of radius ϵ about each eigenvalue instead
gives a lower bound for the ϵ-pseudospectrum, with an upper bound
given by the equivalent union of disks of radius κϵ, in which κ is the
condition number of the operator.
The maximum amplification of the system to a single-frequency

input is given by the norm of the resolvent operator associated with
the linear system for that frequency, which is equivalent to the
contours of the pseudospectra plotted in Fig. 6a. We are typically
interested in purely oscillatory disturbances, which correspond to the
dashed line in Fig. 6a. The optimal disturbance and response at a
wave speed (cr � ω∕kx � 0.578) leading to maximum amplifica-

tion for this system are shown in Fig. 6b (which correspond to the
filled circle in Fig. 6a). A contour plot through a spanwise-constant
slice of the domain of the resolvent response mode for these
parameters is also shown in Fig. 5. This optimal disturbance and
response may be obtained, respectively, from the leading right and
left singular vectors of the resolvent operator associated with this
frequency.
The initial and final conditions of the trajectory giving maximal

energy growth for this system are shown in Fig. 6b. The maximum
energy is attained by the system at a time horizon τ � 58, in which
the initial and final conditions givingmaximumenergy growth can be
obtained from the leading right and left singular vectors of the finite
time propagation operator exp�Lτ�. The evolution of the energyof the
system for this trajectory is shown in Fig. 7. Note that transient
growth may be formally related to the pseudospectral/resolvent
analysis via the Kreiss constant [76], as discussed in the context of
channel flow in [70,75].
Thus far, we have analyzed this system through a study of the

operator itself. We now give attention to data-driven modal-
decomposition methods. We will focus on data collected on the
trajectory giving the largest energy growth, with an initial condition as
shown in Fig. 6b. PerformingDMDon this trajectory (collectedwith a
time step δt � 0.01) gives eigenvalues as shown by the open circles in
Fig. 6a. We observe that DMD identifies some, but not all, of the
eigenvalues of the system. Physically, DMD identifies those modes
that are active in the given data set. Because DMD is a data-driven
method, it cannot take advantage of rescaling and normalization that
are typically appliedwhen using iterativemethods, such as anArnoldi
procedure [6]. Note in particular that, for this system, the eigenvalues
near the intersection between the eigenvalue branches are particularly
susceptible to perturbation, which is again related to the nonnormality
of the system. Furthermore, although the operator identified using
DMDshares only a subset of the true eigenvalues of the full operator, it
is able to reconstruct the data that were used for its identification. This
is not surprising, because the underlying dynamic system is linear.
The leading PODmodes identified from this data set are shown in

Fig. 7. We observed that the leading POD modes are dominated by
the wall-normal vorticity component, and also that only a fewmodes
are required to account for the vast majority of the energy present in
the data. We may use these modes as a basis for projection of the
governing equations to obtain a ROM for the system dynamics. Note
that this is the same procedure presented in Sec. II.D.1, but here, we
consider the simpler case of a linear system. In particular, if the basis
of the PODmodes to be used for projection is given by the columns of

Fig. 5 Channel geometry superposed with the mean profile and a 2-D
slice of the leading resolvent responsemode for this system atRe � 2000,
kx � 0.25, kz � 2, and cr � 0.578.
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Fig. 6 a) Eigenvalues (expressed as a complex growth rate c � λ∕kx) and contours of the pseudospectra for channel flowwithRe � 2000, kx � 0.25, and
kz � 2; DMDeigenvalues identified for a trajectory giving optimal transient growth are shownwith unfilled circles, whereas the filled circle at cr � 0.578
represents the real frequency corresponding tomaximumresolvent norm; b) leading resolvent forcing and responsemodes corresponding to awave speed
(cr � 0.578) leading tomaximumamplification, and initial and final (maximally amplified) states along a trajectory leading tomaximal energy growth; all
modes are scaled to be of unit norm, with black and red lines corresponding to wall-normal velocity and vorticity fields, and solid and dashed lines
representing the magnitude and real component of these fields.
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a matrix Φ, then the reduced-order operator ~L can be obtained from
the full operator L by

~L � Φ�LΦ (9)

in which Φ� is the adjoint of Φ. Performing such a projection using
the first three POD modes gives a model that poorly reconstructs the
trajectory of the data, as shown in Fig. 7.
This can be understood by the fact that the total energy of the

system, and thus, the leading POD modes, is dominated by the wall-
normal vorticity component, yet the initial condition used contains a
substantial wall-normal velocity component. Note in particular that
the leading three POD modes account for less than 4% of the energy
of the initial condition. However, if five modes are used instead, this
measure exceeds 95% and an accurate ROM can be obtained. This
demonstrates that total energy content is often not the most important
factor for identifying a basis for projection of the full governing
equations, because there may be features that are dynamically
important, even though they are low in energy.
For a linear systemwith a given set of system inputs and outputs, a

projection-based ROM that best preserves the input/output dynamics
may be obtained through a balanced truncation [77]. A balanced
truncation finds a compromise between system observability and
controllability, which are analogous to the total energy content and
initial conditions for the system considered here (if one considers the
initial conditions as the input matrix for a single-input linear state-
space system). Rather than using a single set of modes to form a basis
for projection as in Eq. (9), we obtain a ROM by finding separate
subspaces that define the basis upon which the reduced dynamics
evolve (basis vectors for which can be assembled as columns of a
matrixΦ) and the direction of the projection onto that subspace (with
a basis given by the columns ofΨ, which are bi-orthogonal to those of
Φ). The reduced linear operator is then related to the full system by

~L � Ψ�LΦ (10)

with system inputs and outputs appropriately projected. We refer to
the columns ofΦ andΨ as the primal and adjointmodes, respectively.
Although it is feasible to perform a balanced truncation directly for

the simple system considered here, it can become difficult or
infeasible for large systems. BPOD [4] gives a means to perform an
approximate balanced truncation from impulse response data from
the forward and adjoint systems (which have state propagation
operators given, respectively, by L and L�). As seen in Fig. 7,
applying this method gives a three-mode model that accurately
captures the trajectory of the data, unlike the POD model. For the
BPOD model, we apply output projection [4,78] to reduce the

dimension of the full-state output down to just seven variables. The
PODmodel projects the governing equation onto a subspace along a
direction orthogonal to the subspace, whereas the BPOD computes a
direction of projection that best preserves the dynamics of the system.
We show in Fig. 7 the primal modes onto which the dynamics are
projected and the adjoint modes defining the direction of projection.
Note in particular that the primal modes are dominated by the wall-
normal vorticity (as are the POD modes), whereas the adjoint modes
have a substantial contribution from the wall-normal velocity. This
allows for a projection that retains a sufficient dynamically important
content of the full system to give an accurate ROM.
The possibility of capturing input/output dynamics using modal-

analysis techniques has made balanced truncation and BPOD
attractive for active flow-control synthesis. Indeed, modal analysis
can guide the choice of actuation and sensing, and can also inform
designs of open-loop control strategies [79,80]. Further, modal-
analysis techniques can be tailored to and leveraged for feedback
flow-control synthesis. Within the context of channel flow control,
numerous model-reduction strategies have been developed around
modal-decomposition techniques (e.g., global mode truncation
[81] and input/output modeling [82–84]). Recent efforts have
demonstrated that a model-reduction approach needs to be selected
and tailored carefully with respect to the control objective [83,84].
For example,within the context of transient energy growth reduction,
the performance of feedback controllers designed on ROMs can be
quite sensitive to the parameters used in generating the underlying
ROMs [83,84].
Interestingly, the physical and descriptive insights offered by the

modal analysis can potentially guide feedback flow-control designs
as well, motivating a new perspective for dynamic mode shaping
control synthesis, in which the closed-loop spectral properties of a
system can be prescribed by an appropriate control action [85]. These
same efforts on dynamic mode shaping have recently been used to
uncover fundamental performance limitations in commonly
employed sensor-based output feedback controllers that are
commonly employed in flow-control applications. Indeed, it can be
shown that observer-based feedback strategies—in which the flow
state is reconstructed from measured sensor outputs, then leveraged
for feedback control—can never fully suppress transient energy
growth within the context of linearized flows that exhibit transient
energy growth in the first place [86]. Furthermore, such strategies
have been found to dramatically degrade performance in terms of the
worst-case transient energy growth in the linearized channel flow
system [80,87]. Alternative output feedback-control strategies have
been found to be superior in terms of the worst-case transient energy
growth performance. However, most synthesis algorithms suffer
from the curse of dimensionality, necessitating the use of ROMs to
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trajectory leading to maximal finite time energy growth, compared with predictions from the three-mode POD and BPOD models.

10 Article in Advance / TAIRA ETAL.

D
ow

nl
oa

de
d 

by
 U

C
L

A
 L

IB
R

A
R

Y
 o

n 
O

ct
ob

er
 1

5,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.J
05

84
62

 



make synthesis tractable in flow-control applications. Control-
oriented model reduction based on modal decompositions and other
systems-theoretic techniques (e.g., robust∕H∞ modeling [88]) will
play an important role in overcoming these hurdles into the future.

B. Turbulent Wall-Bounded Flows

This section will discuss how a number of ideas and methods
discussed in Sec. III.A have been applied to turbulent flows, in which
spatial homogeneity is assumed in the streamwise and spanwise
directions. Operator-based linear analyses of turbulent flows typically
considermean linearized governing equations.Although such analyses
are generally not able to predict the exact evolution of trajectories as in
the case of linear flow, a substantial insight into the features of turbulent
flows can still begained fromconsiderationof linear operators.Amodal
linear stability analysis about wall-bounded turbulent mean flows often
gives stable eigenvalues [89,90] (although this is not the case for some
of thegeometries considered inSecs. IVandV). Indeed, the discrepancy
betweenSquire’s theorem,whereby the least stablemodes are spanwise
constant, andobservations of the three-dimensionalityof both transition
mechanisms [91] and structures in fully developed turbulence show the
limitations of linear eigenmodes. The combination of a nonnormal
system with nonlinear terms of substantial size means that nonmodal
properties make considerations of nonnormality particularly important
forwall-bounded (ormoregenerally, shear-driven) turbulent flows [70].
Operator-based analyses of turbulent flows have been used in various
contexts as a tool to probe, quantify, and explain the physics underlying
phenomenological studies of observed structures, such as near-wall
streaks [90] and their role in the amplification of streamwise vortices
[92], hairpin structures [93], and self-similar structures [94,95].
A particularly fruitful approach for an operator-based modal

analysis of turbulent wall-bounded flows, used in several of the
aforementioned studies, comes from consideration of the resolvent
operator associated with the mean linearized equations [96–98], and
in particular, its singular-value decomposition. More generally, the
utility of such analysis in fluids arises because the pseudospectrum is
often more relevant than the spectrum for understanding typical
instability and amplification mechanisms [13,72,75,99,100]. The
nonlinear terms appear as a feedback interconnection with the linear
resolvent operator within this analysis framework. As such, a gain-
based (input/output) decomposition of the linear resolvent operator
provides insights regarding the amplification of velocity and pressure
modes due to the nonlinear forcing terms [98]. Recently, the resolvent
formalism has been extended to study the influence of surface-
roughness effects, providing a convenient tool for studying passive
flow-control devices, such as, for example, compliant surfaces [101]
and spanwise periodic and streamwise-constant riblets [102]. Similar
extensions can also be used to design active control strategies [103].
Although the resolvent formalism has become a prominent method

for analyzing wall-bounded turbulent flows in recent years, the
approach has close connections with other modal-analysis techniques
as well. Under the assumption that forcing results in uncorrelated
resolvent response-mode expansion coefficients, it can be shown
that resolvent response coincides with spectral POD modes [104],
providing a connection between operator-based and data-drivenmodal
decompositions. Indeed, POD has a rich history in the study of wall-
bounded turbulent flows [2,3,105,106], with the initial approaches
being tractable using two-point correlation measurements [105].
Recent investigations have also applied resolvent-based models for

state estimation from limited measurements [107,108], and have also
leveraged covariance completion techniques to model the nonlinear
forcing terms within the resolvent framework as appropriate colored
noise processes [109,110]. These recent investigations may offer a
convenient set of reduced-complexity models that can guide future
investigations on controlling turbulent wall-bounded flows.

C. Spatially Developing Flows

In contrast to fully developed parallel channel flow, the boundary
layer over a flat plate grows slowly in the streamwise direction. The
boundary-layer thickness grows as δ ∼

���������������
xν∕U∞

p
, in whichU∞ is the

freestream velocity and ν is the kinematic viscosity. At a sufficiently

high Reynolds number, a disturbance generated at an upstream
location grows in amplitude as it is transported downstream by the
mean flow. Therefore, the flow is globally stable, but is locally
convectively unstable. The latter instability refers to the fact that a
local stability analysis would yield an unstable system, based on a
parallel-flow assumption with the mean profile taken from a
particular fixed streamwise position. In the full physical domain with
a global viewpoint, however, the growth of perturbations at a fixed
streamwise position is only a transient phenomenon, thus rendering
the system as asymptotically stable [111].
The characteristic feature of convectively unstable flows is that they

behave as amplifiers when externally forced. In particular, external
perturbations (e.g., acoustic waves and freestream perturbations)
continuously penetrate the boundary layer during a receptivity phase
and trigger disturbances [Tollmien–Schlichting (TS) waves or
streamwise vortices] that grow as they propagate downstreamwith the
mean flow. If these disturbances reach above a certain threshold in
amplitude, theymay induce a breakdown to a turbulent flow. The focus
of a large number of studies has thus been on transition control that
aims to delay the transition process by suppressing the growth of
boundary-layer disturbances. Within this context, modal-decom-
position techniques have been instrumental for reducing the number of
degrees of freedom of the fluid system [typically ≳O�106�] to yield a
modal-based ROM [typically ≲O�102�]. Specifically, efficient and
small ROMs can be constructed when the input/output dynamics are
much simpler than the full spatiotemporal perturbation dynamics. For
example, this is the case for feedforward control of TS waves using a
few strategically placed actuators and sensors flush-mounted on a flat
plate. The output signal from an upstream sensor used to detect
propagating disturbances is fed to a suitable controller, which in turn
provides an actuation signal (input) that attenuates the measured
disturbances through interference.
The construction of modal-based ROMs has been particularly

successful using BPOD modes [112,113]. A BPOD basis takes into
account the sensitivity to upstream forcing via the adjoint balanced
modes. In contrast, the leading POD modes represent the most
energetic structures located far downstream, and thus, have little spatial
support upstream near the forcing. This makes it difficult to obtain
small and accurate Galerkin models of the input/output dynamics. A
number of studies have also used the direct and adjoint eigenmodes
of the linearized system as an expansion basis to construct ROMs
[114]. However, these models quickly become ill-conditioned, as the
streamwise separation between consecutive pairs rapidly increases
[115]. Although modal-based ROMs have resulted in experimentally
viable controllers [116,117], one of their limitations is that they require
detailed knowledge of the spatial distribution of the upstream
disturbance source (or noise environment). This requirement, which
poses a limitation in experimental settings in particular, has resulted in
a number of alternative approaches to obtain ROMs based on system
identification methods [118].
A number of groups have used modal-decomposition techniques

to extract and understand the inherent dynamics of spatially
developing flows. However, extraction of temporal dynamics using
data-drivenmethods is a challenging problem in noisy environments.
If the system is continuously driven by external noise, the system
will, after a transient, reach a statistically steady state, thus causing
the collected snapshot data to contain both external driving and
inherent dynamics [119]. A DMD analysis performed on such a data
set will provide a spectrumwithmarginally stable eigenvalues,which
is in contradiction with the damped spectrum of these systems.
However, the DMD modes provide information about spatial
inherent dynamics corresponding to a spatial stability analysis.
To illustrate this, let us consider the uniform flow over a flat plate,

where a localized harmonic forcing in the wall-normal direction of
frequency ω is continuously applied upstream in the boundary layer.
An instantaneous snapshot of the streamwise velocity component is
shown in Fig. 8a. The growing boundary layer is modulated by
periodic forcing. The zeroth, first, and third DMD modes are shown
in Figs. 8b–8d. The zeroth DMD mode corresponds to the time-
averaged mean flow, which, for this small-amplitude forcing, is very
close to the Blasius solution. The first DMD mode corresponds to a
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TSwave, inwhich the associatedDMDeigenvalue λj has zero growth
rate and a frequency that is equal to the forcing frequency. As
mentioned earlier, the zeroth temporal growth rate predicted byDMD
is in contradiction with a global spectrum of the system, which
predicts a damped system. However, in Fig. 8c, we observed that the
amplitude of the DMDmode decays immediately downstream of the
location of the forcing before it begins to grow at a particular
streamwise location (branch I) until it peaks further downstream
(branch II). The spatial locations of branches I and II for this
particular forcing frequency correspond to values obtained from the
neutral curve of a local analysis of the Blasius boundary layer [71].
The thirdDMDmode in Fig. 8d corresponds to another TSwavewith
frequency 2ω generated from nonlinear interactions.

IV. Airfoil Wakes

Flow over an airfoil is another example that attracts great
engineering interests in aerodynamic and turbomachinery applica-
tions. Modal analysis has examined various aspects of airfoil wakes,
including thewake structures [120,121], body geometry [122,123], tip
vortex [124–127], aeroacoustics [128–130], and buffeting [131–134].
Key efforts have been placed on mitigating flow separation over an
airfoil for performance enhancement and improved safety of aircraft.
In this section, we discuss how a modal analysis can be used to study
the flow physics over the airfoil and how its insights can be used to
develop effective separation-control strategies. In Secs. IV and V, we
focus on the excitation of modes to modify the mean-flow profile.
Although we can also consider the suppression of modes as a way to
control fluid flows, its effectiveness on modifying the flow can be in
question for higher-Reynolds-number flows, in which nonlinear
effects are strong.On the other hand, excitation can push the flow away
from its current state, if successful, and alter the mean-flow profile
across a range of Reynolds numbers as some of the examples that
follow will show.

A. POD and DMD Analyses

We have discussed the importance of the time window and
temporal resolution for the snapshots used in the data-based modal
analyses. For high-Reynolds-number separated flows, high temporal
resolution is required to capture the shear-layer structures over the
airfoil. To accurately capture the wake structure, on the other hand,
we need to ensure that the snapshots are adequately collected over a
reasonable number of vortex-shedding periods. For turbulent flows, a
large number of snapshots in time are needed due to the chaotic nature
of the wake dynamics.
The spatial domain for data-based analyses should be based on the

physics under examination. If the global snapshots of a high-
Reynolds-number separated flow are used to perform POD, shear-
layer structures over the separation bubble may only be revealed at
high-order modes. This is because POD modes are ranked with
respect to the relative energy content, and shear-layer structures
usually contain a smaller fraction of energy compared to the wake
structure. If the shear-layer structures are of the main interest, we can
consider the domain to cover only the separation bubble so that the
shear-layer structures can be analyzed with low-rank POD modes.
We also note that the same purpose can be served by introducing the
spatial window as a weighted function. If DMD is performed, it can

automatically separate the shear-layer structures from the wake
structures according to their own corresponding frequencies, as each
DMD mode holds a single frequency.
A data-based modal analysis on airfoil flows has been shown to be

capable of capturing coherent structures at chord-based Reynolds
numbers up to O�105� [123,135]. The studies by Ribeiro and Wolf
[130] andRicciardi et al. [136] considered a 3-D data set collected for
a turbulent flow over a NACA 0012 airfoil atRe � 408; 000. Similar
to Freund and Colonius [137], their POD analysis considered the use
of different norms to reveal the flow structures that are associated
with tonal noise. The leading POD modes using the norms based on
KE and pressure fluctuation are shown in Fig. 9. The use of these
norms reveals similar structures associated with the generation of
dominant tonal noise according to the spectral content of their
temporal coefficients. However, the PODmodes from the second pair
(mode 3) exhibit different structures with the use of different norms.
The use of the pressure normuncovers spanwise structures associated
with the harmonics of the dominant tone, whereas the KE norm
reveals streamwise structures over the airfoil, which do not attribute
to the tonal-noise generation. This study highlights the importance of
the choice of norms in a POD analysis. It also suggests that the
collection of 3-D data set can be necessary even when spatial
homogeneity may appear appropriate, as the energetic streamwise
structure in mode 3 would not have been revealed if only a spanwise
slice of data was considered in the modal analysis.

B. Global Stability Analysis

Global stability analyses of flows over a NACA 0012 airfoil have
been performed by Theofilis [138] and Zhang and Samtaney [139].
An example of the spectrum and eigenmodes obtained from Zhang
and Samtaney [139] is presented in Fig. 10. Here, unstable
equilibrium flows over the airfoil atRe � 400 to 1000 are considered
as the base states. With the spatial periodicity assumed in the
spanwise direction, they adopted the biglobal mode representation
q 0�x� � q̂�x; y� exp�iωt� iβz�, in which z is the homogeneous
spanwise direction and β is the spanwise wave number. Unstable
eigenvalues are found for the base flows at all selected Reynolds
numbers, corresponding to the unstable vortex shedding observed in

a) b)

d)c)
Fig. 8 a) An instantaneous snapshot of the streamwise velocity component of the harmonically forced flat-plate boundary layer with nondimensional
frequencyF � 106ων∕U2

∞ � 120; the inlet Reynolds number based on the displacement thickness and freestream velocity isRex � U∞x∕ν � 30;387 in a
2-D computational box; b–d) the zeroth, first, and third DMD modes (all marginally stable) of the system; c) a TS wave is observed that grows in the
streamwise direction between branches I and II at a rate predicted by the local spatial stability analysis.

KE norm

Pressure norm

mode 1 mode 3

mode 1 mode 3

Fig. 9 POD modes obtained with perturbation KE norm (top) and
pressure norm (bottom) [130] reveal distinctive structures in the second
mode pair (mode 3). (Reprinted with permission from AIP Publishing.)
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the companion DNSs. Moreover, the dominant unstable eigenmodes
reveal vortex-shedding structures in the pattern of bluff-body wake.
These corresponding frequencies determined from the stability
analysis agree with the shedding frequencies observed in the DNSs.
The destabilizing effect from increasing Reynolds number is also
reflected in the increasing growth rates of the eigenvalues.
A global stability analysis can be extended to periodic base flows

by incorporating Floquet analysis [53]. The stability of the periodic
base flows representing the vortex shedding in airfoil wake has been
examined with Floquet analysis by He et al. [140]. In their study, the
3-D instability is treated as a secondary instability that takes place
about the 2-D periodic base flow. The stability is determined by the
magnitude of the Floquet multiplier, which indicates the growth/
decay rate of the 3-D perturbation when propagating with the 2-D
periodic base flow. Considering the periodic base flow over the
NACA 4415 airfoil at Re � 500, two instability modes, as shown in
Fig. 11, appear at the spanwise wave numbers β � 3 and 11,
exhibiting distinct surface flow patterns. The short-wavelength
instability (β � 11) is the stronger of the two, producing the wall-
shear distribution that portrays a 3-D flow pattern.

C. Flow Control

1. Separation Control Using the Resolvent Analysis

An airfoil at a high angle of attack or in an unsteady maneuver can
experience stall resulting from flow separation over the suction
surface [120,141–144]. To address this issue, the development of a
separation-control technique to suppress flow separation has been the
focus of many studies [120,145–147]. The study conducted by Yeh
and Taira [43] considered the use of the resolvent analysis to guide an
active separation control with periodic forcing. The analysis was
conducted about the turbulent mean flows obtained from the baseline
(uncontrolled) simulation to determine the optimal actuation
frequencies andwave numbers to suppress separation. As a precursor
to the resolvent analysis, a global stability analysis was conducted,
which revealed an asymptotic instability of their base flows. To
extend the resolvent analysis to the unstable base flows, a finite time
(discounted) analysis [148] was applied by selecting a complex
frequency ω � ωr − iα in the resolvent operator H�ω� �
�iωI − Lq�−1. The real-valued discounting parameter α was chosen
to be higher than the dominant unstablemodal growth rate ofLq from
the companion global stability analysis, such that the energy

amplification in the input/output analysis is examined over a shorter
timescale than that of the dominant instability.
Flow separation can be suppressed by the entrainment of freestream

momentum over the suction surface, which can be achieved by
enhancing the momentum mixing. As such, Yeh and Taira [43]
proposed a modal mixing metric M�β;ω� ≡ ∫ Ω�σ2�R̂2

x � R̂2
y�

R̂2
z�1∕2�β;ωw�x� dx that incorporates the response modal Reynolds

stresses R̂ and the associated gain σ from the resolvent analysis, with
the spatial weight function w�x� that encompasses the shear-layer
region over the suction surface. This scalarmetricM is a function of the
spanwise wave number β and frequency ω, and quantifies the
momentum mixing that takes place over the separation bubble. With
enhanced freestreamentrainment, the scalar functionM�β;ω� assesses
the effectiveness of the choice �β;ω� in suppressing flow separation.
Supported by the independent parametric study on open-loop
controlled flows, the modal mixing metric M�β;ω� was found to
predict the enhancement of aerodynamic performance over the
actuationparameter spaceofβ andω. The agreement betweenM�β;ω�
and the performance enhancement is presented inFig. 12, inwhich two
cases are highlighted by showing the resolvent modes and
visualization of instantaneous flowfield. InFig. 12a, high amplification
and strong modal Reynolds stresses over the suction surface gave rise

Fig. 10 Spectrum (left) and dominant unstable eigenmodes (right) from the biglobal stability analysis on flows over a NACA 0012 airfoil [139]; results
from the spanwise wave number β � 0.0001 are shown; the streamwise velocity components of the eigenmodes are shown for Re � 600 and 1000.
(Reprinted with permission from AIP Publishing.)

Fig. 11 Floquet analysis of the periodic flow over aNACA4415 airfoil at
Re � 500 and α � 20 deg revealed two 3-D instability modes at β � 3
(top) and 11 (bottom) [140];modal structures and surface streamlines are
shown for each mode. (Reprinted with permission from Cambridge
University Press.)
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to the peak magnitude of the modal mixing metric M�β;ω�. The
companion large-eddy simulation (LES) confirmed a high level of
momentummixing induced by flow control using actuation with these
parameters of �β;ω�, which attached the flow and achieved
enhancement in both lift and drag. In contrast, poor performance
enhancement (Fig. 12b)with insufficientmixing provided by the small
roll-up structure is also suggested by the resolvent response mode and
low level ofM�β;ω�. This example of using amodal analysis provides
quantitative assessments of the control effectiveness over a parameter
space without the need for a computationally expensive LES
parameter study.

2. Attenuation of Wingtip Vortex

Another important feature of an airfoil wake is the tip vortex. A
finite span wing at an angle of attack creates a tip vortex due to the
pressure difference between the suction and pressure surfaces.
Because tip vortices have implications for efficiency loss, safety
concerns, andwake unsteadiness, there have been a number of efforts
to characterize the tip vortex [124,149,150]. Flow unsteadiness and
instabilities around awingtip have been studiedwith amodal analysis
as well. In the experimental work of Edstrand et al. [126], a POD
analysis of the wake on cross-stream planes [from particle image
velocimetry (PIV) measurements at Re � 530; 000 and α � 5 deg]
revealed modes associated with the so-called wandering
phenomenon of the tip vortex. The modal structures from the POD
were compared to the stability modes obtained for a Batchelor vortex
model, exhibiting a great similarity. This observation suggests the

wandering phenomenon to be closely related to the tip-vortex
instability.
The prolonged presence of tip vortices is a safety hazard for aircraft

operations. To address this issue, there have been efforts to attenuate
the tip vortices with an active flow control. The traditional approach
introduces perturbations from the wingtip in hopes of weakening the
tip vortex [151,152]. In a recent study by Edstrand et al. [127], the
wake behind the wingtip was computationally analyzed via a global
stability analysis with a parabolized formulation incorporated in the
streamwise direction (Re � 1000 and angle of attack of 5 deg). A
similar approach was taken in an earlier study of the 3-D stability
characteristics of an elliptic wing wake by He et al. [153]. In the
detailed analysis of Edstrand et al. [127], they revealed two distinct
types of instabilities, as visualized in Fig. 13. The dominant modes
were found to possess structures that corotate with the tip vortex.
They also found the subdominant fifth instabilitymode that emanates
from the trailing edge with structures that counter-rotate with the tip
vortex. Because past studies have revealed that counter-rotating
instability modes can effectively attenuate vortices in free space, this
finding suggested the forcing input to be introduced from the trailing
edge to attenuate the tip vortex, instead of the wingtip. Using DNS,
the tip vortex was found to be weakened effectively with the fifth-
mode-based control setup, as shown by the circulation of the tip
vortex in Fig. 13. To ensure that the control technique does indeed
trigger the counter-rotating instability, DMD was also used to assess
the controlled flow, for which the expected counter-rotating
perturbation was observed. This study shows that a detailed stability

Fig. 12 Use of the resolvent analysis to develop separation control for an airfoil wake atRe � 23;000 [43]; control effectiveness is well predicted by the
modal mixing function M�β;ω�; a–b) visualizations are shown for the instantaneous flowfields and the resolvent response modes (streamwise velocity
component) and the spanwise modal Reynolds stress R̂z � Re�v̂�x v̂y�.

0
0

0.02

0.04

0.06

Control
(5th mode)

Control
(1st mode)

Control
(5th mode)

Control

Baseline

(1st mode)

Streamwise
vorticity

Q criteria (blue) and
Vorticity magnitude (gray)

7654321

Fig. 13 First and fifth instabilitymodes visualized (top); themodal profiles are used to introduce perturbations near the trailing edge tomodify the wake
and attenuate the tip vortex (bottom); circulation of the tip vortex is compared (right) to assess the effectiveness of active flow control. (Compiled with
permission from Edstrand et al. [127]; reprinted with permission from Cambridge University Press.)
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analysis can be used to design an effective control technique, and
identify the appropriate placement of the forcing input.

V. Cavity Flows

Flows over rectangular cavities serve as fundamental models for
flows over landing-gearwells and stores on aircraft [154]. In an open-
cavity flow, a shear layer forms from the leading edge and amplifies
disturbances through the Kelvin–Helmholtz instability, which leads
to the formation of large vortical structures that impinge on the cavity
aftwall. Large pressure fluctuations and acousticwaves are generated
from the impingement, which perturb the upstream shear layer. This
overall process forms a self-sustained natural feedback loop in open-
cavity flows, as shown in Fig. 14. Resonant tones are generated from
this process, which are known as the Rossiter modes [155]. Based on
a large collection of experimental data, Rossiter derived a semi-
empirical formula to predict the resonant frequencies. As the original
formula only considers the influence of the two important parameters
of the freestream Mach number M∞ and cavity aspect ratio L∕D,
extensive experimental and numerical studies have followed to
examine the influence of other parameters, including the Reynolds
number and boundary-layer thickness [156–158].
The spatial structures that correspond to the dominant Rossiter

frequencies as well as the coherent structures that arise from other
types of instabilities or physics can be revealed by modal-analysis
techniques. This section considers the applications ofmodal-analysis
techniques on rectangular open-cavity flows. We further discuss
ways to design flow-control techniques to suppress flow oscillations
based on insights from these modal analyses. In what follows,
we will focus on spanwise-periodic rectangular cavity flows, unless
otherwise noted.

A. POD and DMD Analyses

Given a collection of snapshots of open-cavity flows from
experiments or simulations, we can perform a data-based analysis
with POD and DMD. As discussed in Sec. II on cylinder flow,
performing POD and DMD analyses requires a proper collection of
snapshots to capture specific modes. For a laminar cavity flow, the
appropriate number of snapshots and length of time-series data can be
estimated based on the fundamental Rossiter frequencies given by the
semi-empirical formula. For a turbulent cavity flow, a large number
of snapshots become necessary, as such flow possesses spectrawith a
broader frequency content.

A POD analysis captures modes with large unsteady fluctuations.
An example of applying a POD analysis of a turbulent flow over a
cavity of L∕D � 6 for 0.19 ≤ M∞ ≤ 0.73 from experiments has
been briefly presented in our previous overview paper [1] (see
sec. III.B.2 and Murray et al. [157]). Snapshots were collected using
PIV from high-speed flows. For compressible cavity flows, the
spatial structures of the most energetic POD modes reside in the
shear-layer region, showing the spatially growing nature of the
modes toward the cavity trailing edge [157], which remain similar
regardless of the freestreamMach number. The POD analysis offers a
framework to extract dominant energetic structures, and serves as a
foundation for systematic comparison over a range of operating
conditions.
We can alternatively use the DMD analysis to extract dynamically

important modes. If the flowfield from a linearized Navier–Stokes
solver is considered, the DMD analysis can return the global stability
modes, as performed for a linearized flow over a cavity of L∕D � 1
at Re � 4500 by Schmid [6]. Such an analysis identifies the Kelvin–
Helmholtz instabilities in the shear layer that cause flow oscillations.
As shown in Fig. 15, the branch of DMD eigenspectrum containing
unstable modes (λr > 0) corresponds to shear-layer instabilities, as
their modal structures are concentrated in the shear-layer region
spanning the length of the cavity. Instead of performing DMD on
linear snapshots, regressions can also be applied to extract global
instability modes. Brès and Colonius [159] conducted extensive
linearized simulations and extracted 3-D instabilities of a
compressible open-cavity flow using a regression approach.

B. Global Stability and Resolvent Analyses

Because an open-cavity flow is globally affected by the Rossiter
modes, a biglobal stability analysis is widely used to study the
perturbation dynamics about a given 2-D base flow. Here, let us
consider the perturbations to be spanwise periodic with a spanwise
wave number of β (normalized by cavity depth). The biglobal
stability analysis assumes a homogeneous direction,whichwe take to
be periodic for the present discussion. If sidewall effects or any other
3-D factors need to be considered, a triglobal stability analysis can be
adopted. For the biglobal stability analysis with β � 0, 2-D
eigenmodes can be found, which are closely related to the well-
known Rossiter modes, and 3-D instabilities can be determined by
choosing β > 0 [160–163].
The insights gained from the modal analysis can be leveraged to

develop active flow-control techniques to reduce the high-amplitude
fluctuations in cavity flows. Sun et al. [163] performed a biglobal
stability analysis of laminar compressible flows over a long cavity of
L∕D � 6 andReD � 502 to derive physics-based techniques for the
attenuation of unsteady oscillations. In their study, they examined the
influence ofMach numberM∞ and spanwisewavelength λ∕D on the
3-D instability properties. It was found that the frequencies
associated with 3-D instabilities (β > 0) are one order of magnitude
lower than those of the 2-D shear-layer instabilities. The
characteristics of the leading eigenmodes over a range of M∞ and
λ∕D can be found, as shown in Fig. 16a. An increase inMach number
stabilizes the 3-D leading eigenmodes. Furthermore, they noticed
that the overall trend of growth rate ωiD∕u∞ remained similar over
the range of Mach numbers considered. This suggests that flow-
control strategies we design based on 3-D instabilities may work

Shear-layer
instability

Acoustic waves

Leading edge Trailing edge
No-slip wall

Fig. 14 Schematic of open-cavity flow with spanwise vorticity in the
background.

Fig. 15 DMDeigenspectrum (λi, frequency; λr, growth/decay rate) for incompressible flow over cavity ofL∕D � 1 andRe � 4500 (figure adapted from
[6]); inserted are streamwise velocity of dynamicmodes; the size and color of eigenvalues represent the coherencemeasurement of eachmodewith respect
to its structure size and energetic level. (Reprinted with permission from Cambridge University Press.)
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across such a range ofMach numbers. Shown in Figs. 16b and 16c are
the isosurfaces of the leading eigenmodeswith λ∕D � 0.5 and 1. The
3-D eigenmodes stem from centrifugal instabilities and are mainly
concentrated in the rear part of the cavitywhere the recirculation zone
resides.We can envision triggering the 3-D instabilities to potentially
remove KE from the shear layer, and transfer them into the cavity.
Taking advantage of the 3-D flow instabilities is an efficient way to
modify the flowfield, as we shall see in Sec. V.C.
The resolvent analysis is capable of examining flow frequency

response to harmonic forcing with respect to its base state. The
optimal forcing and response modes can be identified according to
their amplification gain σ obtained by performing singular-value
decomposition of a resolvent operator �iωI − L �q�−1. Shown in Fig. 17
are some results of the resolvent analysis of a laminar flow over a
cavity of L∕D � 6 at Re � 502 and M∞ � 0.6 by Liu et al. [164].
By sweeping over a normalized frequency StD � ωD∕�2πu∞�, a
maximum gain appears around StD ≈ 0.15 (Fig. 17a), which is not
directly linked to the frequency of the leading eigenmode from the
global stability analysis. This was also observed by Qadri and
Schmid [165], suggesting that the difference in the peaks is caused by
the nonnormality of the linear operator. As seen in Figs. 17b and 17c,
the optimal forcing and response modes show their presence around
the cavity leading edge and trailing edge, respectively. We found that
the spatial structures of both modes emerge in the shear-layer region,
which signifies the importance of shear-layer physics in an open-
cavity flow.
Thus far, the discussions on cavity flows have assumed spanwise

periodicity. However, the presence of sidewalls is known to influence
the global characteristics of the cavity flows [158,166–168]. The
sidewall effects on open-cavity flows can be considered by
performing full 3-D simulations and a triglobal analysis without any
Fourier expansions in the spanwise direction [169].

C. Flow Control

Insights from a modal analysis can serve as a useful tool for the
design of active flow-control techniques. Here, we highlight some of
the recent efforts on performing open- and closed-loop control of

cavity flows based onmodal analysis. To suppress the hydrodynamic
and pressure oscillations in cavity flows with an open-loop control,
actuators can be placed along the leading edge of the cavity in a 2-D
or 3-D arrangement. Two-dimensional control setups (spanwise
invariant setting) have been examined experimentally [170–172], but
the simultaneous suppression of all resonant tones remains a
challenge. On the other hand, 3-D actuation (spanwise varying) has
been found to be effective in reducing amplitudes across all resonant
tones [168,173–175].
A modal analysis can help select the appropriate spanwise

spacing between actuators placed along the leading edge in a 3-D
setup. That is, the preferred spanwise wavelength λ (or wave
number β � 2π∕λ) can be sought through a biglobal stability or
resolvent analysis. For example, Sun et al. [168] have used the
insights from a biglobal stability analysis to control a turbulent flow
over a spanwise periodic cavity of L∕D � 6. The goal of their work
was to stimulate the emergence of 3-D modes to remove KE from
the dominant 2-D shear-layer modes that are responsible for the
large-amplitude fluctuations. The baseline and controlled flows
from their study forReD � 104 andM∞ � 0.6 are shown in Fig. 18.
The controlled flow uses a steady-jet actuation with a spanwise
wave number that corresponds to the leading 3-D stability mode, as
reported in Fig. 16. The stability analysis was performed for a much
lower ReD � 502, whereas the insights from the modal analysis
appear to span across Reynolds number and effectively modify the
turbulent cavity flow. As visualized in Fig. 18 with the Q criterion
[176], spanwise coherent structures appearing in the baseline flow
(around x∕D ≈ 2) are inhibited in the controlled flow due to the 3-D
streaks introduced by the steady blowing. By preventing the
spanwise shear-layer rollups, a significant reduction in the levels of
hydrodynamic and acoustic fluctuations is achieved, as seen from
the rms of pressure displayed in subplots. The control strategy
presented here has also shown its effectiveness in reducing pressure
fluctuations for supersonic flows [177,178], as well as those for
finite span cavities [168].
We can also use the spatial modes from the modal analysis to

reduce the state dimension of a cavity flow and develop feedback

Fig. 16 Biglobal stability results of compressible flows over cavity with L∕D � 6 at ReD � 502 and M∞ ∈ �0.1;1.4� (figure adapted from [163]);
a) growth rateωiD∕u∞ vs spanwise wavelength λ∕D � 2π∕β; b–c) spanwise velocity isosurfaces of the leading eigenmodes atM∞ � 0.9. (Reprinted with
permission from Cambridge University Press.)

Fig. 17 Resolvent analysis of compressible cavity flow ofL∕D � 6,ReD � 502,M∞ � 0.6, and β � 2; a) optimal amplification gain, b) optimal forcing
modes, and c) optimal response modes; contours of the streamwise velocity are visualized.
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(closed-loop) control strategies. An ROM of the cavity flow can be
obtained via projecting the state dynamics onto an appropriate set of
modes. In the work of Barbagallo et al. [179], the global, POD, and
BPOD modes were considered to design a closed-loop control of an
incompressible 2-D open-cavity flow at ReD � 7500 to suppress the
flow unsteadiness. An actuator and a sensor are placed on the walls
and near the cavity leading and trailing edges, respectively. The
actuator input was specified through wall-normal unsteady blowing/
suction, whereas the output was taken to be the wall-normal shear
stress integrated over the spanwise extent of the sensor.
Barbagallo et al. [179] computed the global instability modes by

solving the eigenvalue problems resulting from the linearized
Navier–Stokes equations about the unstable steady state. The POD
and BPOD modes were determined by using the snapshots of the
impulse response of the flowfield.Once themodeswere obtained, the
POD and BPOD modes were arranged in the order of the energy
content and Hankel singular values, respectively, and the global
modes were ordered according to their growth rates. The findings
showed that the POD and BPODmodes performed well in modeling
and suppressing the cavity-flow oscillations. The PODmodes appear
to exhibit robustness in themodel, whereas theBPOD-basedmodel is
able to use far fewer modes compared to the POD-based model to
develop a feedback-control law, because the BPOD modes
effectively balance the controllability and observability of the
system. The ROMconstructed from global modes, on the other hand,
overemphasized the contributions from the highly damped modes to
the input/output behavior.

D. Landing-Gear Well

We close this section on cavity flows by presenting an application
of modal analysis to a turbulent flow over a landing-gear well of a
commercial aircraft model by Ricciardi et al. [180]. The turbulent
flowfield obtained from a delayed detached-eddy simulation and the
extracted dominant PODmodes are shown in Fig. 19. In this analysis,
they identified the velocity POD modes [181] that correlate with
vortical structures responsible for generating the acoustic tones.
Although the turbulent flow over the landing-gear well is highly
complex, the shear-layer modes appear clearly, sharing a great
similarity with those from fundamental cavity flows. This example
highlights the importance of basic insights gained from a basis modal
analysis being beneficial for practical applications.

VI. Outlook

In this review, we have explored a number of modal-analysis
applications for fluid flows, ranging from simple, canonical flows to
highly complex, real-world engineering configurations. One key
takeaway is that each flow has its own unique blend of challenges,
including high-dimensionality, nonlinearity, multiscale phenomena,
complex geometry, and nonnormality. In this outlook, we discuss
challenges and limitations of existing methods, as well as emerging
techniques in machine learning and data science to address these
challenges for reduced-order modeling and control. We summarize
several important avenues of ongoing research that are likely to have
a significant impact on modal analysis in fluids.

M∞ = 0.6
Slotted jets

Cp

Cp,rms

b) Controlled flowa) Baseline flow
Fig. 18 Active control of turbulent flow over a cavity of L∕D � 6 at ReD � 104 and M∞ � 0.6 using 3-D slotted jets along the leading edge (figure
adapted from [168]); Q isosurface colored with the pressure coefficient Cp is visualized over the cavity; inserted plots show the pressure fluctuations.

Fig. 19 Turbulent flow over amodel landing-gear well of a commercial aircraft (top); transverse velocity PODmode captures the structures responsible
for noise generation (bottom). (Adapted from [180] and reprinted with permission from the AIAA.)
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A. Beyond Linear Superposition and Separation of Variables

Most of the modal-extraction techniques discussed earlier have
been fundamentally linear, relying on superposition. For example,
the POD and DMD modal bases both approximate the flowfield in
terms of a linear combination of thesemodes. However, we know that
many flows evolve on a low-dimensional manifold [56], rather than a
low-dimensional linear subspace. Thus, there is a potential to obtain
more accurate and efficient ROMs with nonlinear dimensionality
reduction techniques. There are a number of effective techniques, for
example, based on locally linear embedding [182,183] and
Grassmannian manifolds [184,185]. In machine learning, the
autoencoder is a neural network that embeds high-dimensional data
into a low-dimensional latent space, followed by a decoder network
that lifts back to the ambient high-dimensional space. Linear
autoencoders have been shown to identify reduced subspaces similar
to those found with POD, and they may be generalized to develop
nonlinear analogues of POD [186,187]. Moreover, it has been shown
that sufficiently large networks can represent arbitrarily complex
input/output functions [188]. For this reason, deep network
architectures [189–191] are becoming increasingly useful for
modeling fluids and dynamic systems more generally. For example,
deep learning has been recently used to identify nonlinear
embeddings, inwhich the dynamics are linear [192–197], inspired by
the Koopman theory [10,198,199]. However, note that deep learning
requires extremely large volumes of training data, and resulting
models are generally only useful for interpolation.
Snapshot-based dimensionality reduction methods that use the

singular-value decomposition, such as POD and DMD, are
fundamentally based on a space-time separation of variables. This
can be seen clearly from the POD expansion in Eq. (3). However,
many problems in fluid mechanics involve traveling wave
phenomena that are not well modeled by separation of variables.
Simple symmetry transformations of a coherent structure, such as
translations and rotations, will result in a large number of PODmodes
[200]. Moving away from this space-time separation of variables is
one of themost important open challenges inmodal analysis, with the
potential to improve howwe describe andmodel convecting coherent
structures.

B. Sparse and Randomized Algorithms

Dimensionality reduction and sparse algorithms are synergistic in
that underlying low-dimensional representations facilitate sparse
measurements [201,202] and fast randomized computations [203].
Compressed sensing has already been leveraged for compact
representations of wall-bounded turbulence [204] and for POD-
based flow reconstruction [205]. If only classification or detection is
required, reconstruction can be circumvented and the measurements
can become orders-of-magnitude sparser [206–208]. Decreasing the
amount of data to train and execute a model is important when a fast
decision is required, as in control.
Low-dimensional structure in data also facilitates acceleration of

computations via randomized linear algebra [203,209]. If a matrix
has a low-rank structure, there are efficient matrix-decomposition
algorithms based on random sampling that can be adopted. The basic
idea is that, if a large matrix has a low-dimensional structure, then
with high probability this structure will be preserved after randomly
projecting the columns or rows onto a low-dimensional subspace,
facilitating efficient computations. These so-called randomized
numerical methods have the potential to transform computational
linear algebra, providing accuratematrix decompositions at a fraction
of the cost of deterministic methods. For example, randomized linear
algebra may be used to efficiently compute the singular-value
decomposition. Randomized POD [210,211], randomized DMD
[40,212,213], and randomized resolvent analysis [94,214] have also
been developed based on the same principles.

C. Machine Learning for ROMs and Closures

Beyond a detailed analysis and characterization of fluid flows, one
of the overarching goals of modal analysis is the construction of
predictive models that may be used for design, optimization,

estimation, and control. One of the primary challenges for effective
flow control is the computational complexity and latency associated
with making a control decision, which may introduce unacceptable
time delays and destroy robust control performance [68]. Fully
resolved simulations of multiscale flow phenomena are generally too
slow for real-time feedback control. Thus, significant effort has gone
into developing ROMs, with the goal of accurately and efficiently
reproducing only the most relevant flow mechanisms [74,215]. A
classical approach that involves Galerkin projection of the governing
Navier–Stokes equations onto an orthogonal basis, such as Fourier or
POD modes, results in a system of ODEs for the mode coefficients.
Alternative data-driven approaches may be used to develop ROMs
via system identification. In both cases, machine learning techniques
are emerging to improve the modal basis and models. For instance,
deep feedforward neural networks can be combinedwith POD-based
modal-analysis techniques to develop accurate ROMs even for high-
Reynolds-number flows [216].
Increasingly, machine learning is being used directly to build

ROMs of physical systems from data. These approaches may be
broadly categorized into methods that identify self-contained models
[65–66,217–224] and methods that develop closures for existing
coarse-grained models, such as POD–Galerkin [225], Reynolds-
averaged Navier–Stokes [226–231], and LES [232]; for an excellent
review of data-driven closuremodels, see [233]. It is also important to
distinguish what types of input data are required to construct a ROM,
including resolution in space and time; volume and quality of data;
and whether or not experimentally inaccessible information, such as
from an adjoint simulation, is required.
Because fluid-flow modeling is central to many applications in

health, security, and transportation, it is often essential that models be
interpretable. It is no surprise that these are among the leading
challenges in machine learning and artificial intelligence research.
The data-driven modeling of fluid flows is a rapidly growing field.
Thus, we provide a high-level summary of some representative
examples.

1. Dynamic System Models

There are several approaches for the modeling of time-series data
that have been applied to fluid-flow systems. Neural networks are
often used for nonlinear system identification, as in the nonlinear
autoregressive moving average with exogenous input [217,220].
Long short-term memory networks, which have been widely applied
for speech recognition, are now being used tomodel chaotic dynamic
systems [221,222]. Deep learning is also being broadly used tomodel
systems in physics [223,224]. Kernel methods have been employed
to enrich the space ofmeasurement functions used to approximate the
Koopman operator via the extended DMD [218,219]. However,
neural networks and kernel methods typically result in black-box
models that may be prone to overfitting, unless care is taken to cross-
validate the results. In modeling dynamic systems, the principle of
parsimony states that a model should have the lowest complexity
possible, while still faithfully representing the observed phenomena.
That is, the balance betweenmodel complexity andmodel misfit is of
central importance. This balance is helpful for preventing overfitting
and promoting models that are interpretable—because there are only
a few terms in the model that may be connected to physical
interactions—and generalizable [64]. The SINDy method identifies
the fewest terms required tomodel time-series data with a differential
equation, and has recently been applied to model various fluid flows
[65,66,234]. By building models directly on physically intrinsic
quantities, such as lift and drag measurements, these models bypass
the well-known challenges of projection-based methods of
continuous mode deformation associated with changing geometry
and flow conditions [66]. Similar approaches have also been
considered from the standpoint of prediction-error and subspace-
identification techniques for parameter-varying models [235], albeit
without the advantage of model interpretability. It is also possible to
combine modal analysis with the theory of networked dynamic
systems [60,236–242]. Network-based approaches have been used
in several novel flow applications [240], including to obtain
cluster ROMs of complex flows [238,239], to model 2-D isotropic
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turbulence [241], to model and control wake flows [60], and for
community detection in wake flows [242]. Finally, many of the
aforementioned methods, including DMD with control [243],
extended DMD [244], streaming DMD [42,245,246], and SINDy,
have been used in conjunction with model predictive control to tame
complex dynamic systems and fluid flows [247–250].

2. Closure Models and Stabilization

Many classical reduced-order modeling approaches involve
truncating the modal basis to only include large, dominant, energetic
coherent structures, neglecting the detailed modeling of fine-scale
structures. However, even if the truncated modes do not contain a
significant portion of the energy, they can still play a significant role
in the dynamics and stability of theROM[251].Avariety of strategies
have been developed that compute appropriate projections to ensure
stability. These efforts include energy-based inner products
[252,253], symmetry transformations [254], and the least-squares
Petrov–Galerkin (LSPG) approach [255]. From a practical
standpoint, the LSPG method has to be employed with hyper-
reduction, which will be discussed in the next section, because
without hyper-reduction, the computational cost of LSPG may be
higher than that of the original full-order model. From a closure
viewpoint, inaccuracies, which can lead to instabilities, are
considered to result from the impact of the unresolved physics on the
resolved modes. Indeed, the error evolution is related to the closure
terms, which is the target of subgrid-scale modeling in LESs.
Research has examined the construction of mixing length [54],
Smagorinsky-type [251,256–258], and variational multiscale (VMS)
closures [251,259,260]. Another approach that displays similarities
to the VMS method is the Mori–Zwanzig (MZ) formalism [261–
266]. In VMS- and MZ-based approaches, the state variables are
decomposed into a resolved set and an unresolved set. The impact of
the unresolved scales on the resolved scales is then modeled. Parish
andDuraisamy [267] represented andmodeled unresolved physics in
the form of amemory integral that depends on the temporal history of
the coarse-scale variables. This approach presents a unified view of
VMS closures and Petrov–Galerkin stabilization.

3. Hyper-Reduction

Even though the ROM equations are in terms of a reduced state of
dimension r, the projected dynamics require evaluation of the high-
dimensional nonlinear dynamics, which are of dimension n ≫ r.
This limits the utility of ROMs of nonlinear systems, as the online
cost can scale asO�n�. Thus, beyond reducing the order of a model,
acceleration (or alternately hyper-reduction or sparse sampling)
techniques will be required to improve the efficiency of a ROM. The
gappy POD method provides the ability to sparsely sample a system
in O�r� locations, and still evaluate the POD and terms in the
Galerkin projection [268,269]. In addition, there are reduced-basis
methods for partial differential equations [270] and the associated
discrete empirical interpolation method [271–273], which
approximates nonlinear terms by evaluating the nonlinearity at a
few points. This approach is also prevalent in high-performance
computing [255,274–276], and may also impact flow control.

VII. Conclusions

As a sequel to the previous introductory overview paper on modal
analysis [1], this document surveyed applications of modal-analysis
techniques with the hope to serve as a go-to guide for readers seeking
insights on howmodal-analysis techniques can help analyze different
types of flows.With such point in mind, the current paper focused on
presenting applications of modal-analysis techniques to study,
model, and control canonical aerodynamic flows. To illustrate how
modal-analysis techniques can provide physical insights in a
complementary manner, four fundamental examples of cylinder
wakes, wall-bounded flows, airfoil wakes, and cavity flows have
been selected. A good portion of the examples considered in this
paper considered the applications of modal analysis for developing
effective active flow-control strategies. Although this paper
attempted to cover a range of topics, it is by nomeans comprehensive

in nature. Readers with elevated levels of interests are invited to delve
into the references for details.
Toward the end of this paper, some brief discussions on the outlook

for modal-analysis techniques were also offered, in light of rapid
developments in data science. As the emergence of many refreshing
data-inspired concepts is seen, fluid mechanicians are in an exciting
era to incorporate these ideas and extend modal-analysis techniques.
In fact, there are ongoing developments in handling large data sets
and constructing sparse interpretable models. It is believed that such
efforts can enable the analysis of high-dimensional fluid flows with
complex dynamics. The implementation of these approaches is
facilitated with the enhancement in the available computational
resources. It is hoped that this overview paper, along with the
first overview paper, serves as a valuable educational tool for
engineers and scientists interested in performing modal analysis of
aerodynamic flows.
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