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Transient energy growth of flow perturbations is an importantmechanism for laminar-to-turbulent transition that

can be mitigated with feedback control. Linear quadratic optimal control strategies have shown some success in

reducing transient energy growth and suppressing transition, but acceptable worst-case performance can be difficult

to achieve using sensor-based output feedback control. In this study, we investigate static output feedback controllers

for reducing transient energy growth of flow perturbations within linear and nonlinear simulations of a subcritical

channel flow. A static output feedback linear quadratic regulator (SOF-LQR) is designed to reduce the worst-case

transient energy growthdue to flowperturbations. The controller directly useswall-basedmeasurements to optimally

regulate the flow with wall-normal blowing and suction from the upper and lower channel walls. We show that

SOF-LQR controllers can reduce the worst-case transient energy growth of flow perturbations. Our results also

indicate that SOF-LQR controllers exhibit robustness to Reynolds number variations. Further, direct numerical

simulations show that the designed SOF-LQR controllers increase laminar-to-turbulent transition thresholds under

streamwise disturbances and delay transition under spanwise disturbances. The results of this study highlight the

advantages of SOF-LQR controllers and create opportunities for realizing improved transition control strategies in

the future.

Nomenclature

(A, B, C) = linear time-invariant state-space realization of the
plant

Ds = set of all stabilizing static output feedback gain
matrices

E = perturbation kinetic energy density
E0 = kinetic energy density of the initial optimal pertur-

bation
F = static output feedback gain matrix
G = maximum transient energy growth
h = channel half height
J = linear quadratic regulator objective function
K = state-feedback gain matrix
Q, R = linear quadratic regulator state weighting matrix

and input weighting matrix
Re = Reynolds number
t = time
U, X, Y = controlled flow input, state, and output vector,

respectively
Ub = parabolic base velocity profile of the plane

Poiseuille flow

u, v, w = streamwise, wall-normal, and spanwise velocities
�uc = centerline velocity of the base flow
u� = friction velocity
Xu = uncontrolled flow state vector
x, y, z = streamwise, wall-normal, and spanwise coordi-

nates
(α, β) = streamwise and spanwise wavenumber pair
ν = fluid viscosity
~vj�h, ~vj−h = Fourier coefficient of wall-normal velocities at

upper and lower walls, respectively
~v, ~η = wall-normal velocity and wall-normal vorticity,

respectively
ρ = fluid density
~τx, ~τz, ~p = Fourier coefficient of shear-stress and pressure

measurements

I. Introduction

A NABILITY to delay transition to turbulence is of great interest,
owing to the potential for drag reduction and energy savings in

numerous engineering systems. Transient energy growth (TEG) is an
important mechanism for subcritical transition in many shear flows
[1,2]. For linearly stable shear flows, small flow perturbations can be
amplified significantly over short time horizons [3–5]. When this
TEG is sufficiently large, the flow state can be driven outside the
basin of attraction of the laminar equilibrium, triggering secondary
instabilities that transition the flow to turbulence.Worst-case analysis
is typical in investigations of such phenomena, since the response
leading to the maximum TEG is the one that pushes the flow state
furthest from the laminar equilibrium profile. The flow perturbation
resulting in themaximumTEG is known as an “optimal perturbation”
[6]. As such, if it is possible to reduce themaximumTEG, then it may
be possible to delay or suppress transition.
Many studies have investigated the possibility of reducing TEG

and suppressing transition bymeans of feedback control [7–13]. Full-
state feedback control is usually the first choice for feasibility studies
in numerical simulations. The full-information linear quadratic regu-
lator (LQR) has been shown to suppress transition in a channel flow
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using wall blowing and suction actuation [11–14]. Worst-case analy-
ses have confirmed that LQR control strategies reduce the maximum
TEG due to linear optimal perturbations. It was found that another
benefit for the LQR controller is that it exhibits robust TEG reduction
under off-design Reynolds numbers and wavenumbers [15]. Despite
the successes of full-information LQR control strategies for TEG
reduction and transition suppression, full-state feedback control
cannot be realized in practice. Typically, measurements of the full
state are not directly available for feedback; rather, only measured
outputs from a limited set of sensors—typically confined to solid
boundaries—can be used for output feedback.
One commonly used approach for output feedback design is

observer-based feedback via the separation principle [16]. That is,
first, an observer is used to estimate the full state of the flow. Then,
this full-state estimate is fed back to a full-state feedback control law
to determine the appropriate actuation. Indeed, the separation prin-
ciple of modern linear control theory establishes that observer-based
feedback will result in a stable closed-loop system if the full-state
feedback controller is stabilizing and the observer yields stable
estimation error dynamics [16]. Separation-principle-based designs
are appealing owing to the great simplicity of the associated design
process: a controller and estimator can be designed separately, then
combined to guarantee closed-loop stability of the linear dynamics.
For example, the widely used linear quadratic Gaussian (LQG)
controller possesses an observer-based feedback structure that fol-
lows the separation principle. A linear quadratic estimator (LQE) is
combined with a full-information LQR controller to solve the asso-
ciated H2-optimal control problem. H2-optimal controllers are
designed by solving two independent algebraic Ricatti equations—
one for the optimal observer and one for the optimal controller.
Numerous studies have investigatedH2-optimal controllers and dem-
onstrated their utility within the context of flow control [8,10,11].
While separation-principle-based designs guarantee closed-loop

stability for the linear dynamics, such designs can result in degraded
closed-loop TEG performance [17]. Indeed, separation-principle-
based designs can potentially degrade TEG performance relative to
the uncontrolled system, resulting in adverse consequences for tran-
sition control based on such designs [11,17,18]. One way of over-
coming these limitations is to couple the controller and observer
design problems [10]. Of course, coupling the designs removes the
simplicity that is afforded by the separation principle: acceptable
designs require an iterative tuning process that can take substantial
effort on the part of the designer. In principle, the iterative design
process can be circumvented by directly seeking an optimal output
feedback controller that minimizes the maximum TEG; however,
such approaches can be computationally intractable [19–22]. A
potential compromise is introducing additional complexity into the
control architecture while maintaining a computationally tractable
synthesis problem. For example, it has been shown that tailored
design kernels and time-varying feedback gains can be used to
achieve substantial TEG reductions [23]. Recent works on adjoint-
based control of invariant solutions of the Navier–Stokes equations
have also shown some promise in suppressing subcritical transition
[24]. Related control strategies have been studied for a variety of
transitional and turbulent flows. See [25–27] for excellent reviews of
the related literature.
In this paper, we investigate a simple alternative for TEG reduction

within linear and nonlinear simulations of a subcritical channel flow
based on the static output feedback linear quadratic regulator (SOF-
LQR). SOF-LQRcontrollers constitute semiproper control laws, thus
satisfying a necessary condition for overcoming the TEG perfor-
mance limitations of observer-based feedback [17,20]. Specifically,
we solve the standard LQRproblem, butwith an additional constraint
that the control law has a static output feedback control structure. The
SOF-LQR controller gain in this study maps the wall-based mea-
surements at the channel walls directly to the control input, which is
taken to be the rate of change of wall-normal velocity at upper and
lower walls. To expedite the computations involved in determining
the optimal SOF-LQR gains, we introduce an accelerated gradient
method based on the Anderson–Moore algorithm [28]. Controllers
are designed using a combination of wall-based shear-stress and

pressure sensors. The resulting SOF-LQR controllers reduce the
worst-case TEG and exhibit robustness to Reynolds number and
wavenumber uncertainties. Furthermore, the nonlinear performance
of SOF-LQR control is investigated using nonlinear direct numerical
simulations (DNS). The DNS results show that the proposed SOF-
LQR control delays transition under spanwise disturbances and in-
creases transition thresholds under streamwise disturbances.As such,
SOF-LQR stands as a viable candidate for transition delay and
suppression for future studies.
The remainder of the paper is organized as follows. Full-informa-

tion LQR and SOF-LQR control strategies for TEG reduction are
discussed in Sec. II. We also introduce an accelerated Anderson–
Moore algorithm for designing SOF-LQR controllers in this section.
In Sec. III, we present the linearized channel flowmodel and give the
setup for the DNS. The results are sequenced by disturbance type
(i.e., spanwise and streamwise) in Sec. IV. Performance and robust-
ness of SOF-LQR control for TEG reduction are investigated using
linear simulations. Transition suppression and delay scenarios and
mechanisms are investigated using nonlinear simulations. Compar-
isons are made with the uncontrolled flow and full-information LQR
control. Finally, conclusions are presented in Sec. V.

II. Transient Energy Growth and Controller Synthesis

A. Transient Energy Growth

Consider the state-space representation of the linearized Navier–
Stokes equations about a laminar equilibrium solution,

_X�t� � AX�t� � BU�t�
Y�t� � CX�t� (1)

where X ∈ Rn is the state vector,U ∈ Rm is the input vector, Y ∈ Rp

is the output vector, and t ∈ R is time. For an initial flow perturbation
X�t0� � X0, the system response is given in terms of the matrix

exponentialX�t� � eA�t−t0�X0, whereA represents the system dynam-
ics matrix. The associated perturbation kinetic energy is given as

E�t� � X⊤�t�QX�t� (2)

where Q � Q⊤ > 0. Further, the maximum TEG is defined as

G � max
t≥t0

max
E�t0�≠0

E�t�
E�t0�

(3)

which results froma so-calledworst-caseoroptimal perturbation [29].
Certain perturbations will result in nontrivial TEG whenever G > 1.

B. Full-Information Feedback Control Synthesis

Feedback controllers have been shown to reduce TEG in various
shear flows. In particular, the LQR is a well-known design technique
that has been proven to be successful at reducing TEG in previous
flow control studies [12–14]. LQR synthesis is based on solving

min
U�t�

J �
Z

∞

0

�X⊤�t�QX�t� �U⊤�t�RU�t�� dt (4)

subject to the linear dynamic constraint

_X�t� � AX�t� � BU�t� (5)

where R > 0 penalizes the control input. The resulting LQR con-
troller is a full-state feedback law of the form U�t� � KX�t�, where
K ∈ Rm×n is determined from the solution of an algebraic Riccati
equation [16]. LQR controllers are particularly appealing because
they can be designed to reduce TEG, while demonstrating robustness
to parametric and modeling uncertainties. However, outside of
numerical simulations, standard full-state feedback LQR controllers
are typically not practically viable for flow control; standard LQR
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control requires knowledge of the full state of the flow, which is

usually not directly available for feedback in practice.
When full-state feedback is not a viable option, an observer (i.e.,

state estimator) is usually designed to estimate the current state of

the flow from available sensor measurements Y�t�. The separation
principle is often invoked to simplify the design process; however,

doing so can degrade the resulting closed-loop TEG performance

[11,17,18,23,30]. This performance degradation arises due to un-

accounted adverse interactions that can arise between the fluid

dynamics and the control system dynamics [17]. The control system

dynamics can be designed to overcome this performance degrada-

tion, but proposed strategies introduce complexity in the design

procedure and/or in the control law [11,20]. To address the TEG

reduction problem with sensor-based feedback, we introduce an

alternative static output feedback control strategy that provides a

simple alternative to overcome the performance limitations of the

separation principle and associated observer-based designs.

C. Static Output Feedback Control Synthesis

The proposed SOF-LQR control strategy for TEG reduction is

based on solving the standard LQR problem, but now with an addi-

tional constraint that the resulting feedback law have static output

feedback (SOF) control structure,

U�t� � FY�t� (6)

whereF ∈ Rm×p is the static output feedback (SOF) gainmatrix. The

benefit of the SOF control structure is that the input is determined

directly from the measured output, removing the need for state

estimation. We note that the SOF control structure is akin to the so-

called “opposition control” that has been employed and studied

within the context of turbulent drag reduction [31,32]. Furthermore,

the SOF structure constitutes a semiproper controller, thus satisfying

a necessary condition for eliminating TEG [17,20]. As such, we

expect the SOF-LQR controller to improve performance in terms

of the worst-case TEG relative to strictly proper control structures,

such as LQG controllers and other observer-based feedback control-

lers designed via the separation principle.We note that the SOF-LQR

synthesis we propose next has no guarantees on optimality within the

context of noisy measurements. To accommodate measurement

noise, knowledge of the measurement noise statistics should be used

within the synthesis problem. Static output feedback control based on

noisy measurements will be the focus of future work.
The closed-loop dynamics under SOF-LQR control are of the form

_X�t� � �A� BFC�X�t� (7)

Thus, the standard LQR objective function in Eq. (4) can be rewritten

to conform to the SOF structure in Eq. (6). However, doing so

introduces a complication: the problem formulation and its solution

will depend on the specific initial conditionX�0�, which is unknowna
priori. As such, it is common to replace the performance index in

Eq. (4) by its expected value (see, e.g., [33]):

J � E

�Z
∞

0

X⊤�t��Q� �FC�⊤R�FC��X�t� dt
�

(8)

Now, the solution of this SOF-LQR problem can be calculated

iteratively using Anderson–Moore methods [28]. To do so, define

the set of all stabilizing SOF controllers Ds � fF ∈ Rm×pj
Refλ�A� BFC�g < 0g, where λ�⋅� denotes the set of all eigenval-
ues of �⋅�. Then, rewrite the SOF-LQR design problem as [33,34]

min
F

J�F� � trace�S�F�XE� subject to F ∈ Ds (9)

where XE � EfX�0�X�0�⊤g and S�F� is a solution to the algebraic
Ricatti equation

S�F��A� BFC� � �A� BFC�⊤S�F� � C⊤F⊤RFC�Q � 0

(10)

Note that XE ≔ EfX�0�X�0�⊤g is a symmetric matrix representing
the autocorrelation of the initial state. Here, we assume that all
initial conditions are equally likely, and so take the initial state to
be uniformly distributed over the unit ball, i.e., XE � I.
Next, the gradient of the cost function J with respect to the SOF

control gain F can be expressed as

∂J
∂F

� 2�B⊤S�F�H�F�C⊤ � RFCH�F�C⊤� (11)

where H�F� is the solution to the Lyapunov equation

H�F��A� BFC�⊤ � �A� BFC�H�F� � XE � 0 (12)

Then, the optimal SOF gain F� ∈ Ds will be a minimizer of Eq. (9)
and so must satisfy a zero gradient condition, which reduces to

�B⊤S�F��H�F��C⊤ � RF�CH�F��C⊤� � 0 (13)

After some further manipulation, we find that a necessary condition
for optimality is

F � −R−1�B⊤S�F�H�F�C⊤��CH�F�C⊤�−1 (14)

yielding a search direction to use in the Anderson–Moore method

Ti � −Fi−1 − R−1�B⊤S�Fi−1�H�Fi−1�C⊤��CH�Fi−1�C⊤�−1 (15)

where Ti represents the search direction in iteration i and Fi−1 is the
controller gain from the previous iteration.
Although the expressions above are sufficient for implementing

the Anderson–Moore method, such methods tend to require a sig-
nificantly large number of iterations. For high-dimensional fluid
flows, each iteration can require a significant computational demand
on the order ofO�n3�, and so it is desirable to reduce the total number
of iterations through an accelerated technique. The step-size ξ along
the gradient direction must be chosen with care in order to balance
precision with the total number of iterations. An inappropriate choice
of ξ will lead to slow convergence. To overcome this challenge, we
formulate an accelerated Anderson–Moore algorithm that incorpo-
rates Armijo-type adaptations. Instead of using a fixed step-size ξ, we
instead use an Armijo-rule [35] to adaptively update the step-size
to achieve a better balance between precision and iteration count.
The method we propose and use in this study is summarized as
Algorithm 1.
Note that all Anderson–Moore methods require initialization with a

stabilizing SOF gain F0 ∈ Ds [36]. For an asymptotically stable
system, setting F0 � 0 is a valid choice. In the present study, actuator
dynamics are modeled via an integral term, and so the resulting linear
system model will not be asymptotically stable. Thus, we first deter-
mine a stabilizing static output feedback gain F0 using the iterative
linear matrix inequality (ILMI)method proposed in [37], then proceed
to compute the optimal SOF-LQR controller using the accelerated
Anderson–Moore algorithm in Algorithm 1. Additional details on the
ILMI method used for initialization in this study are presented in
Appendix A.We note that use of the ILMI method was not necessary,
but was chosen out of convenience in this study. Alternatives to the
ILMImethod (e.g., pole placement) would have been equally valid for
determining the initial stabilizing gain. The computational complexity
ofAlgorithm1 is detailed inAppendixB.We further note that the input
weighting matrix R for both LQR [see Eq. (4)] and SOF-LQR [see

Eq. (8)] designs is chosen to be R � 10−6I in this study. This choice
essentially removes the penalty on control in the objective function,
thus emphasizing flow regulation over control efficiency in the con-
troller design. In some of the results reported later on, the SOF-LQR
will appear to outperform the LQR controller; however, we emphasize
that this is only true for the specific weighting matrices chosen in the
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objective function. The LQR can always be redesigned to exactly
replicate the SOF-LQR performance.

III. Channel Flow Model

The proposed SOF-LQR controller will be evaluated using both
linear analysis and nonlinear DNS in Sec. IV. In this section, we
present the linearized channel flow model used for controller design
and provide details of the DNS.

A. Linearized Channel Flow System

Consider the pressure-driven flow between two infinite parallel
walls separated by a distance 2h, shown in Fig. 1. Here, x, y, and z
represent the streamwise, wall-normal, and spanwise directions,
respectively. The laminar equilibrium solution of this plane Poiseuille

flow is a parabolic profile in the form of Ub�y� � �uc�1 − y2∕h2�,
where �uc is the centerlinevelocity of the base flow, �uc � 1,h � 1. The
incompressible Navier–Stokes and continuity equations for small
perturbations are linearized about this laminar profile. Transforming
into velocity–vorticity form and Fourier transforming in the stream-
wise and spanwise directions yield the Orr–Sommerfeld and Squire
equations for the linear perturbation dynamics [1]:

�D2 − k2�_~v �
�
−iαUb�D2 − k2� � iαU 0 0

b � 1

Re
�D2 − k2�2

�
~v

_~η �
�
−iαUb �

1

Re
�D2 − k2�

�
~η − iβU 0

b ~v (16)

where v is the wall-normal velocity, η is the wall-normal vorticity, ~�⋅�
denotes the Fourier amplitude of the associated variable,D represents

differentiation with respect to y, and k2 � α2 � β2, where α and β
are wavenumbers of the streamwise and spanwise Fourier modes,
respectively. Re � �uch∕ν denotes the Reynolds number based on

the channel half-height. No-slip boundary conditions are imposed at
the solid walls for uncontrolled flow, i.e., ~v � D ~v � ~η � 0. Next, ~v
and ~η can be approximated by a finite Chebyshev series expansion
along the wall-normal direction with N � 1 discrete collocation
points. For this uncontrolled channel flow, the state variable is

Xu � �av0; : : : ; avN; aη0; : : : ; aηN�⊤, where ai are the Chebyshev

polynomial coefficients.
For flow control, actuation is achieved using wall-normal velocity

at the upper and lower walls via wall-transpiration boundary con-
ditions denoted as ~vj�h and ~vj−h. The control input is taken to be the
rate of wall-normal blowing and suction at each wall. Thus, the input

vector in Eq. (1) isU � �∂∕∂t��v̂j�h; v̂j−h�⊤. Upon discarding redun-
dant terms, the associated system state vector consists of the Cheby-
shev polynomial coefficients and the actuator states:

X � �av0; : : : ; avN−4; aη0; : : : ; aηN−2; ~vj�h; ~vj−h�⊤ (17)

We consider several wall-based sensors in this study, each of which
can be represented in Fourier space. Shear-stress measurements are
given by

~τxjy�	h � 1

Re

�
∂ ~u
∂y

�
;

~τzjy�	h � 1

Re

�
∂ ~w
∂y

�
(18)

where ~u and ~w correspond to Fourier coefficients of streamwise and
spanwise velocity components, respectively. Also, we consider the
pressure measurements ~p at the upper and lower channel walls. The
Fourier coefficient for pressure can be expressed in terms of the
wall-normal velocity and vorticity using the x- and z-momentum
equations.

~pjy�	h � 1

α2 � β2
1

Re

�
∂3 ~v
∂y3

� α − β

α� β

∂2 ~η
∂y2

�
� i

α� β
~v
∂Ub

∂y
(19)

Further details about the model formulation can be found in [38].
For sensor-based output feedback control, we investigate two

different sensor combinations among the quantities reported in
Eqs. (18) and (19). Specific configurations are listed in Table 1,
and will be referenced accordingly in the remainder of this paper.

B. Direct Numerical Simulation Setup

Three-dimensional DNS of plane Poiseuille flow are performed to
analyze the nonlinear performance of the designed controllers. The
incompressible Navier–Stokes equations are solved using amodified
version of the spectral code Channelflow [13,39]. The flow response
to optimal disturbances for a given controller is simulated. A second-
order semi-implicit Crank–Nicolson Runge–Kutta temporal scheme
is used. Spanwise (0, β) and streamwise (α, 0) disturbance scenarios
are considered. The kinetic energy density of the initial optimal
perturbation is denoted by E0. For each wavenumber pair, several
amplitudes of E0 are considered to demonstrate the role of the non-
linearity in the laminar-to-turbulent transition. A random disturbance
with perturbation kinetic energy density of 1% of E0 is superposed
with the optimal disturbance profile to ensure that a laminar-to-
turbulent transition can be initiated [40]. A three-dimensional com-
putational domain is used in order to resolve the complete transition
process. We use a rectangular computational domain of size 8πh ×
2h × 2πh in x, y, and z directions, respectively. To discretize the
flowfield,N � 101Chebyshev points are specified in the y direction,

Fig. 1 Illustration of wall-based sensing and actuation in channel flow.

Table 1 Wall-based
sensor configurations

Configuration Sensors

s ~τx, ~τz
sp ~τx, ~τz, ~p

Algorithm 1: Anderson–Moore algorithm with Armijo-type
adaptation

Step 0: Set i � 0; initialize Fi � F0 to be any F0 ∈ Ds. Set 0 < ξ < 1,
0 < σ < 1∕2, and δ > 0.

Step 1: Solve Eq. (10) for S�Fi�.
Step 2: Solve Eq. (12) for H�Fi�.
Step 3: Use Eq. (15) to find the smallest integer γ1 ≥ 1 such that
Fi � ξγ1Ti ∈ Ds.

Step 4: Find the smallest integer γM ≥ γ1 such that

J�Fi � ξγMTi� ≤ J�Fi� � σξγM trace

�
∂J
∂F

⊤
Ti

�

Step 5: Find integer l ∈ fγ1; : : : ; γMg such that

J�Fi � ξlTi� � min J�Fi � ξjTi�; where j ∈ fγ1; : : : ; γMg

Step 6: Set Fi�1 � Fi � ξlTi, i � i� 1

Step 7: Check k ∂J
∂F k2 ≤ δ. If true, stop. Otherwise, go to step 1.
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and 128 × 64 points are uniformly spaced along x and z directions,
respectively. For both baseline and controlled flows, grid resolution
studies with doubled grids in each direction have been performed to
ensure the accuracy of results (see Appendix C).

IV. Results

The utility of SOF-LQR control for TEG reduction will first be
evaluated using linear simulations. DNS will then be performed to
evaluate the nonlinear performance of SOF-LQR control for transi-
tion suppression and delay. We design SOF-LQR controllers for a
subcritical Reynolds number Re � 3000, then evaluate the worst-
case performance associated with spanwise �α; β� � �0; 2� and
streamwise �α; β� � �1; 0� linear optimal perturbations. As shown
in Sec. III.A, the dynamic systems of the uncontrolled and controlled
flows are different; thus, the optimal disturbances are calculated
independently for each system to ensure a fair comparison based
on the largest TEG under each setting. In the nonlinear DNS, as
described in Sec. III.B, we adopt the same optimal disturbances
scaledwith different amplitudes and add a small random perturbation
to trigger the laminar-to-turbulent transition. We investigate two
different sensor combinations for feedback control. These are listed
in Table 1. We also investigate robustness to Reynolds number
uncertainty, which is important because this will ensure that the
control will be effective at off-design operating conditions. In the
context of the nonlinear flow, one would nominally design a bank of
linear controllers over all wave number pairs of interest. However, if a
controller designed for a single wave number configuration is suffi-
ciently robust to wave number differences, then reliance on a com-
plete bank of linear controllers over all wave numbers may no longer
be necessary. As such,we also investigate robustness towave number
uncertainties, which would allow for reduced complexity in both the
control law and the sensing architecture.

A. Spanwise Disturbances

1. Linear Analysis

For spanwise disturbances, we investigate SOF-LQRcontrol using
sensor configuration “s” in Table 1, which consists solely of shear-
stress measurements ~τx and ~τz. We note that the addition of pressure
measurements (resulting in sensor configuration “sp” in Table 1) was
found to have a negligible influence on the controlled flow perfor-
mance. Thus, for brevity, we only report on control using sensor
configuration “s” for both linear and nonlinear simulations of span-
wise disturbances. The linear worst-case response for SOF-LQR-s
control with �α; β� � �0; 2� and Re � 3000 is reported in Fig. 2 (red
dotted line). The SOF-LQR-s controller reduces the maximum
TEG (G) by approximately 50% relative to the uncontrolled flow
(black solid line). The worst-case response for the full-information
LQR controlled system (blue dashed line) yields a larger TEG
reduction, achieving approximately 80% reduction relative to the

uncontrolled flow. This result is not surprising since the SOF-LQR-s
design operates based on considerably less information than the full-
information case.Aswewill seemomentarily, this reliance on limited
information actually improves the robustness of the flow control
strategy to parameter and modeling uncertainties. We will discuss
physical mechanisms surrounding the TEG reduction within the
context of nonlinear simulations after we report results on flow
control robustness.
Thus far, we have considered control performance at a fixed

Reynolds number of Re � 3000 and a fixed spanwise disturbance
�α; β� � �0; 2�. In practice, the fluid flow could experience a mix of
disturbances, and the underlying parameters may not be precisely
known. As such, we conduct additional linear simulations to better
characterize and understand the robustness of SOF-LQR-s perfor-
mance to other spanwise disturbances and Reynolds numbers. In
these studies, we will design the controller under the assumption of
Re � 3000 and �α; β� � �0; 2�, but then analyze the response to “off-
design” disturbances and Reynolds numbers. We again consider the
flow response to an optimal perturbation that results in maximum
TEG (G) for the associated closed-loop system.
We first consider the controller robustness to perturbation-wave-

number variations. In Fig. 3a, the LQR and SOF-LQR-s controllers
are designed for wavenumber pair �α; β� � �0; 2� atRe � 3000, and
the controller is applied at off-design wavenumber conditions of α �
0 and β � �1; 9� atRe � 3000. In conducting this study, we observe a
remarkable finding: the full-information LQR controller results in an
unstable closed-loop response for β ≥ 2.5, whereas the SOF-LQR-s
maintains comparable performance to the on-design responses as
marked by the black crosses. It seems that under spanwise disturb-
ances, the same richness of information that results in superior on-
design TEG performance is deleterious to robust performance. In
full-information control, modeling uncertainties contaminate the
control through many more channels than is possible for the static
output feedback case. The fact that the SOF-LQR-s controller lever-
ages only limited information about shear-stress at thewalls can limit
TEGperformance but also lends itself to robustness againstmodeling
uncertainties. We extend this analysis further by considering a con-
troller designed at the on-design condition of �α; β� � �0; 5�, then
applying it over the same set of off-designwavenumbers (seeFig. 3b).
Interestingly, the full-information LQR controller exhibits robust
performance when applied to off-design conditions with spanwise
wavenumber less than the on-design value (i.e., β ≤ 5). However,
when applied to mitigate spanwise disturbances at off-design wave-
numbers larger than the on-designwavenumber (i.e., β > 5), even the
closed-loop stability of the same full-information LQR controllers
is lost.
Next, we consider controller performance at off-design Reynolds

numbers, keeping the disturbance wavenumber pair at the “on-
design” condition. Specifically, the SOF-LQR-s and full-informa-
tion LQR controllers are designed for Re � 3000 with �α; β� �
�0; 2� for spanwise disturbance. Then the controllers are applied at
“off-design” Reynolds numbers in the subcritical range of Re �
�500; 5500� (see Fig. 4). The lower limit is based on the observations
of turbulence onset atRe � 500 [41]; the upper limit is chosen to be
slightly less than the critical Reynolds number for linear instability,
Rec � 5772 [42]. The results in Fig. 4 indicate that both controllers
are able to reduce the maximum TEG at off-design Reynolds
numbers. The relative reduction is comparably smaller at lower
Re—owing to the low degree of TEG in the uncontrolled flow—
and becomes more pronounced at larger Re. These results demon-
strate robust control performance to Reynolds number variations in
the context of spanwise disturbances.

2. Nonlinear Direct Numerical Simulation

Nonlinear DNS are performed under the optimal disturbance
associated with Reynolds number Re � 3000 and wavenumber pair
�α; β� � �0; 2�. We start the nonlinear simulation by initializing the
flowfield with the base flow and the optimal disturbance resulting
from the linear analysis. The amplitude of the perturbation’s kinetic

energy density E0 is implemented over the range from 1 × 10−6 to

0 200 400 600 800 1000
0   

300 

600 

900 

1200

1500

1800
Uncontrolled
LQR
SOF-LQR-s

Fig. 2 Linear worst-case response to spanwise optimal perturbations
with �α;β� � �0;2� and Re � 3000.
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1 × 10−3. The smallest amplitude of the kinetic energy density of

disturbance E0 � 1 × 10−6 considered overlaps the linear result, as

shown in Fig. 5. To trigger laminar-to-turbulent transition, a random

perturbation of 1% of E0 is added to the optimal disturbance. The

nonlinear effects are illustrated by reporting the normalized pertur-

bation energyE∕E0. For the spanwise disturbance, as shown inFig. 5,

the uncontrolled flow undergoes a laminar-to-turbulent transition for

kinetic energy density at and above the threshold of E0 � 1 × 10−4.

In Fig. 6, we illustrate the subcritical transition from laminar to
turbulent state for the uncontrolled and controlled cases with

E0 � 1 × 10−4. The energy response of the uncontrolled case
(black solid line) and the SOF-LQR-s controlled case (red dotted
line) exhibit a similar trend. TEG reaches a peak value around
t �uc∕h � 60, then decays until E∕E0 reaches approximately 40%
(uncontrolled) and 30% (SOF-LQR-s) of its maximum value.

During this process (0 ≤ t �uc∕h⪅130), the SOF-LQR-s continu-

ously shows a lower magnitude of E∕E0 compared to the uncon-
trolled flow. Additionally, the SOF-LQR-s controller delays the
secondary increase in E∕E0 from t �uc∕h ≈ 300 in the uncontrolled
case to t �uc∕h ≈ 400. This secondary increase in perturbation
energy in both cases corresponds to a laminar-to-turbulent transi-
tion. Thus, it is evident that the SOF-LQR-s controller delays
transition relative to the uncontrolled flow. In contrast, the LQR
controlled flow (blue dashed line) reaches a comparably lower
maximum TEG value earlier in time, but the system is quickly
destabilized, and the flow transitions to turbulence. From the
energy responses alone, we can expect for the SOF-LQR-s to delay
the laminar-to-turbulent transition, and for the LQR control to
promote instability and expedite transition relative to the uncon-
trolled flow.
To better understand the laminar-to-turbulent transition mecha-

nism, we examine the features of the flowfield and divide the entire
transition process for each case into several characteristic stages as
shown in Fig. 6 (right). Representative stages in the flow evolution
are marked as stages I, II and III. For each stage, the flow snapshot is
taken at the same time step for the uncontrolled and the SOF-LQR-s
cases. For theLQRcase, due to amuch earlier transition, the flowfield
slices are reported for the same stages, but at different time steps. In
all three cases, the initial flow perturbation exhibits streamwise
coherent structures. For both the uncontrolled and SOF-LQR-s cases,
the flowfield remains uniform in the streamwise direction in stage I,
and then gradually undergoes spatial distortion after the peak in the
kinetic energy density, entering into stage II. Shortly after, rotations
start to appear around the streamwise vortical structures with com-
parable scale to the streamwise domain length. Meanwhile, the
kinetic energy density of the flow increases again, initiating stage
III, in which the large structures break down and smaller structures
can be observed in the flow. After a short duration, the flow tran-
sitions into a turbulent state with a rapid increase in E∕E0. With a
similar transition mechanism as the uncontrolled case, the SOF-
LQR-s controlled case displays all the three stages of laminar-
to-turbulent transition, but their emergence is delayed relative to
the uncontrolled case. When the breakdown of large structures is
observed in the uncontrolled flow, the streamwise vortical structures
remain in the SOF-LQR-s as shown at stage III. Hence, the SOF-
LQR-s controlled flow results in a delay of the transition. The LQR
case encounters flow transition with different stages compared to the
uncontrolled and the SOF-LQR-s cases. In stage I, the streamwise
vortical structures are generated by both the optimal disturbance and

500 1500 2500 3500 4500 5500
0

1000

2000

3000

4000

5000

6000
Uncontrolled
LQR
SOF-LQR-s

Fig. 4 Robustness of LQR and SOF-LQR-s controllers to off-design
Reynolds numbers. Both controllers are designed for Re � 3000 and
�α; β� � �0; 2�, but robustly reduce TEG from spanwise optimal pertur-
bations over a range of off-design Reynolds numbers.

Fig. 5 Transient energy growth of the linear optimal disturbance for
�α;β� � �0;2� in the uncontrolled nonlinear flow for different perturba-
tion amplitudes E0. Dashed lines represent the turbulent regime.
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Fig. 3 Robustness of LQR and SOF-LQR controllers to off-design spanwise perturbations at Re � 3000.
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the actuation. A short duration after stage I, secondary instabilities

grow in proximity to the walls. The instabilities continuously grow,
forming small structures as shown in stage II and later. As time

progresses, the small structures become irregular and drive the flow
to transition to turbulence, as shown in stage III. A second increase in
E∕E0 is also observed around t �uc∕h � 70.
To examine the transition phenomenon further, we note that a

sudden increase in friction velocity u� has been used as evidence
for transition in channel flow, since turbulent boundary layers tend to
have larger shear-stress at the walls than laminar ones. The friction

velocity is defined as

u� �
������
τw
ρ

r
(20)

where τw is thewall shear-stress, and ρ is the density of the fluid. The
transition events in the uncontrolled and controlled flows are illus-
trated by a sharp increase of the friction velocity u� as shown in

Figs. 7 and 8. Interestingly, although the LQR controller reduces
TEG to a great extent, it causes a decrease in the transition threshold.
As shown in Fig. 7, the uncontrolled flow stays in the laminar regime

with E0 � 5 × 10−5 when the LQR controlled flow has already
transitioned to turbulence. The LQR controller gives rise to an initial
peak of the friction velocity and a sudden drop in the normalized

lower wall velocity. This is due to the relatively high control input
introduced by the LQR controller, which also relates to the earlier
onset of transition in this case, as will be discussed in detail momen-
tarily. In contrast, with less reduction in the TEG, the SOF-LQR-s
controller delays the laminar-to-turbulent transition compared to the
uncontrolled flow, as shown in Fig. 8. The delay is more significant
under lower kinetic energy density amplitudes. Moreover, although
transition still arises in the controlled flow, the friction velocity is
significantly reduced compared to the uncontrolled flow, which
ultimately yields a drag reduction in the controlled flow. The control
input generated by the SOF-LQR-s has a similar trend as the nor-
malized lower wall velocity history. Compared to the LQR case, the
SOF-LQR-s control input is much smaller and avoids rapid changes,
which benefits the delaying of transition.
From the observations above, it appears that the onset of tran-

sition cannot be reliably determined from an examination of the
TEG alone. Consider that the LQR reduces TEG to less than a
quarter of the TEG for the uncontrolled flow. Yet, the LQR con-
troller drives the flow to transition even earlier than the baseline
uncontrolled case. This phenomenon has been closely examined in
our previous study [13]. As shown in Fig. 9, the actuation intro-
duced by the LQR controller forms small-scale streamwise vortices
near the walls and suppresses TEG by weakening the growth of the

Fig. 6 Transient energy growth of uncontrolled and controlled flows due to linear optimal perturbations with E0 � 1 × 10−4. Inserts correspond to

isosurfaces of Q criterion [43] (Q�h∕ �uc�2 � 4 × 10−4) colored by streamwise vorticity ωxh∕ �uc. Dashed lines represent the turbulent regime.

Fig. 7 DNS of the uncontrolled flow and the full-information LQR
controlled flow with �α; β� � �0; 2�, Re � 3000, and E0 � 5 × 10−5.
(Top) Friction velocity and (bottom) normalized wall-normal velocity

v�−h�∕ ������

E0
p

at the lower channel wall with x � 0, z � 0.
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Fig. 8 DNSof the uncontrolled flow and the SOF-LQR-s controlled flow
with �α; β� � �0; 2�, Re � 3000, and various perturbation amplitudes
E0. (Top) Friction velocity and (bottom) normalizedwall-normal velocity

v�−h�∕ ������

E0
p

at the lower channel wall x � 0, z � 0.
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large streamwise vortical structures in the uncontrolled flow. How-

ever, the generation of extra high-shear regions introduces secon-

dary instabilities and drives the flow to transition. Comparably, the

SOF-LQR-s reduces TEG to about half of the baseline case. The
reduction is less thanwhat is achieved by the LQR control; however,

this is sufficient to successfully delay the transition. By considering

slices of the flowfield (see Fig. 10), it becomes apparent that the

SOF-LQR-s does not change the shape of the coherent structures,

but does shrink their size and reduce the shear-stress amplitude.

Notably, it decreases the magnitude of the shear-stress in the vicin-

ity of the walls. This is more clearly observed in the later stages
(e.g., t �uc∕h � 120 in Fig. 10b). Also, while limiting the size of

coherent structure, the control input is not so large as to generate

additional small-scale vortices near thewalls, in contrast to the LQR

control case. Thus, we observe both TEG reduction and transition

delay in the SOF-LQR-s controlled flow.
Recall that LQR and SOF-LQR controllers designed in this study

emphasize regulation with negligible penalty on control effort. How-

ever, since we observe that the resulting heavy-handed actuation

enhances transition for the LQR controller, it is possible to modify

the objective function to penalize the control input and tune the

control to improve transition suppression for the nonlinear flow.

Indeed, it is possible to design the LQR controller to regulate the
flow while preventing the appearance of additional large-shear areas

near the walls, which are otherwise introduced by the control input.

This would be done by sacrificing the large TEG reduction for amore

moderate reduction. As such, the results above do not suggest that the

full-state feedbackLQRwill always fail for transition control. Rather,
we include these results to emphasize that the “right” objective for
transition control must strike a balance between reducing TEG and
avoiding secondary instabilities caused by the control input. This is
similar to the findings in [44], where the deleterious effect of high-
amplitude control action is highlighted.

B. Streamwise Disturbances

1. Linear Analysis

For streamwise disturbances �α; β� � �1; 0�, we investigate SOF-
LQR control using sensor configuration “sp” (i.e. ~τx, ~τz, ~p) as out-
lined in Table 1. Although not reported here, SOF-LQR-s controllers
—using only ~τx and ~τz sensors for feedback—were found to increase
the maximum TEG arising from streamwise optimal disturbances.
The inclusion of pressure information along with the shear-stress
sensors (i.e., configuration “sp”) was found to be important for TEG
suppression. In the linear simulations of the worst-case response for
�α; β� � �1; 0� and Re � 3000 (see Fig. 11), the full-information
LQR controller (dashed blue line) reduces themaximumTEG (G) by
76% relative to the uncontrolled flow (black solid line). The SOF-
LQR-sp controller also reduces the maximum TEG relative to the
uncontrolled flow by 41%.
Next, we consider the robust performance of SOF-LQR con-

trollers at off-design conditions. As with the case of robust control
of spanwise disturbances, we will see that the choice of on-design
conditions can have a remarkable impact on robust control per-
formance. We begin by considering controllers designed for the

Fig. 9 Comparison between uncontrolled flow (left) and LQR controlled flow (right) with �α; β� � �0; 2�, Re � 3000. Modification of instantaneous
streamwise velocity gradient in spanwise direction ∂u∕∂z at t �uc∕h � 49, x∕h � 0.

a) Slice at tuc / h = 49, x / h = 0

b) Slice at tuc / h = 120, x / h = 0

Fig. 10 Comparison between uncontrolled flow (left) and SOF-LQR-s controlled flow (right) with �α; β� � �0; 2�, Re � 3000. Modification of
instantaneous streamwise velocity gradient in spanwise direction ∂u∕∂z at t �uc∕h � 49, x∕h � 0 (a) and t �uc∕h � 120, x∕h � 0 (b).
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on-design condition of �α; β� � �1; 0� and Re � 3000, then apply
these controllers to streamwise optimal disturbances at off-design
conditions with α � �1; 9�, β � 0, and Re � 3000 (see Fig. 12a).
The SOF-LQR-sp controller designed at on-design condition guar-
antees closed-loop stability for off-design perturbations, except
when subjected to optimal streamwise perturbations with α � 4.
Nonetheless, the robust performance characteristics of SOF-LQR-
spwith regard to TEG at other off-design streamwisewavenumbers
tend to be larger than that of the uncontrolled flow. This is also true
for the full-information LQR controller when subjected to off-
design streamwise disturbances, but to a lesser degree than SOF-
LQR controller.
Based on the analysis above, it seems that SOF-LQR strategies lack

robustness to off-design conditions; however, this is not necessarily the
case. Consider controllers designed at the on-design condition of
�α; β� � �3; 0� and Re � 3000 (see Fig. 12b). In this case, all of the
TEG control strategies exhibit robust performance when subjected to
off-design streamwise optimal disturbances. When subjected to off-
design streamwise disturbances with α > 3, the full-information LQR
and SOF-LQR-sp controllers result in a (moderately) larger TEG than
the uncontrolled flow. Further, when subjected to off-design stream-
wise disturbances with α < 3, the full-information LQR and SOF-
LQR-sp controllers have moderately larger TEG than what would be
achieved by designing the respective controllers for these specific
disturbances (marked as crosses). Formitigation ofTEGdue to stream-
wise disturbances, we observe a similar phenomenon as in the span-
wise disturbance mitigation scenario: Controllers designed for higher
streamwise wavenumber disturbances exhibit better robustness prop-
erties.These controllers yield linear stable closed-loopdynamics at off-
design streamwise wavenumbers lower than the on-design one, and to
a larger range of off-design streamwise wavenumbers above the on-
design one (i.e., robust stability). However, off-design TEG perfor-
mance tends to be degraded when subjected to higher wavenumber
disturbances (i.e., robust performance), but this can be avoidedwith the
choice of on-design condition. This analysis suggests that on-design

conditions for controller synthesis are important to robustTEGcontrol,
for both full-information and sensor-based output feedback strategies.
We additionally assess streamwise controller robustness to Reyn-

olds number variations. To do so, we again consider �α; β� � �1; 0�
and Re � 3000 as the on-design condition, then apply the resulting
controllers at “off-design” subcritical Reynolds number conditions in
the range Re � �500; 5500� (see Fig. 13). For off-design Re ≥ 1500,
the full-information LQR controller and SOF-LQR controller reduce
TEG relative to the uncontrolled flow. At lower off-design Re, the
SOF-LQR controller gives rise to moderately higher TEG than with-
out control at Re < 1500.

2. Nonlinear Direct Numerical Simulation

DNS are performed under the linear optimal streamwise disturb-
ance with �α; β� � �1; 0� and Re � 3000. Results in Fig. 14 show

that, when the kinetic energy density amplitude isE0 � 1 × 10−6, the
nonlinear flow response overlaps with the linear result (see red
circles). The uncontrolled flow transitions to turbulence at an ampli-

tude threshold of E0 � 1 × 10−4, as shown in Fig. 14. In Fig. 15, we
report the results for the uncontrolled flow and the controlled flow in

response to linear optimal disturbances with E0 � 1 × 10−4. The
flowfields at different time stages illustrate the transition mechanism
in the uncontrolled flow and the transition suppression mechanisms
in the controlled flows. In Fig. 15, representative stages are marked
on the energy plot on the left with the corresponding flowfields
illustrated on the right. Stages I and II correspond to the time that
E∕E0 reaches its peak and when E∕E0 decays after this peak,
respectively. The uncontrolled and LQR flow snapshots for stages I
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Fig. 11 Linear worst-case response to streamwise optimal perturba-
tions with �α; β� � �1; 0×� and Re � 3000.
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Fig. 12 Robustness of LQR and SOF-LQR controllers to off-design streamwise perturbations at Re � 3000.
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Fig. 13 Robustness of LQR and SOF-LQR controllers to off-design
Reynolds numbers. Both controllers are designed for Re � 3000, but
robustly reduce TEG from streamwise optimal perturbations over a
range of off-design Reynolds numbers.
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and II correspond to the same convective times. The SOF-LQR-sp
stages arise at different times due to an earlier appearance of theE∕E0

peak. Stage III corresponds to transition to turbulence (uncontrolled),
or to the return to the laminar regime (controlled).
As shown in Fig. 15 on the left, the uncontrolled flow reaches a

maximumTEGofE∕E0 ≈ 17 at t �uc∕h ≈ 15. For the controlled cases,
the full-information LQR controlled flow reaches maximum TEG
around a similar time, but with a reduced amplitude of E∕E0 ≈ 5.
The representative flowfields show that the initial optimal streamwise
disturbance grows into large-scale spanwise coherent structures. In the
uncontrolled flow, streamwise vorticity increases near the channel
walls, leading to the formation of Λ-shaped structures (dash-square
highlighted in stage III) and a transition to turbulence shortly after.
In the full-information LQR controlled flow, the spanwise coherent
structures remain separate from stage I to II. Although high-shear
regions can be observed in stage II, these large structures quickly
decay and breakdown into smaller isolated structures in stage III.
These small structures eventually decay completely, and the flow
remains laminar. In the SOF-LQR-sp controlled flow, the maximum
TEGoccurs at an earlier time thanunder full-informationLQRcontrol.
For SOF-LQR-sp, themaximumTEGreachesE∕E0 ≈ 9 at t �uc∕h ≈ 5.
The transition suppression scenarios are demonstrated by flowfields.
The spanwise coherent structures that evolve out of the optimal stream-
wise disturbance persist until a later stage than for the full-information
LQR controlled case. From stage I to stage III, the spanwise coherent
structures decay while remaining intact, not breaking apart as in the
case of full-information LQR control. The streamwise vorticity mag-
nitude also tends tobe smaller compared to either the uncontrolled flow

or the full-information LQR controlled flow. The large spanwise

coherent structures in SOF-LQR-sp persist for a longer time compared

to the full-information LQR case, but do ultimately fully decay. How-

ever, the SOF-LQR control is able to prevent the formation of Λ-
structures that would cause the spanwise coherent structures to merge,

and thus successfully suppresses transition to turbulence.
The time-histories of friction velocity and normalized wall-normal

velocity at the lower wall for the uncontrolled and controlled flows

are shown in Fig. 16. By analyzing different perturbation amplitude

levels, we see that the full-information LQR controller increases

the transition threshold from E0 � 1 × 10−4 of the uncontrolled

flow to E0 � 1 × 10−3, as shown in Fig. 16 and as reported in our

previous work [13]. The SOF-LQR-sp controller also increases the

transition threshold to E0 � 1 × 10−3. Although all controllers

increase the transition threshold, we again point out that TEG

reduction is not a reliable predictor of transition control perfor-

mance. However, based on TEG reduction performance alone, one

would expect the full-information LQR controller to exhibit a

better transition control performance. Yet, this is not the case that

we observe in nonlinear simulations with the given controller

designs.
All the controllers modify the uncontrolled flow features through

wall-normal actuation. The actuated wall-normal velocity histories

are shown in Fig. 16 (on the right). The controllers generate large

actuation to suppress TEG over a relatively short transient time

horizon of 0 < t �uc∕h < 30. For the small-amplitude disturbances,

when the controller is able to reduce the TEG as well as suppress

transition, the actuation gradually settles to zero. When facing the

large-amplitude disturbances, the actuation fails to prevent the flow

from transitioning to turbulence, and so the actuationwill oscillate for

a longer time associated with the disturbance phase speed and wave-

number [13]. In Fig. 17, we present x–y slices of the uncontrolled and
the controlled flowfields along with coherent structures visualized

using the Q criterion. The first group of slices is extracted at con-

vective time t �uc∕h � 10, as shown in Fig. 17a. At this time, both the

uncontrolled flow and LQR controlled flow reach a maximumE∕E0.

Since the SOF-LQR controller reaches the E∕E0 peak at an earlier

time, we additionally take a slice from the SOF-LQR-sp controller at

t �uc∕h � 3, as shown in Fig. 17b. Compared to the uncontrolled flow,

the controller decreases thewall-normal velocity and limit the size of

the coherent structures when the normalized perturbation kinetic

energy density reaches its peak value. This reduction also decreases

the likelihood for breakdownof streamwisevortical structures caused

by the large spanwise coherent structures discussed in the context of

Fig. 15. As a result, the controllers are able to successfully delay or

prevent laminar-to-turbulent transition.

Fig. 14 Transient energy growth of the linear optimal disturbance with
�α; β� � �1; 0� in the uncontrolled flow for different perturbation ampli-
tudes E0. Dashed lines represent the turbulent regime.

Fig. 15 Transient energy growth energy and friction velocity on walls of uncontrolled flow (E0 � 1 × 10−4). Inserts are corresponding isosurface ofQ
criterion [43] (Q�h∕ �uc�2 � 1 × 10−4) colored by streamwise vorticity ωxh∕ �uc.
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As noted earlier, even though the full-information LQR control-
ler yields superior performance for TEG reduction, comparable
transition threshold is actually provided by the SOF-LQR-sp con-
troller. A comparison of the flowfield slices reveals that SOF-LQR-
sp controller reduces velocity fluctuations and growth of large
coherent structures to a greater extent than the full-information
LQR controller. From this analysis, we see that the reduction of
the linear TEG is useful in guiding controller design, but is not
the only metric that should be used when considering laminar-to-
turbulent transition control.

V. Conclusions

In this paper, we investigated SOF-LQR controllers for reducing

TEG of flow perturbations in a channel flow with wall-based sensing

and actuation. Control was achieved using wall-normal blowing and

suction actuation. Two wall-based sensor combinations were inves-

tigated, including shear-stress and pressure. SOF-LQR controllers

were designed using an Anderson–Moore algorithm. These compu-

tations were accelerated by leveraging Armijo-type adaptations to

reduce the iteration count and expedite calculations.

Fig. 16 DNS of the uncontrolled flow and the controlled flow with �α; β� � �1; 0�, Re � 3000, and various perturbation amplitudes E0. (Left) Friction

velocity and (right) normalized wall-normal velocity v�−h�∕ ������

E0
p

at the lower channel wall.

a) Slices at convective time tuc / h = 10 for uncontrolled and controlled flow

b) Slice at convective time tuc / h = 3 for SOF-LQR controller

Fig. 17 Flowfields of �α; β� � �1; 0�withE0 � 1 × 10−3 for uncontrolled and controlled flow.Contours arewall-normal velocity, andblack contour lines
denoteQ criterion in a range of �0.05;1�.
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SOF-LQR controllers were found to reduce the worst-case TEG
relative to the uncontrolled flow in linear simulations. Spanwise
perturbations are associated with the largest levels of TEG for the
linearized channel flow, and TEG reduction can be achieved using
shear-stress measurements alone. The designed SOF-LQR con-
trollers were found to reduce TEG under streamwise perturbations
with shear-stress and pressure measurements. All SOF-LQR con-
trollers investigated here exhibited robustness to Reynolds number
uncertainties. Robustness to wavenumber uncertainties was also
evaluated. We found that designing SOF-LQR controllers at a pro-
per on-design condition enabled robust performance to these
modeling uncertainties at off-design conditions based on linear
worst-case analysis.
In nonlinear DNS, SOF-LQR controllers were also found to

suppress and delay transition to turbulence, increasing transition
thresholds relative to the uncontrolled flow. For spanwise disturb-
ances, SOF-LQR control was found to delay transition relative
to the uncontrolled flow. In the case of streamwise disturbances,
SOF-LQR control suppressed transition and increased the transi-
tion threshold for the uncontrolled flow by up to two orders of
magnitude. The results show that SOF-LQR controllers provide a
simple and reliable alternative to other sensor-based output feed-
back control strategies for TEG reduction and transition control.
The encouraging results presented here motivate further investi-
gation of static output feedback control in more complex flows in
the future.

Appendix A: Stabilizing Static Output Feedback
Controller

As discussed in Sec. II, an initial stabilizing SOF gain F0 is
necessary for the calculation of the optimal SOF-LQR controller
based on the accelerated Anderson–Moore algorithm (Algorithm 1).
Here, we summarize the ILMI algorithm from [37] used for deter-
mining such a stabilizing SOF controller in this study.
A stabilizing SOF controller gain can be solved using Lyapunov-

based control synthesis methods. This problem can be formulated as
an LMI feasibility problem, which can be solved using standard
methods. A stabilizing SOF gain F0 must satisfy the following Lya-
punov inequality:

�A� BF0C�⊤P� P�A� BF0C� < 0 (A1)

However, this problem is not linear in the design variablesF0 andP as
written. Next, recognize that the following two conditions are suffi-
cient conditions for the inequality above to hold:
Sufficient condition 1:

�A� BF0C�⊤P� P�A� BF0C�
< �A� BF0C�⊤P� P�A� BF0C� � C⊤F⊤

0F0C

� A⊤P� PA − PBB⊤P� �B⊤P� F0C�⊤�B⊤P� F0C�
<0 (A2)

Sufficient condition 2:

A⊤P� PA − PBB⊤P� �B⊤P� F0C�⊤�B⊤P� F0C�
< A⊤P� PA�X⊤BB⊤X − P⊤BB⊤X − X⊤BB⊤P|������������������������������{z������������������������������}

≥−PBB⊤P

� �B⊤P� F0C�⊤�B⊤P� F0C�
<0 (A3)

where

�X − P�⊤BB⊤�X − P� ≥ 0

X⊤BB⊤X − P⊤BB⊤X − X⊤BB⊤P ≥ −PBB⊤P (A4)

Thus, the original problem (21) can be recast as the following LMI

feasibility problem for a stabilizing SOF gain F0:

�
A⊤P�PA�X⊤BB⊤X−P⊤BB⊤X−X⊤BB⊤P �B⊤P�F0C�⊤

�B⊤P�F0C� −I

�
<0

P�P⊤>0 (A5)

Further details regarding this formulation can be found in [37].
The SOF gain F0 can be determined using off-the-shelf interior

point solvers; however, the computational cost of solving this prob-

lem scales with O�n6�, where n is the state dimension. In this work,

we overcome the issue with computational complexity by taking

advantage of control-oriented reduced-ordermodels (ROMs), similar

to those described in [15]. Once we have computed the stabilizing
SOF controller gain F0 using the ROM, this can be used to initialize

the Anderson–Moore algorithm (see Algorithm 1) for yielding an

SOF-LQR control solution.
We note that the actual synthesis of SOF-LQR controllers based on

Algorithm 1 does not require further use of the ROM, as the computa-

tional demands scale withO�n3� (see Appendix B). Although we do
not make use of a ROM for the SOF-LQR design in this study, the

robustness properties of SOF-LQR control make ROM-based design

a potential alternative to designs based on the full-order model. Using
a ROM can allow for additional speed-up in the SOF-LQR design, if

it is required.

Appendix B: Computational Complexity of the
Accelerated Anderson–Moore Algorithm

For one iteration, the complexity of the Anderson–Moore algo-
rithm with Armijo-type adaptation is of O�n3�. The computational

complexity of the dominant operators is listed in Table B1, where n
and p are the dimensions of state and output vectors, respectively.

Recall that S�F� and H�F� are solutions of Eqs. (10) and (12).

Appendix C: Grid Resolution Study

Grid resolution studies have been performed for streamwise- and
spanwise-wave disturbances, as shown in Fig. C1. The coarse and

refined meshes contain 64 × 101 × 64 and 128 × 101 × 64 grid

points in the x, y, and z direction, respectively. The grids have been
tested using different optimal disturbance amplitudes. At the TEG

and laminar-to-turbulent transition stages, the results from the coarse
and refinedmeshes overlap before the flows have completely become

turbulent. The results in Fig. C1 indicate that the grid resolution is

sufficient for the flow condition considered in the present work,

which does not require fully resolving the turbulent flow. Because
we further examine the transition mechanism in the channel flow, the

refined mesh is adopted in the direct numerical simulation to better

capture relatively small-scale structures present during the transition

process. Moreover, because the flow with oblique-wave disturbance

has similar characteristics to the one with streamwise-wave disturb-
ance, the grid selected for streamwise-wave disturbance is sufficient

to resolve the flow response to the oblique-wave disturbance.

Table B1 Computational complexity of Algorithm 1

Calculation step Dominant operator Complexity

Solve for S�F� as a function of
F

Lyapunov equation (10) n3

Solve for H�F� as a function of
F

Lyapunov equation (12) n3

Determine descent direction Matrix inverse p3

Objective function evaluation Trace of matrix
multiplication

n3

Derivative of objective function Two Lyapunov equations 2n3
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