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ABSTRACT

Damping of disturbances as they propagate through a chain
of interconnected systems, termed string stability, has been the
subject of significant research. In this paper, we investigate mesh
stability, which is the two-dimensional extension of string stabil-
ity. We review the key results used for string stability analysis
and then generalize the conditions for MIMO systems. These re-
sults are then applied to a simple class of linear systems which
form a mesh in two-dimensions. It is shown (as in the one-
dimensional case) that communicating the velocity and acceler-
ation of the lead vehicle to all subsystems is sufficient for mesh
stability. This result is then verified by simulation.

INTRODUCTION

The focus of this paper is the mesh stability of a class of
decentralized systems. A decentralized system is the union of
a countable number of interacting dynamical subsystems. Ev-
ery subsystem in the decentralized system makes individual con-
trol decisions and manipulates its inputs so that a collective task
can be completed. For example, a formation of unmanned heli-
copters performing a combat mission is a decentralized dynami-
cal system.

In a large coordinated system such as this, there is the possi-
bility for error ”waves” to amplify as they propagate through the
mesh (i.e. the system). We can understand this propagation ef-
fect by considering the vehicle following case (Hedrick, 1993),

(Swaroop, 1994). Each vehicle in the chain is coupled to it’s
predecessor via the feedback control law. Specifically, a radar
on each vehicle measures the position relative to it’s predecessor
and uses this information for control. Thus, a disturbance acting
on the lead vehicle will propagate through the chain and effect
the performance of the following vehicles. It is possible that this
error wave may amplify as it propagates down the chain if the
control law is improperly designed. If the chain is long enough,
this error amplification might cause a vehicle collision. Systems
in which the error does not amplify are termed string stable.

In an infinite chain, the system is unstable if the error ampli-
fies at each point in the chain. However, a system which consists
of a finite number of connected subsystems could be stable in
the classical (Lyapunov) sense and yet string unstable. Since the
string is finite, errors never “blow up” as they propagate and the
overall system can still be classically stable. Practically, we must
still make the system string stable to prevent actuator saturation
and/or error growth which may result in vehicle collisions. This
wave damping characteristic is independent of classical system
stability and is needed to prevent errors present at one point from
disrupting the operation at another point in the chain.

Mesh stability is the two dimensional extension of string sta-
bility. In this paper, we will use a grid formation of linear point
masses to investigate mesh stability. This formulation is suitable
for initial analysis due to its simple structure and will allow us
to obtain intuition about the multi-dimensional problem. Specifi-
cally, we will determine if control laws using various information



structures (e.g. with and without reference vehicle information)
are mesh stable. This paper will have the following structure:
First, we will review some useful results in the analysis of string
stability. Next, we will outline the problem formulation. Then
we will compare the mesh stability characteristics of two slid-
ing controllers. In the final section, we will present simulation
results which confirm our analysis.

BACKGROUND

Connective stability in one dimension is called string stabil-
ity and has been studied by (Chu, 1974), (Eyre, 1998), (Hedrick,
1993), (Swaroop, 1994), and (Swaroop 1996). For string stabil-
ity, we would like the maximum spacing error to decrease as it
propagates down the chain. We will use the following norm def-
initions: [|f()lle = sup,>o £ (1)] and [|F()[h = J5" [f(D)ldz. If
€; and €4 are the errors at the i/ and i 4 1/ point in the chain,
then we need ||€i+1|| < ||€i]| for string stability.

From linear system theory (Desoer, 1975), if y = h * u, then
we have the following relationship:

Y@l < V(@)1 ()]0 (D

Using a sliding control law, Hedrick and Swaroop (Hedrick,

This can also be related to an equivalent frequency domain con-
dition if none of the entries of the convolution kernel changes
sign. Let H(j®) be the n x n transfer function matrix for the LTI
system given by /(t). If none of the /;;(¢) change sign, then:

Iy(@)ll < (mlfdx il ||Hf/(j0))||oo> ()] 3)
J=

As an extension to the string problem mentioned previously,
we can consider the leader following problem in two dimen-
sions. This example has practical application to a chain of Mo-
bile Offshore Bases moving at sea (Hedrick, 1998). We consider
a generic 3 DOF double integrator model, which could be a non-
linear dynamical system after feedback linearization or a linear
system with decoupled states: 1} = u. Here n = [X; ¥; ¥]7,
where (X,Y) is the position in the plane and ¥ is the head-
ing. If we follow a procedure similar to the vehicle follow-
ing case (Hedrick, 1993), the transfer function matrix relat-
ing errors in the chain is given by: €:(s) = H(s)&;(s) where
H(s) = diag(H1(s),Hx(s),Hs3(s)). We can apply the linear
MIMO input-output result to determine whether or not this chain
is string stable. In this case, the result is trivial since the states
have been decoupled and the row sum condition for string stabil-
ity reduces to ||H;i(s)|| < 1, i = 1,2,3. For string stability, the

1993) found an LTI convolution kernel, (), which relates the
errors in a vehicle following chain by: €41 = hx¢€;. Thus string
stability of the chain of vehicles can be determined by analyz-
ing the one-norm of the error propagation impulse response, h(t).
Since this norm represents the maximum amplification of any er-
ror as it propagates down the chain, it provides a useful metric
for string stability. If this norm is less than one, then all input
errors will be attenuated (in the co-norm sense) as they propagate
down the chain. If this norm is greater than one, then the system
is string unstable and there exists an input error which will be
amplified as it propagates.

If h(¢) does not change sign, the string stability condition,
[|A(2)||1 <1, can be equivalently satisfied in the frequency do-
main if the magnitude of the associated transfer function, H (j),
is less than one at all frequencies, i.e. ||H(j®)|[|» < 1. In
(Hedrick, 1993), they found that the sliding control law resulted
in a string stable system if reference vehicle information was
used.

The SISO input/output norm results are easily generalized
to the MIMO case. Let f: Ry — R” and define ||f(")||~ =
max; sup,~q | fi(¢)|. If h(t) is the convolution kernel for an n-
input, n-output MIMO system, and y = / % u, then the input-
output relationship is given by (Desoer, 1975):

y(®)]lee < (miax il IIhn/(t)IIl) [Jaa(®)leo 2)
J=

control law must be designed so that each direction (X,Y, W) is
independently string stable. As in the vehicle following scenario,
the chain satisfies these conditions for string stability if reference
vehicle information is communicated to each follower.

PROBLEM FORMULATION
Symbolically, the simple class of meshed systems to be dis-
cussed in this paper are as follows:

Xij = Ji,j (X073 X j—15 Xim1,j5 X1,1) “4)

where x; ; € R" Vi, j € N. Also, x;;(t) = x;1(¢) if j <1 and
xi,j(t) = x1,j(t) if i <1 (these are mesh boundary conditions).
In this scenario, each x; ;(¢) could represent the state vector of
a single helicopter moving in two dimensions. Each subsystem,
x; j(¢), is dynamically linked to its predecessor along the rows
and columns of the mesh and possibly to the reference or leader
subsystem, x; 1 (¢). Figure 1 schematically shows the intercon-
nections of the mesh when the subsystems do not use the addi-
tional reference vehicle information.

Assume that the helicopters are point masses with mo-
tions restricted to a plane, so the state vector is x;; =
[Vij Zijs Vijs 4,j]" where we have used the Y-Z coordinates
defined in Figure 1. To simplify the notation, define the position,
velocity and acceleration vectors as: p;j = [y j; zij]) s vi,j = Pi,j3
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Figure 1. MESH SCHEMATIC

a;,j = v; j. We will assume that the helicopter models are simple
double integrators: j; j = a; ; = u; ; where u; ; € R* is the input
helicopter acceleration.

‘We will also find it useful to define the following mesh spac-
ing errors:

€j = O1.des — (Pi,j—1 — Pij) ®)
Yi.j = O2.des — (Pi—1,j — Pi.j) 6)

Figure 2 shows the specific error vectors with i = j = 2. For sim-
plicity, only one of the position vectors, ps 1, is shown. The €; ;’s
are the errors with respect to the ’left’ neighbor along the row and
the ¥; ;’s are the errors with respect to the *above’ neighbor along
the column. These errors are each vectors in R?, as depicted in
Figure 2. Also, 81 4¢s and 85 4. are the desired spacing vectors.
To obtain the spatial arrangement shown in the schematic (Fig-
ure 1), we will define 8 4oy = [—L; 0]7 and 8, 45 = [0; L]” for
all i,j. Notice however, that the formation is not required to have
this rigid grid shape. By properly choosing 8; ges and 8 4 at
each i, j we can obtain a myriad of spatial arrangements while
maintaining the subsystem dependencies.

MESH STABILITY ANALYSIS

In this section, we will derive a sliding control law so that
each subsystem maintains its relative position in the mesh. Mesh
movement can be coordinated by commanding only the leader
helicopter to change position. First define the following 2x1 vec-
tor sliding function:

Sij = (&ij+7ij) +q1- (& +i)) (7

We will find it useful to define a composite error vector, e; ; =
€;j +Yi,j» at each point in the mesh. Using this composite er-
ror, the vector sliding function has the standard appearance:
S;j = é;j+qi-e;;. For subsystems on the boundaries of the
mesh, one of the two error terms (g; ; or 7; ;) will be identically

Figure 2. ERROR DEFINITIONS

zero. The feedback controller for a subsystem on the boundary
receives only half the amount of information. As a result, the
sliding function errors (and hence the control effort) for bound-
ary subsystems are roughly half those of internal subsystems. To
normalize the control effort, the composite error for boundary
subsystems is defined to be e; ; = 2¢; ; or e; ; = 2Y; j, as appro-
priate.

Figure 2 shows a typical mesh configuration when the
leader, x,1, accelerates at —45° angle into the mesh. x5 and
X,1 react to this movement before x; >, which results in the error
vectors €2 and Y2 2. The € > and ¥, > vectors are equal and point
at +45°. The equality of € > and > » is due to the equal dynam-
ics of each subsystem and is independent of the leader movement
direction. Also, these vectors tend to point in the opposite direc-
tion of the initial leader movement. By the same general argu-
ment we can expect that at each point in the mesh that y; ; = €; ;,
S0 e; j = 2v; j = 2¢; ; is a good measure of mesh deformation.

As in the standard sliding control formulation, we would like
the control input to force S; ; to converge to 0. If S; ; = 0, then
by the arguments above, we may assume that €; ; = ; ; = 0 and
the mesh is in the desired formation. The following control input
will force S; ; to a boundary layer of zero:

1 .
ij = 5 [=K-Sij—qu-éij+(aij-1 +ai-1,))] ®)

where K and g are greater than zero for classic stability. The
overbar is used to indicate that this is the desired helicopter ac-
celeration along the Y and Z directions. We will assume that
the actual vehicle acceleration is delayed due to processing and
actuator dynamics modeled by the first order system:

(T-hx2)th j+uij = ity j ©



If we add Equations 5 and 6 and differentiate twice, we ob-
tain the relation:

uij=0.5- (8 j+aij-1+ai-1,) (10)

After substituting Equations 8 and 10 into Equation 9 and rear-
ranging terms, we obtain a differential equation which relates ¢€; ;
to €_1,; and € ;1. After taking Laplace transforms, we get:

Ei_1; E; i
=14 1y [
with:
2
H(s) = s+ (g1 +K)s+qi1K (12)

P+ 24 (g1 + K)s+ qiK

E; j(s) is the Laplace transform (element-wise) of ¢; ;(), hence
it is a 2x1 column vector. The same is true of E;_; j(s) and
E; j—1(s), resulting in a 2x2 propagation matrix.

This formulation is a direct extension of the work by Hedrick
and Swaroop in (Hedrick, 1993). It is not surprising that this
H(s) has the exact form of the transfer function relation in their
vehicle following chain relation (when no leader information is
used), €1 = H(s)g;. Hedrick and Swaroop showed that this
transfer function has magnitude greater than one at sufficiently
small frequencies. Applying the MIMO norm condition (Equa-
tion 2) is again trivial since the states are decoupled. Since
[|2(2)||1 > ||H (jo)|| > 1 for small o, we expect that ||e2 2 ||« will
be greater than the average of ||e; 2|/« and ||e2,1]|«. In general,
maximum errors will, on the average, grow as they propagate
through the mesh. We will see in the Results section that symme-
try of the problem will make the error amplification monotonic
as a function of i + j.

As an alternative, we can try the following sliding function:

Sij=¢éij+qi-eij+qr (vij—vi1) (13)

Notice that this function differs from Equation 7 by the addition
of the last term. This term ties each subsystem to the leader,
which acts as a reference for the mesh. In the one-dimensional
case, the addition of this reference term was found to be sufficient
for string stability (Hedrick, 1993).

If we repeat the analysis, we again obtain the error propaga-
tion relation given in Equation 11, but with the following transfer
function:

B 2+ (q1 + K)s+qiK
(14+q2)ts3 + (1 + q2)s* + (1 + K+ @2K)s + 1K
(

H(s)
14)

Again, this H(s) has the same form as found by Hedrick and
Swaroop when leader information is used. They showed that
h(t) = L~'{H(s)} does not change sign for small values of 1,
thus ||2(2)||1 = [|H(j®)||«. Since [|[H(j®)||« = 1, maximum er-
rors cannot amplify as they propagate through the mesh. The
addition of leader information in the control law has resulted in
mesh stability. However, mesh stability is not obtained for free
since leader information must be communicated to each vehicle
in the mesh.

RESULTS

In this section we will verify our results by simulating a 4x4
mesh with the two control laws derived above. Each subsystem
is a double integrator point mass with processing and actuator
delays modeled by first order systems. The benefit of the decen-
tralized control structure is that we can move the entire mesh
from one point to another by commanding only the leader to
change position. All other subsystems in the mesh will try to
maintain their relative position in the mesh. The leader will exe-
cute a trapezoidal acceleration profile, shown in Figure 3, in the
y-direction. The acceleration profile in the z-direction will be
the negative of the profile in the figure. These acceleration traces
cause the mesh leader to move from the origin and come to rest
at the point (147,-147).

Tables 1 and 2 show ||e; j||. for the controllers with and
without leader information, respectively. Table 1 shows the er-
ror amplification which we expect. Down any column, row, or
combination thereof, the maximum error amplifies in the mesh.
However, we can see in Table 2 that the inclusion of reference
vehicle information damps out these propagating error waves.

Another notable fact is that the tables are completely sym-
metrical. As previously discussed, this is due to the equality of
the subsystem dynamics. Therefore, "level sets” of performance
occur, i.e. the metric at each 7, j position is only a function of
i+ j. We clearly expect the performance of e; and e> | to be
equal due to symmetry. Inductively, the same holds for all sub-
systems along the boundary; the response of e ; is the same as
e;1. In particular, E3 1 (s) = E1 3(s) = diag(H(s),H(s)) - E1 2. We
also have that Ep »(s) = diag(H(s),H(s)) - [E12(s) + E2,1(s)]/2.
Since E12(s) = En,1(s), we get that E»»(s) = E31(s) = E1 3(s),
which is one of the level sets. All other level sets can be justified
in the same fashion.

It is interesting to see how this error damping characteristic
translates to the time responses. First notice that the symmetry of
Tables 1 and 2 also translates into the time domain. Thus we can
examine all possible error responses in the mesh by examining
only one response per level set, e.g. the responses along the first
column and along the bottom row. In Figures 4 and 5, we plot
the first element of the ; ; vectors for several of these responses.
Figure 4 confirms that errors amplify in the mesh when leader
information is not communicated to each member of the mesh.
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Figure 3. x1,;1 ACCELERATION PROFILE IN'Y DIRECTION

Table 1. ||e;, || WITHOUT LEADER INFORMATION

lleijlls || =1 2 3 4

0.4567 | 0.4869 | 0.5193
2 0.4567 | 0.4869 | 0.5193 | 0.5550
3 0.4869 | 0.5193 | 0.5550 | 0.5934
4 0.5193 | 0.5550 | 0.5934 | 0.6363

i=1 n/a

Table 2. ||e;,j||.« WITH LEADER INFORMATION

lleijllw || J=1 2 3 4

i=1 n/a 0.5822 | 0.5269 | 0.4768
2 0.5822 | 0.5269 | 0.4768 | 0.4350
3 0.5269 | 0.4768 | 0.4350 | 0.3977
4 0.4768 | 0.4350 | 0.3977 | 0.3588

Figure 5 shows that the errors are damped when this information
is communicated. The responses for all other errors (the second
element of ; ; and the two elements of €; ;) are similar.

CONCLUSIONS

In this paper we investigated the mesh stability of a simple
class of interconnected linear systems with a decentralized con-
trol structure. The benefit of this structure is that mesh movement
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Figure 5. Yi,j(l) RESPONSES USING MESH STABLE CONTROLLER

could be coordinated by simply communicating a new desired
position to the lead vehicle. We showed that key string stability
results, which is the one dimensional analog, could be easily ex-
tended to this problem. Thus mesh stability can be ensured by
using reference vehicle information in each decentralized con-
troller. The cost of this controller information structure is that
lead vehicle velocity and acceleration information must be com-
municated to each vehicle in the mesh. These results can easily
be extended to the 3 dimensional case using a similar analysis.
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