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ABSTRACT 
This paper presents a tracking algorithm for the adaptive 

control of nonlinear dynamic systems represented in Strict 

Feedback Form with parametric uncertainty. The construction 

of the stabilizing algorithm is given using Passivity-based 

arguments that result in an Adaptive Passivity-Based Controller 

(APBC). This paper also shows a comparison with a controller 

designed via Adaptive Backstepping with tuning functions.   

The Adaptive Backstepping Controller (ABC) has many 

additional coupling terms that make its design and 

implementation more complex.  These coupling terms may give 

the ABC better robustness; however they may also result in 

unwanted transients.  On the other hand, the APBC has a 

convenient decoupling property that provides a diagnostic tool 

for detection of non-parametric model error. 

1.  INTRODUCTION 
In this paper we will study I/O feedback linearizable 

systems that can be transformed into Strict Feedback Form 

(Krstic et. al., 1995).  Further, these systems will have 

parametric uncertainty of the following form: 

( ) ( ) 1xgf ξ+ξ=ξ&             (1.1 a) 
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Here, r denotes the relative degree of the system and rx ℜ∈  

denotes the portion of the state which is visible through the 

output equation, (c).  Equation (a) describes the evoloution of 

the state, rn−ℜ∈ξ , which is not visible at the output.  In the 

following, the system is assumed to be nonlinear minimum 

phase (Isidori, 1995) and therefore the zero dynamics, ξ, are 

stable.  We assume that fi, gi, and h are smooth vector fields and  

x 0)x(g i ∀≠ . ‘Smooth’ means that the functions are 

differentiable to any order necessary, potentially ∞C . The 

parameters ℜ∈θi  are unknown constants and we will use an 

adaptation scheme to estimate them. The following can be 

generalized to include the case where iθ  are vectors in inℜ  and 

fi correspondingly maps to inℜ . 

Control of systems in the form of Equation (1.1) has 

attracted a great deal of interest.  Adaptive Backstepping 

techniques presented by Kanellakopoulos, et. al. (1991) and 

Kristic and Kokotovic (1996) apply an iterative method to 

develop ‘synthetic inputs’ and estimators for a stabilizing 

controller.  The controller presented in this paper differs 

significantly from the Backstepping approach by reducing the 

problem to r-simpler problems.  The objective is to perform 

output tracking by creating multiple errors between the 

individual states and the desired value of each state.  The 

desired state values are then used as synthetic inputs to control 

each state error. Notice that the assumption, x 0)x(g i ∀≠ , 

ensures that xi+1 can always be used to affect xi. There are two 

key benefits to separating the dynamics into multiple errors: (1) 

the effect of model uncertainty can be localized and (2) 

differentiation of the system model in the controller can be 

avoided.  The first benefit provides a useful diagnostic tool to 

locate model uncertainty while the second benefit reduces 

controller complexity.  Both of these benefits are important in 

the presence of model uncertainty.  Previous stability results for 

this type of control strategy have been obtained for systems in 

parametric strict feedback form under the assumption of known 

bounds for the parametric uncertainty (Yip, 1997). 

The remainder of this paper has the following structure: 

Section 2 describes the Adaptive Passivity-Based Controller 

design.  Section 3 gives a comparison of APBC and an Adaptive 

Backstepping controller on a simple model. Then Section 4 

furthers this comparison by examining the effect of non-

parametric model uncertainty. This will clarify the statement 

that the APBC controller results in decoupled error dynamics. A 

conclusion will then summarize the results of this work. 
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2. ADAPTIVE PASSIVITY-BASED CONTROLLER 
(APBC) DESIGN 

Suppose the goal is to choose the control, u, such that the 

output of the system, y, tracks some desired value. Define the 

tracking error as: 

desiredyye −=          (2.1) 

For simplicity, assume that y = h(x) = x1.  Create r separate 

error dynamics as follows: 

r,,1i        xxe desired)i(ii K=−=       (2.2) 

where desired)i(x  will be defined shortly.  Differentiating each 

error in Equation (2.2) gives: 
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We have transformed the r-dimensional system given by 

Equation (1.1 b) into ‘r’ 1-dimensional error systems.  Similar 

to Green and Hedrick (1990), the desired state values, 

x(i+1)desired, are ‘synthetic inputs’ used to the control the i
th

 state 

for 1r,,1i −= K . For the r
th

 system, no synthetic input is 

needed because u enters the er dynamics directly. Equation (2.3) 

can be rewritten to explicitly show the dependence on the 

synthetic inputs: 
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The synthetic inputs, desired)1i(x + , are chosen to force their 

respective error dynamics to decay to zero: 
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where iθ̂  is our best estimate of the actual parameter iθ .  Note 

again that the assumption x 0)x(g i ∀≠ ensures that (2.5) is well 

defined.  The controller is augmented with the following set of 

estimators to obtain this best estimate: 
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where γi>0 is used to tune the parameter converence rate.    The 

justification for turning off the estimators when ei<ei+1 will be 

given in the proof. A superficial justification is that we will be 

trying to force the errors to converge sequentially.  Therefore, 

ei<ei+1 means that the i
th

 error is converging faster than 

necessary and so the estimation is not required.  

Define the parameter error as iii
ˆ~
θ−θ=θ .  Since we have 

assumed that θi is constant, ii
ˆ~
θ−=θ
&&

.  Combining equations 

(2.4)-(2.6) leads to a chain of interconnected (state and 

estimator) error dynamics: 
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The stability properties of this controller / estimator structure 

are summarized by the following theorem: 

 

Theorem: 

Given the system in Equation (1.1) and using the synthetic 

and actual inputs in Equations (2.5) and the estimators in 

Equation (2.6) with controller gains chosen to be 

{ }0k  and  1-r,1,i gk rii >=∀= K  and estimator gains given 

by positive contants γi, the output tracking error e1 = y - ydesired 

is globally asymptotically stable. 

 

Proof: 

Initially we will assume that 1ii ee +≥ . We will deal with 

the alternative subsequently.  By assumption, gi is smooth 

and t)(x, 0g i ∀≠ so we only have to consider two cases: 

Case 1: gi>0 and 1r,,1i −= K  

In this case the i-th error dynamics can be written as: 

( )
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This system is output strictly passive (Khalil, 1996), which can 

be verified with the following positive definite storage function: 
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Consider 1ii eg + as the input and ei as the only output of the 

error dynamics given in Equation (2.8).  Differentiating the 

storage function gives: 
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Rearranging this equation gives: 

{ 321
&

321
0

2

iii

input

1ii

output

i egege

≥

+ +Φ=      (2.11) 

This shows that the error dynamics are output strictly passive 

from i1ii eeg →+ .  Since ig  is strictly positive, the mapping 

from i1i ee →+  is also output strictly passive. 
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Case 2: gi<0 and 1r,,1i −= K  

 In this case choosing iii ggk −==  gives the error 

dynamics: 

( )
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Use the same storage function as in Equation (2.9) to get: 
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This is similar to Case 1 except the input function is 

now )eg( 1ii +− . Rearranging the equation above gives: 
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Thus the error dynamics are output strictly passive from 

i1ii e)eg( →− + .  Again since ig  is strictly positive, the 

mapping from i1i ee →− +  is also output strictly passive. 

From Case 1 and Case 2, we conclude that i1i ee →+  is 

output strictly passive and hence finite gain L2 stable for all 

[ ]1r,1i −∈ . 

Next, examine the r-th error dynamics: 
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where u
*
 is a fictitious input which will be used here only for 

the analysis. Use the same storage function given in Equation 

(2.9) 
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and differentiate with respect to time: 
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This shows that, similar to the other r-1 error systems, the r-th 

error dynamics are also output strictly passive and hence finite 

gain L2 stable.  However, the input to this system is the 

fictitious input t  0u ∀≡∗ .  Clearly, u
*
 is an L2 bounded signal 

and therefore er is also L2 bounded.  Since serial 

interconnections of finite gain L2 stable systems are also finite 

gain L2 stable, all the ei signals are also L2 bounded for 

1r,,1i −= K . 

We can also prove that all the errors, ( )ii

~
,e θ  are uniformly 

bounded in time for r,,1i K= .  Notice that the storage function 

Φr is also a Lyapunov function for the r-th error dynamics.  

Further, Equation (2.17) shows that its derivative is negative 

semidefinite when the fictitious input is zero, 0u ≡∗ .  

Therefore, ( )rr

~
,e θ  are bounded in time. 

For the i-th error dynamics we will make the induction 

assumption that ei+1 is uniformly bounded in time.  Let Mi+1 be 

this bound, i.e.  t Me 1i1i ∀≤ ++ .  When 1ii ee +≥  we can 

again use the storage function Φi as a Lyapunov function.  

Equations (2.10) and (2.13) show that the time derivative is: 

0egeeg )
~

,e(
dt

d
1iii

2

iiiiii ≤±−=Φ=θΦ +
&     (2.18) 

The derivative is negative semidefinite because the first term 

overpowers the second term when 1ii ee +≥ .  Therefore the 

error states ( )ii

~
,e θ  stay bounded when 1ii ee +≥ . 

Alternatively, when 1ii ee +<  we can see in Equation 

(2.18) that the storage function is sign indefinite.  Therefore, if 

we left the estimator on, it is possible that ∞→θi

~
 while 

1ii ee +< . To prevent this from happening, the estimator is 

turned off.  As a consequence,  i

~
θ  is constant when 1ii ee +<  

and ei must be bounded by Mi+1 , which is the bound for ei+1.   

For example, suppose ei+1 is a constant.  If the estimator is 

turned off at τ1 and then turned back again at τ2 then 

2ti1ti τ=τ=
Φ=Φ  since the parameter errors remain unchanged 

and 
2ti1ti ee

τ=τ=
= . 

By the two scenarios, ( )ii

~
,e θ  must stay bounded for all 

time.  By induction, this statement is true for all r,,1i K= .  

The boundedness of all error states and the smoothness of fi, gi 

implies that all synthetic inputs, x(i)desired, and system states xi are 

bounded. 

We can now apply Barbalat’s Lemma (Khalil, 1996) to 

conclude that er asymptotically converges to zero.  First note 

that fr is bounded since it is a continuous function of bounded 

arguments.  Therefore, re&  is bounded.  We conclude that rΦ&& is 

bounded and hence rΦ& is uniformly continous.  By Barbalat’s 

Lemma, 0r →Φ& and thus 0e r → .   

Since 0e r →  we can show that 0e 1r →− .  Either 

r1r ee <− , in which case the conclusion is obvious or 

r1r ee ≥− .  In the latter case we have proved that the mapping 

from 1rr ee −→  is output strictly passive.  Since the input to 

this output strictly passive system is decaying to zero, the 

output, er-1, must also decay to zero.  By induction all 

intermediate errors and hence the output error must converge to 

zero. 

 
 

 

Remarks: 
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(1) The Passivity-Based structure of the algorithm dictates 

a sequential convergence of the tracking errors.  The er error 

will converge which causes the er-1 error to converge and so on.  

All intermediate errors converge to zero which eventually 

causes the output error to converge. If the i
th

 error (ei) were non-

zero and bounded (e.g. due to model error or disturbances), 

then we cannot conclude convergence of all subsequent 

intermediate errors, including the output.  We can only conclude 

(as shown in the proof) that all intermediate errors will stay 

bounded. This provides a useful tool for detection of non-

parametric uncertainty. 

(2) The proof only guarantees that the output and 

intermediate tracking errors will converge to zero.  The 

parameter errors will remain bounded but may not necessarily 

converge to zero.  For parameter convergence, we need to 

impose some persistency of excitation constraints.  For 

example, assume the i
th

 error system is zero-state observable 

(Khalil 1996), i.e. the input and output identically zero implies 

that the state is identically zero. Then the i
th

 parameter vector, 

θi, will converge along with the output, ei.  If θi is a scalar, then 

zero-state observability of Equation (2.8) means: 

0f
~

,0
~

0e,e iii1ii ≡θ≡θ⇒≡+

&
  (2.19) 

To guarantee that 0
~

i ≡θ  as required for zero-state 

observability, we need 0f i ≠ . 

(3)   The main benefit of this approach is that the controller 

design problem can be decoupled into r simple problems.  This 

reduction offers two key advantages when compared with the 

Adaptive Backstepping with tuning functions (Krstic et al, 

1996).  First, the design of each of the decoupled problems is 

very simple while the Adaptive Backstepping approach can be 

quite tedious and quickly leads to many terms.  Second, the 

decoupled nature of the APBC is useful for identifying sources 

of model error.  For example, suppose there exists an error in 

the i
th

 state equation of the model but the rest of the model is 

accurate. By the analysis in the proof all  errors from ei+1 to er 

will converge to zero, but the errors from e1 to ei may not 

converge to zero.  It will quickly be apparent where the model 

error exists.  In the Adaptive Backstepping approach, all the 

errors and estimators are coupled which make this type of 

modeling uncertainty localization and identification impossible.  

Furthermore, the decoupled nature of the APBC potentially 

reduces the size of transients.  Since the Adaptive Backstepping 

controller has many coupling terms, model error in one area of 

the system may lead to large transients in any of the error 

dynamics. 

(4) In practice, parameter estimates are projected onto a 

compact set to ensure reasonable parameter estimates and the 

safety of physical components.  The boundedness of all error 

signals in the proof of the Theorem could also be achieved via 

parameter projection with some slight modifications to the 

control law.  Consider the case where θi is a scalar (see Sastry 

and Bodson, 1989, for the general case) and project iθ̂ onto 

[θLOW, θHIGH].   When the parameter hits the boundary and tries 

to move out of the box, 0
~

i =θ
&

and Equation (2.7) reduces to: 

   egf
~

eke 1iiiiiii ++θ+−=&    (2.20) 

This is the type of error dynamics obtained when the PBC 

described in (Alleyne, 1999) is used and model uncertainty is 

present.  The model uncertainty in this case is bounded in 

magnitude by ( ) iLOWHIGH f⋅θ−θ . Alleyne has considered the 

PBC robustness problem (Alleyne and Liu, 1999) and 

strengthened the control gains, ki, to ensure that |ei| reamins 

bounded and converges to some tracking error bound φi>0 in 

finite time.   

3.   COMPARISON OF ADAPTIVE TECHNIQUES 
Consider the following nonlinear plant: 
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   (3.1) 

The scalars, ai, are the unknown plant parameters which have 

nominal values of a1=a2=a3=1.0.  As a result, this three state 

system is unstable without control and feedback is required. 

This plant is a simple system that is in Strict Feedback form 

with parametric uncertainty as required by Equation (1.1).  For 

simplicity, the plant we consider has no zero dynamics and 

hence it trivially satisfies the nonlinear minimum phase 

condition. This plant looks quite simple, but we will use it to 

compare the APBC control with an Adaptive Backstepping 

controller.  Even this simple system will result in quite an 

explosion of terms when the Adaptive Backstepping controller 

is designed.   

The APBC design of the previous section gives the 

following synthetic/actual inputs: 
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Furthermore, the following set of estimators is used: 
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Since g1=g2=1, the Theorem says that k1=k2=1.0 and k3>0 will 

guarantee convergence of all intermediate errors.  For 

comparison with the Adaptive Backstepping controller, the 

following gains are used in the simulations: k1=k2=k3=2.0. The 

estimator gains are chosen as γ1=γ2=γ3=1.0.   Since our 
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simulation is devoid of noise, we obtain the synthetic input 

derivatives via finite differences. 

We assume that the objective is just setpoint control, i.e. 

ydesired=1.0.  The system given by (3.1) with controller / 

estimator given by (3.2-3.3) is simulated using Simulink/Matlab 

at a sample time of .001 seconds.  The initial condition vector 

for the system is chosen as [0.5, 0.8, 0.2]
T
 and the parameter 

estimates are started at the initial conditions: 

[ ] [ ]TT
321 9.0 ,9.0 ,1.1)0(â),0(â),0(â = .  Figures 1 and 2 show 

the tracking/estimator performance of the APBC approach. The 

upper subplot of Figure 1 shows that the output is converging to 

the desired setpoint. The middle subplot shows all individual 

errors are also converging to zero.  If we zoom in on the 

intermediate errors (lower subplot of Figure 1) we notice that e3 

converges first followed by e2 and then e1. This is the sequential 

convergence dictated by the Passivity-based design.   

Figure 2 shows the parameter estimates are also converging 

to the true values.  In this case, all three error systems satisfy the 

zero-state observability condition given in Equation (2.19). 

Specifically, when ydesired=1.0 then 0f i ≠ for i=1,2,3 at the 

steady state.  Also note that the estimators, 1â and 2â , are each 

turned off at some point in the simulation as dictated by 

Equation (3.3). Most notably, 1â is turned off from ~1 second to 

~8 seconds (Figure 2).  During this time, e1 is “ahead” of e2 and 

the estimation is not needed.  When |e2| drops below |e1|, this 

estimator is turned on again to ensure that the first error system 

is output strictly passive. 
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Figure 1: APBC with Perfect Model  (Tracking Errors) 
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Figure 2: APBC with Perfect Model (Parameter 
Estimates and True Values) 

 

For comparison we design a controller using Adaptive 

Backstepping with tuning functions (ABC) as developed in 

(Krstic and Kokotovic, 1996). For the same system, this design 

gives the following synthetic and actual inputs:  
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xâx
x

x
 eekxâx
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where v3 is given by: 
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The gains for this controller are any ki>0 and the γi>0 are the 

estimator gains. The controller is augmented with the following 

estimators: 
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Equations (3.5-3.6) are constructed iteratively from Lyapunov’s 

Direct Method.  Specifically, the following Lyapunov function 

is used: 

∑
=

− +θΓθ=
3

1i

2
i

1T
e

2

1~~

2

1
V     (3.7) 

where ]â â â[
~

321

T =θ and ),,(diag 321 γγγ=Γ .  If Equation 

(3.7) is differentiated with respect to time along the trajectories 

of Equation (3.1) with the ABC given by Equations (3.4-3.6), 

then the Lyapunov function derivative is negative semidefinite: 

0ekV
3

1i

2
ii ≤−= ∑

=

&   (3.8) 

Barbalat’s lemma can then be applied to conclude that all 

individual errors converge to zero.   

Notice that the ABC (3.4-3.6) looks similar to the APBC 

(3.2-3.3) except that it has additional coupling terms along with 

terms to approximate desired)2(x&  and desired)3(x& .  We can see that 

the ABC uses analytically computed derivatives which results in 

an explosion of terms.  As a result, the ABC is much more 

complex than the APBC, a fact which is exacerbated by the 

partial derivatives (e.g. 
1

desired)3(

x

x

∂

∂
has 14 terms). The coupling 

terms result in another drawback.  Notice that x(3)desired and u 

depend on multiple intermediate errors and parameter estimates 

(Equation 3.4-3.5). Moreover, the first and second estimators 

are coupled to multiple errors (Equation 3.6).  Therefore, if an 

error occurs in a specific synthetic input or estimator, the error 

will leak to other synthetic inputs or estimators.  This may cause 

undesired transients and make it difficult to pinpoint which 

section of the system is causing the error. This idea will be 

explored further in the comparisons below. 

For this comparison, the ABC gains, ki, are all set equal to 

6.0 and the estimator gains are chosen as γ1=γ2=γ3=0.1.  Figures 

3 and 4 show the performance of the ABC with the same setup 

as above.  Specifically, we can see that all intermediate and 

output errors converge to zero (Figure 3). Figure 4 shows the 

parameter estimates along with the nominal values.  It appears 

that 3â is not converging to the true value.  The Adaptive 

Backstepping design only guarantees the boundedness of 

parameter errors, so the nonconvergence of 3â  is not 

uncommon.  The fact that all parameters converged for the 

APBC is not a general result, it just happens that in this 

example the zero-state observability conditions were satisfied 

for this example. In summary, the APBC and ABC controllers 

behave similarly for this case of well-known system dynamics.  

Any differences in performance on the known plant can 

probably be eliminated with further tuning of the appropriate 

controller. 
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Figure 3: ABC with Perfect Model  (Tracking Errors) 

 
 

0 2 4 6 8 10 12 14 16 18 20
0.9

1

1.1

1.2

a
1
h
a
t

0 2 4 6 8 10 12 14 16 18 20
0.9

0.95

1

1.05

a
2
h
a
t

0 2 4 6 8 10 12 14 16 18 20
0.8

0.9

1

a
3
h
a
t

Time (sec)
 

Figure 4: ABC with Perfect Model (Parameter 
Estimates and True Values) 

4.   EFFECT OF NON-PARAMETRIC UNCERTAINTY 
As shown in Section 3, both the APBC and ABC can 

handle the case of parametric model uncertainty.  In reality, a 

control designer does not have access to the “true” plant 

dynamics and must deal with model uncertainty.  The adaptive 

control laws are well-suited to handle parametric uncertainty, so 

the actual concern lies in the case of unmodeled dynamics.  A 

controls engineer may wonder if a specific set of dynamical 

equations models the plant accurately or if neglected dynamics 

truly were irrelevant.  The real benefit of the APBC approach 

arises in this case of non-parametric model uncertainty. To 
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simulate the effect of non-parametric model error, the previous 

plant (3.1) is perturbed by adding a slowly varying, sinusoidal 

disturbance to the first state equation: 
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The time-varying model error will display the error 

localization property which is the key benefit of APBC design.  

It is assumed that neither controller has knowledge of this 

additional term.  Figure 5 shows the individual errors for both 

the APBC (upper subplot) and the ABC (lower subplot).  Figure 

6 shows the parameter estimates for both controller designs.  

For the APBC, Figure 5 shows the trajectories for e2 and e3 

converge to zero, while the trajectory for e1 retains the artifacts 

of the sinusoidal disturbance.  Furthermore, Figure 6 shows that 

2â and 3â  converge to their true values, but 1â oscillates to 

compensate for the disturbance.  In summary the disturbance 

has been localized in the first estimator and error!   

This simulation shows the decoupling property of the 

APBC design method:  only states associated with the uncertain 

part of the model along with any states further up the passivity 

chain show an error.  This allows the controls engineer to focus 

their attention on improving a specific portion of the system 

model and then improve the controller performance. 

The lower subplot of Figure 5 shows the individual errors 

for the ABC design.  The output error, e1, is smaller than the 

APBC design, but the magnitude is simply a function of the 

Backstepping gains. The important property of this plot is that 

all three intermediate errors oscillate similarly about 0.  

Furthermore, Figure 6 shows that 1â and 2â for the ABC design 

oscillate at the disturbance frequency.  The third estimator, 

3â has a response similar to the perfect model case (Figure 4). 

This result is explained by Equation (3.6) which shows that the 

first two estimators have coupling terms while the third 

estimator only depends on e3 and x3.  The key result of these 

two figures is that the disturbance is not localized.  In fact it has 

leaked to all the errors and the first two estimators making it 

impossible to determine the source of error in the system.  

 

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

Time (sec)

In
d
iv

id
u
a
l 
E

rr
o
rs

: 
A

P
B

C

0 2 4 6 8 10 12 14 16 18 20
-0.1

-0.05

0

0.05

0.1

Time (sec)

In
d
iv

id
u
a
l 
E

rr
o
rs

: 
A

B
C

e
1
 

e
2
 

e
3
 

e
2
 

e
3
 

e
1
 

 
Figure 5: APBC and ABC Individual Errors 
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Figure 6: APBC and ABC Parameter Errors 

 

 Finally, we examine the effect of the Adaptive 

Backstepping coupling terms on the system transients. The plant 

given by Equation (3.1) is perturbed by adding a constant to the 

first state equation: 
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  (3.10) 

Again, this uncertainty is unknown to both the APBC and ABC. 

It turns out that all intermediate errors converge to zero for both 

the APBC and ABC designs.  The estimators for both 

controllers are able to compensate for this constant disturbance 

and therefore the outputs still converge to the desired setpoint. 

It is the transient behavior of the systems which we would like 
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to investigate for this case. Figure 7 shows the synthetic and 

actual inputs for the system with no model error (3.1) and the 

perturbed system (3.9) when the APBC design is used.  These 

plots show that the synthetic/actual inputs have comparable 

transients for the perfect and perturbed models (although the 

steady state values are different to compensate for the model 

error).  For comparison, the ABC was also simulated on the 

perturbed plant. Figure 8 shows the synthetic/actual inputs for 

the ABC on the model with no error and the perturbed model.  

The lowest subplot shows that the control effort, u, has very 

large initial transients on the perturbed plant. Recall from 

Equations (3.4-3.5) that this input had the most coupling terms 

and we conjecture that it is these coupling terms which is 

resulting in the large transients.   
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Figure 7: APBC with/without Model Error 
(Comparison of Synthetic/Actual Inputs) 
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Figure 8:  ABC with/without Model Error (Comparison 

of Synthetic/Actual Inputs) 
 

CONCLUSIONS 
In this paper we developed an Adaptive Passivity Based 

Controller for nonlinear systems in Strict Feedback Form with 

parametric uncertainty.  We then compared this design method 

against Adaptive Backstepping with tuning functions on a 

simple 3-state nonlinear model.  While the APBC and ABC 

performance are comparable when the model is perfectly known 

(other than the parametric error), the APBC offers an easier 

design procedure.  The APBC controller is far less complex 

than the Adaptive Backstepping controller, a fact which may 

lead to shorter implementation/debugging time and reduced 

real-time processing constraints.  This simpler controller may 

lead to reduced transients, particularly in the case where model 

error is present. The real benefit of the APBC approach lies 

when the model contains non-parametric uncertainty.  This 

design method has a decoupling property which can be used as 

a diagnostic tool to determine where uncertainty lies in the 

system.   
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