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Abstract

In this paper, we examine the worst-case performance of a
linear system with real parametric uncertainty. In particular,

the structured singular value. Since computing p is NP hard
[2], computationally tractable upper/lower bounds are used.
Specifically, the pu upper bound scaled for worst-case perfor-
mance is simply a linear matrix inequality (LMI) obtained by

we will analyze the worst-case gain from disturbances to errors

applying the S-procedure to the skewed-p problem.

of a system subjected to 2 real, scalar uncertainties. The 2
scalar uncertainties are typically normalized so that they have
absolute value less than or equal to one. In the parameter
space, this constrains the uncertainties to lie in the unit cube.
The contribution of this paper is that we also assume that
the 2 scalar parameters are correlated. This correlation is
represented by an additional offset rectangle constraint in the
parameter space. The motivation for this problem is to use
our knowledge of parameter correlation to remove some of the
conservativeness in the standard performance analysis.

1 Introduction

In this paper, we examine the worst-case performance of a
linear system with real parametric uncertainty. In particu-
lar, we will analyze the worst-case gain from disturbances to
errors of a system subjected to 2 real, scalar uncertainties.
We will focus on the constant matrix problem. However, this
can be extended to analysis of linear, dynamic systems by
analyzing the transfer function frozen at a finite, but densely
gridded, number of frequencies. In this problem, the 2 scalar
uncertainties are typically normalized so that they have abso-
lute value less than or equal to one. In the parameter space,
this constrains the uncertainties to lie in the unit cube. The
contribution of this paper is that we also assume that the
2 scalar parameters are correlated. This correlation is rep-
resented by an additional offset rectangle constraint in the
parameter space. The motivation for this problem is to use
our knowledge of parameter correlation to remove some of the
conservativeness in the standard performance analysis.

If the two scalar uncertainties are only restricted to lie in
the unit cube, this analysis can be accomplished, in theory,
by bisection involving a set of structured singular value (u)
problems or by directly solving a skewed-u problem. We re-
fer the unfamiliar reader to [5] for a tutorial exposition of
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When additional constraints are placed on the scalar un-
certainties, the analysis becomes more complicated. Previous
work on analysis of p with additional linear constraints in the
parameter space is given in [3]. Khatri gives three approaches
for computing upper bounds when the parameters are con-
strained to lie in the intersection of a wedge, i.e. between two
hyperplanes, and the unit box. The first is a generalization
of a spherical-p upper bound which approximates the wedge
constraints with a highly eccentric ellipsoid. The second in-
volves a change of variables in the parameter space leading
to a standard p problem which upper bounds the constrained
problem. The third uses constraints on the signals in the un-
certain system which implicitly enforce the constraints in the
parameter space. The upper bounds appear to be good for the
case where the system matrix is low rank, but the methods
apparently give poor bounds for general matrices.

The key idea given by Khatri is that constraints in the pa-
rameter space can be converted into constraints in the signal
space. It is this idea which is applied in this paper to derive
an upper bound on the worst-case performance for the con-
strained uncertainty problem. Our approach differs in one
seemingly minor way from Khatri’s work. The additional
constraint is given by an offset, rotated rectangle instead of
a wedge. The result of this minor change is that the related
signal constraints lead to a nice generalization of the standard
upper bound for worst case performance. This upper bound
always performs at least as good as the standard upper bound
on either the unit cube or the offset rectangle.

Before proceeding, we present some notation. F,(M,A,)
denotes the linear fractional transformation (LFT) of M with
the upper loop closed by Ay: Fy (M, Ay) = Mag+ Moy Ay (I—
Mi1A,) "t My, where M has been properly 2 x 2 block par-
titioned. Fj(M,A,) is similarly defined with A, closing the
lower loop around M. We will also use the star-product,
S(J, M), which is a generalization of F,, and F;. S(J, M) de-
notes the upper loop of M wrapped with J as in Figure 4.
The signal dimensions will be clear from the context.



2 Performance Problem

The uncertain linear system is represented by an LFT involv-
ing a known matrix, M € C"+t2)x(n+2) "and an uncertainty
block, A, (Figure 1). We assume that the uncertainty block,
Ay, is restricted to lie in the following set:

Ay={[3 2] 1 GieR, 6] <1, [] €rect(8,dr,do,c)}

=)
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Figure 3: M-A Loop for Performance Analysis

where rect(d,dy,ds, c) specifies the offset, rotated rectangle

3 Signal Constraints

shown in Figure 2. The shaded area in this figure is intersec-
tion of the unit cube and this rectangle, i.e. it is the allowable
region for [§!]. Thus the set of allowable models is given by
{Fu(M,A,) : A, € A,}. We will assume that the LFT is
well defined for each A, in the allowable set. In other words,
every allowable system is ’stable’ and it makes sense to look
at its performance gain.

Ay
y[

M

Figure 1: LFT Representation of Model Uncertainty

Figure 2: Constraints on the Scalar Uncertainties

Given A, € Ay, F,(M,A,) is an allowable model mapping
disturbances, w € C", to errors, e € C". The objective of the
worst-case performance analysis is to find the maximum gain
from the disturbances to the errors over the set of allowable
linear systems. Mathematically, we want to solve:

sup a(F,(M,A,))
AuGAu

(1)

where we are measuring the gain using the induced 2 — 2
norm, i.e. the maximum singular value. The following theo-
rem, which is a simple version of the Main Loop Theorem [5],
answers whether or not this worst case gain is > . This theo-
rem will be used in the following section to generate quadratic
constraints on the signals in the loop equations.

Theorem 1 There exists a A, € A, such that the gain from
w toe, 7(F,(M,Ay)), is > v if and only if there exists a ma-
tric A, € C**", 6(A,) < 1/ such that the loop in Figure 3
has a nontrivial solution, (z,w,e,y).

3.1 Reformulation of Rectangle Constraint

In the introduction, we mentioned that specifying the addi-
tional constraint in terms of a rotated, offset rectangle instead
of a wedge leads to useful signal constraints. The first step
of this process is to note that the rectangle can be character-
ized by an affine mapping from a different unit cube. That is,
[2;] € rect(, dy, da, ) if and only if there exists real numbers
ny and ny such that |n;| < 1 and:

611 — 9 —sing] [di 077 ¢
[52] = [onf o’ 1[0 ) [ma]+ 1
We can now specify the allowable uncertainty set as:

A, = {[Ga] i 0ieR, |6 <1,

Ini,ne € R, |n;| <1 s.t. Equation 2 holds}

(2)

Before proceeding, we rewrite the constraint given by Equa-
tion 2 in the following form:

Ay = o 0 =LANR+C (3)
0 9

dycosf 0 ;

I in
where L = [(1) (1) (1) ?]’ AN = [n(]iz2 n(;QIz]v R = —dzOSiné' d150 ‘|7

0 dacosf

and O = [, ].

Equation 3 is just Equation 2 with §; and d» fanned out

to make a diagonal matrix. Define J = [‘}j g] so that Equa-

tion 3 can be compactly written as: A, = F,(J,Ay). The
constraint set, A, says that any allowable A,, must look like

[% 27 where [§!] lies in the unit cube. It also says that we
2 2

must be able to represent A, by F,(J, Ay) where [;] also
lie in the unit cube. Graphically, the original loop in Figure 1
must have the form shown in Figure 4 where z, y € C? and
z, 5 € Ch

We have now placed the problem in a form where the pa-
rameter constraints can be easily written as quadratic con-
straints on the loop signals. Our goal is to analyze the per-
formance loop in Figure 3 where [g; ] is restricted to the inter-
section of the rectangle and unit cube. In this form, we can
implicitly enforce the box constraint on [g;] and the norm
constraint on A, by quadratic constraints on the signals z,
y, w and e. Next we analyze the equivalent loop in Figure 5.
This equivalent form follows by writing A, = F,(J,Ay) as
in Figure 4. Then pull out the uncertainty block, Ay, and
form a new model M = S(J, M). In this form, the box con-
straint on [n.] (which is actually a rotated rectangle con-

straint on [g; ]) and the norm constraint on A, are enforced



by quadratic constraints on the signals Z, g, w, and e. Fi-
nally, we will enforce an interconnection constraint which ties
signals z, y, w, e to signals Z, ¢, w and e. It is the inter-
connection constraint that will allow us to generate an LMI
upper bound which enforces both of these constraints simul-
taneously.

M

Figure 5: M — A Loop For Performance Analysis

3.2 Signal Constraints: M — A Form

The signal constraints follow from two simple lemmas. The
key point is that the Lemmas allow us to write signal con-
straints which are independent of the uncertainty blocks.

Lemma 1 Given z, y € C", there exists 0 € R, |§] < 1 such
that x = 0y if and only if yy* —xzz* > 0, and yz* —zy* = 0,.

Lemma 2 Given w, e € C", there exists A € C"*", G(A) <
1/~ such that w = Ae if and only if e*e — v*w*w > 0.

We will consider the performance loop given in Figure 3.
The box constraint on [g;] implies that x; = 6;y; where §; €
R, |0;] <1 fori=1,2. Apply Lemma 1 to get the equivalent

constraints which are independent of &;:
Yyl —xx; > 0 and y;zf — zy; =0fori=1,2

(4)

We can eliminate y; from these constraints by using the con-
straint induced by the matrix, M. Block partition the rows

of M compatibly with the output of M, [y; ys e?]7:
M,
M3

where M;, M, € C1*("+2) and M5 € C**("+2) | Then:

yZ:Mz[ﬁ,] fOI'Z=1,2 (6)
Finally, we can rewrite the constraints given in Equations 4
and 6 to arrive at quadratic constraints on [ ] which are
equivalent to the box constraint on [3!]:

(7)
(8)

for i = 1,2. The matrix E;; is an (n + 2) x j matrix which
is block row partitioned compatibly with M, i.e. it has three
block rows. It is defined by placing I; in the i** block. Thus,
E; 1 is just the i'" standard basis vector.

Next we replace the performance constraint w = Ape,
d(Ap) < 1/v by a quadratic constraint on [ ]. Apply
Lemma 2 to get an equivalent constraint which is indepen-
dent of Ay: e*e — y?w*w > 0. Then eliminate e by using the
constraint from M, e = M3 [ ]. The constraint on A, can be
written as the quadratic signal constraint:

Mi[5][5] M — B [81[8]) Eian >0
M [5116] Eia —EzT1[5][5}]*M: =0

[5]" (M3 Mz —+*E3 B3 ,) [5] > 0 9)

where E3 ,, as defined above has I,, in the third block row.

3.3 Signal Constraints: M — A Form

In this section, we consider the performance loop given in Fig-
ure 5. We will again make use of Lemmas 1 and 2. Partition

¢ compatibly with Ayx: § = [g;] where §; € C? for i = 1,2.

Block partition the rows of M compatibly with the output of

M, [ g2 €T]7:
- M,
M3
where My, M, € C2*(+4) and M; € C**(+4)  Using the

same steps as in Section 3.2, we get the following constraints
on [ %] which are equivalent to the box constraints on [7} ]:

* o~

Stx

- Esz [5}] [5]]*32 > 0
~ BL[E1[E] M} = 0

(11)
(12)

for i = 1,2. The matrix E; ; is an (n +4) x j matrix which
is block row partitioned compatibly with M, i.e. it has three
block rows. It is defined by placing I; in the i'" block.

The performance constraint w = Ape, 5(Ap) < 1/vis again
replaced by the following quadratic constraint on [Z] by ap-
plying Lemma 2.

(21" (M5 My = 7By nB5,,) [5] >0

w

(13)

3.4 Interconnection Constraint

Figure 4 shows that the relation between g, x and Z, y is given
by [9] = J [Z]. Recall that J = [9 ] so that z = L& + Cy.



Define a 2 x 2 block partition of M compatible with the input 1In fact, constraints 13 and 18 are redundant. After some
signals, [ ], and output signals, [7] : algebra, M = S(J, M) can be written as:
— [Mi1 M .
M =[5 ] (14) 0= [, 0% ] [ Mo )T (20)

where M, € (CQXQ, M, € C2><n, My € (CnXQ, and Mssy €
C"*™. Using this notation, = L& + C'[Mn Mi2][5]. We
will assume that F,(M,C) is ’stable’, i.e. I — CM;; is non-
singular'. Then we can find z in terms of & and w:

where we have employed the 2x2 block partition of M given in
Equation 14. Using the block row decompositions of M and
M given in Equations 5 and 10, respectively, this relation
gives: M; = MsT. Thus constraints 13 and 18 are indeed

xr = (I - CMll)_l[Lii' + CMlzw]
Finally, we can write the constraint which relates [{,] and [ Z]:

(2] = [(I_Cojiﬁf,)_”: (I—CMl}Z—lc’Mm] [2]=T[Z]

(15)

where T is the given transformation matrix from [Z] to [ ].

3.5 Set of Allowable Loop Signals

Let us review the purpose of the preceding sections. As stated
in Section 2, our goal is to find the maximum gain from dis-
turbances to errors over the allowable set of linear systems. It
is easier to answer the related question of whether or not this
worst case gain is > . By Theorem 1, this is equivalent to
the loop shown in Figure 3 having nontrivial signals for some
A, € Ay and Ay € C™, 5(A,) < 1/7. Our goal in this
section is to write the set of allowable signals, Syow, in this
loop. If this set only contains the trivial solution, then we can
conclude that the worst case gain is < 7.

Given signals w and x, we can determine signals y and e
in Figure 3. Suppose signals w and x satisfy the performance
loop equations for some allowable A, Ap,. In Section 3.2, we
showed that the box constraint on A, and the norm constraint
on A, imply that [ ] satisfies the quadratic constraints given
by Equations 7 - 9. In Section 3.1, we showed that the rect-
angle constraint on A, could be reformulated by writing A,
as F,(J, Ax) and imposing a box constraint on Apy. This in-
troduced signals, Z and §, which are internal to A,. Then in
Section 3.3, we showed that the box constraint on Ay and the
norm constraint on A, imply that [ Z] satisfies the quadratic
constraints given by Equations 11 - 13. Finally in Section 3.4
we showed that [ ] and [ Z | are related by Equation 15. This
constraint allows us to rewrite the constraints on [ ] with
constraints on [ Z]. Specifically, Equations 7-9 become:

MT[E][2]"T*M; — ELT (][5 T"Ein >0 (16)
MiT[ZD;][ZC;]*T*Ei,l_Ei:,FlT[ZDJ][i]*T*Mi*=0 (17)
(27 T*(M;Ms —7*E3 o E5 )T (2] >0 (18)

Thus the set of allowable signals in the loop can be specified
in terms of [ 2 ]:

{[Z] : [Z] satisfy Equations 11-13 and 16-18}

Sallow = lw
(19)

I This assumption is essentially without loss of generality. If I —C M1
is singular, we can find a rectangle center matrix arbitrarily close to C
such that the matrix becomes nonsingular. The constrained area is then
changed by an arbitrarily small amount.

redundant and we can write Suyjow as:

Sattow = {[Z] : [2Z] satisfy Equations 11-13, and 16-17 }
(21)

_ Oax1 P .
If Sutiow = { [Onxl ] } then the gain is < 7. In the next section

we will derive a sufficient condition for S = { [8:?1 ] }

4 Worst-Case Gain Upper Bound

As stated in the introduction, finding the exact value of the
worst case performance is computationally hard. Instead,
we will derive an upper bound on the worst case perfor-
mance which is computed by solving a linear matrix inequality
(LMI). This derivation uses the S-procedure [1] to generate

Oax1

Omns } We will require

a sufficient condition for Syj0w = { [

two lemmas to prove the sufficiency of the condition we derive:

Lemma 3 Given any [2] satisfying Equation 11 and any
D; € C**? such that Df = D; > 0, then:

(21" (Mi*bif\;fi - Ei,zf)iEgz) [Z21>0

Lemma 4 Given any [2] satisfying Equation 12 and any
Gi € C**2 such that G} = G, then:

(2] (Ei,QéiMi - MZGiENZQ> [2]=0

w

Application of the S-procedure leads to the following sufficient
condition.

Theorem 2 If there exists Df = D; € C2*?, D; >0, Gf =

G, €eC?, dieR di >0, 9 €R fori=1,2 and ds €
R, ds > 0 such that:

(belMl - E~1,2D1E~17:2) + (M;DQMQ - ENQ’QﬁQEQTQ)

o+ dy (N 8y — 22 By BT, ) + j (BraChlty — 017G BT )
5 (BopGolly = NZGEL, ) +di T (M7 My — By ET) T
+ doT* (M3 My — EoyES L) T+ jou T (Byy My — MYES ) T
+jgoT* (Ba My — M3ES )T <0

then Saiow = {[g:;]}



Proof. Suppose there exists [Z] € Syuow such that [Z] #

[8:111 ] If we hit the terms of the matrix inequality on the

left and right by [Z]" and [Z ], respectively, we immediately
obtain a contradiction. Specifically, the first two terms will
be > 0 by Equation 11 and Lemma 3. The next term will be
> 0 by Equation 13. Terms 4 and 5 will be = 0 by Equa-
tion 12 and Lemma 4. The remaining terms will be > 0
by Equations 16 and 17. Thus the left hand side must be

O04x1

> 0. However, the matrix inequality and [ Z ] # [Onxl] imply
that it must be strictly negative. Hence Sgjj00 = {[8:?11 ] }

The matrix inequality condition can be scaled by any posi-
tive number without affecting the result. If we scale the con-
dition by 2/ds and combine terms properly, we can rewrite
the sufficient LMI as:

3 [0, 3= [P | ([0, J o1 -0 [, ])
s {arr [P 0= [P0, ]

+3([90,]M =M [ ]) }T <0
(22)

where D = blkdiag(Dy,Ds), G = blkdiag(Gy,G5), D =
diag(dy,ds), and G = diag(g1,g2). In this form, we can solve
for an upper bound on the worst case performance by mini-
mizing 72 subject to this LMI constraint.

The first line is simply the p upper bound scaled for per-
formance if we only know that A, is restricted to the rotated,
offset rectangle. The terms in the braces on the second and
third lines form the p upper bound scaled for performance if
we only know that A, is restricted to the unit cube. Thus
the upper bound for A, € A, is a combination of these two
standard upper bounds. It is also interesting that this upper
bound obtained by minimizing 72 subject to Equation 22 is
always less than or equal to the upper bound obtained for ei-
ther A, restricted to the rectangle or box independently. As
just mentioned, if we set D = G = 05, we recover the upper
bound for A, only restricted to the rectangle. The matrices G
and D are just extra degrees of freedom which allow the con-
strained upper bound to do at least as good. To show that
the upper bound obtained using Equation 22 is always less
than or equal to the upper bound when A, is only restricted
to the unit box is more subtle.

5 Numerical Results

In this section, we present some numerical results for the con-
strained area upper bound (Equation 22). As a simple test
example, we consider M = M, + jM; where M,, M; € R***:

0.085 —0.453 —0.473 0.040
0.137 —0.009 0.554 —0.092
—0.254 0.169 —0.235 —0.253

|:0.057 —0.337 0.150 —0‘429:|

—0.077 —0.408 —0.223 —0.386
M, [ ]

0.443 —0.160 0.176 0.873
—0.291 0.803 0.476 —0.278
—0.359 0.531 —0.316 —0.012

M;

For this example, MATLAB’s LMILab was used to solve
the LMI upper bounds for three cases: A, restricted
to the wunit cube, A, restricted to rect(d,d;,ds,c)=
rect(20deg, 1.5,0.2,[$-2]) and for A, restricted to the intersec-
tion of the cube and the rectangle. For this simple problem,
we can find a good estimate of the three gains by gridding
up the parameter space. For example, the unit cube is grid-
ded into a 30 by 30 matrix. F,(M,A,) is formed at each
point and we compute the gain by a maximum singular value
computation on the resulting 2 x 2 matrix. Figure 6 shows
this performance curve over the unit cube. The peak gain of
2.592 achieved at [g;] = [Z1]. This actually gives a lower
bound on the worst-case performance. However, we will as-
sume that the gridding of the parameter space is sufficiently
fine so that this closely approximates the true worst-case per-
formance. Using the same technique on the rotated rectangle
specified above gives a worst-case performance of 1.451. Fig-
ure 7 shows the performance on the constrained area. The
worst-case performance is 1.200 and is achieved at [g; =101
This example is chosen so that worst-case performance eval-
uated on either the unit cube or the rectangle independently
gives a conservative result.

Table 1 summarizes these lower bounds and the upper
bounds for each of the three cases. The constrained upper
bound is indeed less conservative than the cube and rectan-
gle upper bounds. We should mention the complexity of the
resulting LMIs. The LMI for the constrained upper bound
contains 21 variables, while the rectangle upper bound has 17
variables and the unit cube upper bound has only 5 variables.
Correspondingly, it took 0.18, 0.49, and 1.52 seconds to com-
pute the cube, rectangle, and constrained area upper bounds,
respectively. All three lower bounds were computed in 2.42
seconds.

Cube UB | Rectangle UB | Constrained UB
2.627 1.502 1.329

Cube LB | Rectangle LB | Constrained LB
2.592 1.451 1.200

Table 1: Worst-Case Gains

Gain of Fu(M,Au) for A, in unit box

- N
[S B SR B )

Gainfromwto e

5 -1 s

Figure 6: System Performance over Unit Cube



Gain of Fu(M,Au) for A in constrained area

Percentage of Cases Achieving a Normalized Upper Bound

S
< <
O OS>
NN
SIS
SSS

Gain fromw to e

Figure 7: System Performance over Constrained Area

Next we generated 1000 random 4 x 4 complex random ma-
trices. If F,,(M, A,) could not be formed on the unit cube or
the rectangle, no data was recorded. It is possible for the sys-
tem to be unstable on these areas independently, but stable on
the constrained area. This would again reduce the conserva-
tiveness of the worst-case performance assessment. However,
we chose to ignore such matrices for this analysis. For the re-
maining 873 matrices, we computed the three upper and lower
bounds described above using the same rectangle. Since our
objective is to find the worst-case performance on the con-
strained area, we treat the constrained lower bound obtained
via gridding as the true worst-case value. The gap between the
constrained upper bound and the constrained lower bound is
due to the S-procedure (which is only a sufficient condition)
and the gap between the constrained lower bound and the
true value of the constrained worst-case performance. The
rectangle and unit cube upper bounds will have a gap which
is due to these two gaps as well as the inaccuracy due to com-
puting the bounds on a larger area than desired. Thus these
two bounds will always be > the constrained upper bound.

The upper bounds are normalized by dividing by the con-
strained lower bound. Thus the normalized upper bounds
will always be > 1, but we would like them to be as close to
one as possible. Figure 8 shows the percentage of matrices
which have an upper bound above some threshold. For ex-
ample this plot shows that only 8.1% of the matrices have a
normalized constrained upper bound greater than 1.1 while
49.8% of the unit cube and 65.6% of the rectangle normalized
upper bounds are greater than 1.1. The worst value for the
normalized constrained upper bound is 1.56. Therefore, the
constrained upper bound never differs from the lower bound
by more than 56% for these 873 random matrices. The other
upper bounds can be arbitrarily far off. In fact, they could be
unstable as discussed above. For the 873 matrices, the worst
value of the rectangle and cube upper bounds are roughly 19
and 49 times greater, respectively, than the constrained lower
bound. Finally, the mean computation times for the matrices
are .102, .601, and 1.557 seconds for the cube, rectangle, and
constrained areas, respectively. The mean time to compute
all three lower bounds is 2.375 seconds.
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Figure 8: Quality of Upper Bounds for 873 Random Matrices

6 Conclusions

We examined the worst-case performance of a linear sys-
tem subjected to 2 real, scalar uncertainties which were con-
strained to the intersection of the unit cube and a rotated
offset rectangle. We derived an LMI upper bound which is
a mixture of the standard LMI upper bounds obtained when
the the uncertainties are restricted to either the unit cube or
rectangle independently. This allowed us to analyze the the
worst case performance of a system with correlated param-
eters. This approach was detailed for the very simple case
of 2 correlated real scalar uncertainties and one performance
block, A,. It is straightforward to extend these results to
the case where A is any mixed block structure. Apparently
this method can be generalized to include higher dimensional
blocks of real scalars which are restricted to a parallelepiped.

References

[1] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan.
Linear Matriz Inequalities in System and Control The-
ory, volume 15 of Studies in Applied Mathematics. STAM,
Philadelphia, PA, 1994.

[2] R. Braatz, P. Young, J. Doyle, and M. Morari. Computa-
tional complexity of u calculation. IEEE Transactions on
Automatic Control, 39(5):1000-1002, May 1994.

[3] S. Khatri. Probabilistic Robustness Analysis and Exten-
sions to the Structured Singular Value. PhD thesis, Cali-
fornia Institute of Technology, October 1998.

[4] A. Packard, G. Balas, R. Liu, and J. Shin. Results on
worst-case performance assessment. In Proceedings of the
American Control Conference, pages 2425-2427, Chicago,
Illinois, 2000.

[5] A.Packard and J. Doyle. The complex structured singular
value. Automatica, 29(1):71-109, 1993.

[6] P. Parrilo. Structured Semidefinite Programs and Semi-
algebraic Geometry Methods in Robustness and Optimiza-
tion. PhD thesis, California Institute of Technology, May
2000.



