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Abstract

In this paper we study the effect of communication packet
losses in the feedback loop of a control system. Our mo-
tivation is derived from vehicle control problems where

arising in Automated Highway Systems (AHS) and co-
ordinated control of unmanned aerial vehicles (See [9, §]
and references therein). We briefly describe some of these
problems. The vehicles used in Automated Highway Sys-
tems typically use a radar to sense the relative spac-

information is communicated via a wireless local area net-

ing from their predecessor. During a radar failure, the

work. For such problems, we consider a simple packet-loss
model for the communicated information and note that
results for discrete-time linear systems with Markovian
jumping parameters can be applied. The goal is to find a
controller (if one exists) such that the closed loop is mean
square stable for a given packet loss rate. A linear matrix
inequality (LMI) condition is developed for the existence
of a stabilizing dynamic output feedback controller. This
LMI condition is used to study the effect of communica-
tion losses on a vehicle following problem. In summary,
these results can be used not only to design controllers
but also give a 'worst-case’ performance specification (in
terms of packet-loss rate) for an acceptable communica-
tions system.

1 Introduction

The purpose of this paper is to analyze the effect of ran-
dom losses in the feedback loop due to a non-ideal com-
munication network. These losses will deteriorate the per-
formance and may even cause the system to go unstable.
Our goal is two-fold. First, we would like to find a con-
troller such that the closed loop is mean square stable
for a given level of network performance. This is a prob-
lem for a control system designer who must deal with a
fixed level of network performance. This goal assumes
that such a controller exists. The network must satisfy
some level of performance otherwise no stabilizing con-
troller may exist. Thus the dual problem is to find limits
that the network performance must satisfy for a stabiliz-
ing controller to exist.

We will examine systems in the form of Figure 1. The
approach taken in this paper is motivated by problems
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fault diagnostic system may reconfigure the controller to
rely on the communicated position information. In Sec-
tion 5.2, we demonstrate how this simple vehicle following
problem fits into the form of Figure 1 with sensor delays
due to the wireless network, but no network between the
controller and the plant actuator. For the coordination of
unmanned aerial vehicles (UAVs), we are concerned with
acceptable limits of network performance. The vision is to
coordinate large numbers of UAVs to accomplish a com-
plex task. These UAVs will communicate on an ad hoc
network formed by the UAVs themselves. If we sense that
the current network configuration performance is too poor
for control, then we can reconfigure the network. Knowl-
edge of the bounds on acceptable network performance
is key to making this distributed agent system robust in
hostile environments.
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Figure 1: Feedback with communicated information

A system with communication delays in the feedback
loop can be modeled as a discrete-time linear system with
Markovian jumping parameters. This approach has previ-
ously been applied under the assumption of bounded de-
lays [11, 14]. Conditions for the mean square stability of
Markovian jump linear systems (MJLS) have been estab-
lished in [3]. It has been shown that mean square stability
is equivalent to stochastic stability and exponential mean
square stability for MJLS and any one implies almost sure



stability [10]. It should also be noted that state feedback
controllers for MJLS can be found by solving a set of
linear matrix inequalitites (LMIs) [7, 4, 2]. However, as
noted in [14], the structure of the communication delay
problem results in an output feedback even if the prob-
lem was originally state feedback, i.e. the output of the
combined plant/network model viewed by the controller
is not the full state. The output feedback problem for
MJLS is quite complex when placed in the optimization
framework. This problem has been attacked as a noncon-
vex optimization problem in [13] for the continuous time
case and in [14] for the discrete time case. Unfortunately,
these routines may converge to local extrema and do not
guarantee convergence to the global optimum. Another
approach is to use a congruence transformation to convert
the problem into an LMI optimization problem. This ap-
proach was used in [5] to find mode-dependent dynamic
output feedback controllers for continuous time MJLS.
The benefit of this approach is that the problem can be
efficiently solved by interior-point methods [1, 6] with a
guarantee that the global optimum will be found. On the
other hand, the problem can only be converted into an
LMI when the controller has full knowledge of the plant
mode. In this paper, we develop a simple network model
which is justified by the wireless networks used in vehicle
control. We then use a congruence transformation mo-
tivated by [5] to find an LMI condition for a restricted
case of the discrete-time dynamic output feedback prob-
lem. This LMI condition is used to find controllers and

packet received (8(k) = 1) then it is used, but if a packet
is is lost ((k) = 0) then the most recent information
should be used.

At this point, we note that this very simple network
model is only applicable due to our focus on vehicle con-
trol problems. For example, the vehicles in an automated
highway system communicate across a wireless LAN us-
ing a token bus architecture (See [12] for a description
of some wireless technologies used in AHS). Each vehicle
in a platoon has an opportunity to broadcast a packet of
data once in every 20msec token cycle. The corruption of
individual bits in a packet is likely to be correlated with
the other bits. However, our model makes the weaker
assumption that a packet loss in one token cycle is not
correlated to packet receipt/loss in other token cycles; it
is a Bernoulli process. Furthermore, we assume that net-
work jitter is negligible, so we do not have to model the
effect of delayed packets. Finally, the packets of data are
each time stamped. Therefore, it is easy for vehicles to
determine if they have lost a packet. Thus we can design
a controller which uses knowledge of packet losses as they
occur.

Using this simple network model, we can consider the
augmented state vector, Z(k) € R*TP:

z(k) = [¢" (k) y; (k = 1)) 3)

and derive a time-varying open loop plant which contains
the network model:

network performance constraints for the configuration in rk+1) = 49(’6)‘? (k) + Bu(k) (4)
Figure 1. ye(k) = CouyT(k)
where:
2 Problem Formulation A A 0 5)
6(k) O(k)C (1 —0(k)I
In this paper, we will consider discrete linear time invari- ~ B
ant systems with a communication network in the feed- B = 0 ] (6)
back loop (see Figure 1). The systems we consider are of _
the form: Cﬁ(k) = [ O(k)C (1 —6(k)I ] (7)

z(k+1) =
y(k) =

where z(k) € R™ is the state, u(k) € R™ is the control
input and y(k) € RP is the measurement vector. We will
assume that the output, y(k), is communicated across
a network and the controller has access to the commu-
nicated data, y.(k). If we assume a simple packet-loss
model for the networks, then y(k) and y.(k) are related
by:

Az (k) + Bu(k)
Cz(k)

(1)

ye(k) = 0(k)y(k) + (1 = 0(k))yc(k — 1) (2)

where 0(k) is a Bernoulli process given by Pr[f(k) = 0] =
p and Pr[f(k) = 1] =1 — p. Thus p represents the prob-
ability that any given packet will be lost. The communi-
cation model given by Equation 2 simply states that if a

The 6(k) subscript denotes the time varying depen-
dence of the state matrices via the network packet loss
parameters. We note that the open loop system has two
modes: # = 0 when the packet from sensor is dropped and
# = 1 when the packet is received. The state matrices are
stationary processes where the probability of being in a
given mode at time k depends on the underlying proba-
bility for (k). For example, the probability of being in
mode 0 at any given time is equal to p. Our goal is to
design a dynamic output feedback controller, K, which
has access to the communicated data, y.(k). Under our
network assumptions, the controller also has knowledge
of O(k), i.e. the controller knows when a packet has been
dropped from the sensor. In the next section, we will
present some results on discrete time Markovian Jump
Linear Systems (MJLS) which can be applied to achieve
this goal.



3 Markovian Jump Linear Sys-
tems

We consider the following stochastic system:

z(k+1) = Ae(k)x(k) + Bg(k)u(k)
y(k) = Coumyx(k) (8)
z(0) = o, 6(0) = 6o

where z(k) € R™ is the state, u(k) € R™ is the control
input and y(k) € RP is the output. The state matri-
ces are functions of a discrete-time Markov chain tak-
ing values in a finite set N = {1,...,N}. The Markov
chain has a transition probability matrix P = [p;;] where
pij = Pr(6(k +1) = j | (k) = i) subject to the restric-
tions p;; > 0 and Z;V:lpij = 1 for any i € N. These
restrictions just say that the probability of jumping into
a mode must be positive and that the Markov chain must
jump from mode ¢ into some state with probability one.
When 6(k) = i, the plant is in mode ¢ € A" and we will
use the following notation: Agxy = A;, Bexy = B; and
Cé’(k) = Cl

First we define several forms of stability for discrete-
time jump linear systems [10].

Definition 1. The system given by (8) with u = 0 is:

1. mean-square stable (MSS) if for every initial state

2. Gj—Aj (ZﬁlpijGi) A;‘F >0forj=1,...,N
J. Gi—z;yzlpijAijAj >0 fori=1,...,N

4. Gj — Zfilp”AszAzT >0 forj=1,... ,N

Our specific application has the structure that p;; = p;
for all i, € {1,...,N}. In words, the probability of the
plant being in mode ¢ at time k£ + 1 is independent of
the plant mode at time k. Thus we can actually apply
the following simplified version of Theorem 1 which is
presented as a Corollary in [3].

Theorem 2. Ifp;; =p; foralli,j =1,... ,N then Sys-
tem (8) is MSS iff there exists a matriz G > 0 such that
G- Y X, pATGA; > 0.

4 Stochastic Stabilizability

In this section we will apply Theorem 2 to derive an LMI
condition for controller synthesis. We assume that the
controller has access to 8(k) and the output of the aug-
mented system, y.(k), but not the system state. The goal
is to find a dynamic output feedback controller (or show
that one fails to exist) of the form:

Acorye(k) + Beoryye(k)
Cc,e(k)xc(k) (9)

z.(k+1) =
u(k) =

(%0, 60), limy 00 E[|l2(k)[[*] = 0.

2. stochastically stable (SS) if for every initial state
(z0,600), E [X32g [l2(R)|P] < co.

3. exponentially mean square stable (EMSS) if for ev-
ery initial state (xo,6p), there exists constants 0 <
a <1 and B > 0 such that Yk > 0, E [||lz(k)||?] <
Bak||zol|-

4. almost surely stable if for every
(0,00), P [limg_oo [|2(K)|| = 0] = 1.

initial state

It is shown in [10] that for System (8), the first three
definitions of stability are actually equivalent and any one
implies almost-sure stability. Furthermore, the authors of
[10] refer to the equivalent notions of MSS, SS, and EMS
as second-moment stability. We will subsequently refer to
MSS with the meaning given by these equivalent notions
of stability. Below we present matrix inequality condi-
tions for MSS of the MJLS. Theorem 1, which is proved
in [3], gives necessary and sufficient matrix inequality con-
ditions for MSS of the system.

Theorem 1. System (8) is MSS iff there exists matrices
G; >0 fori=1,... N that satisfy any of the following
conditions:

1 Gy = AT (S, piyGy) Ai> 0 fori=1,..., N

where z.(k) € R" is the controller state and the sub-
script ¢ is used to denote the controller matrices/states.
Again, for (k) = i € {0,1}, we will use A.;, B.;, and
C.; to denote the state space matrices of this two mode
controller. We should note that this is not necessarily the
optimal use of the measurements and knowledge of past
packet loss parameters. However, this formulation leads
to computationally tractable results.

With the controller structure above and the plant mode
definitions given in Section 2, the closed loop matrices are
given by:

A;

B;C.;
Acl,i = |: B Cv

i ]foriE{O,l} (10)

where the subscript ’cl” denotes the closed loop matrices.
For the closed loop system, the transition probabilities are
given by: pero =p and pe 1 = (1 — p). Apply Theorem 2
to conclude that the closed loop system is mean-square
stable if and only if there exists a matrix G > 0 such
that G — ¥5_gperjAL ;GAa; > 0. Let Z = G~1. By
pre- and post-multiplying this condition by Z and using
Schur complements, we obtain a more useful form of this
condition:

Z (o)
VPA«w0Z Z 0
\/]. —pAclJZ 0 Z



where ()7 denote matrix entries which can be inferred
from the symmetry of Z. Equation 11 gives a neces-
sary and sufficient condition for the existence of a dy-
namic output feedback controller which gives closed loop
mean-square stability. This is a bilinear matrix inequality
(BMI) since it is linear in the controller parameters (for
a fixed scaling matrix Z) or in Z (for fixed controller ma-
trices). The following theorem gives an equivalent linear
matrix inequality condition.

Theorem 3. There exists Z > 0, Aci, Bei, and Cg; for
1 = 0,1 such that Equation 11 holds iff there exists matri-
cesY =YT, X = X", L;, F;, and W; for i = 0,1 such
that:

[T 4 () ()T
\/ﬁ[mogoco_wvio?%] &l " | >0

VISR s e ] 188) 1K)
(12)

Proof. (=) The proof uses a transformation motivated
by the proof for the continuous time output feedback
MJLS problem [5]. Assume Equation 11 holds and parti-
tion Z as:

Z-= [

Without loss of generality, we can assume that Z, is non-
singular. This follows since the set of full rank n xn matri-
ces is dense in the set of all n x n matrices. Thus, without
loss of generality, we assume that Z, is non-singular. De-
fine the matrix Y = (Z; — Z2Z5 ' ZT)~" and note that
Y > 0 since Z > 0. Next, define transformation:

Zy

Zy
Zi Zs ] 13

Y I
T= ~-Z:'ZTy 0 (14)
If we multiply Equation 11 on the left by

diag(TT,TT,TT) and on the right by diag(T,T,T),
we find that Equation 12 is satisfied with the following
matrix definitions (for ¢ = 0, 1):

Y = (Z1- 2,27 727!

X = Z

F, = CuZ]

Li = -YZyZ;'B,

W, = YA Z\+YBF;+ LiCiZy —Y Z2Z3 A ZY

Note that the nonsingularity of Z, was used to ensure
that the transformation matrix was invertible.

(<) Assume that we have found Y = Y7, X = X7 L,
F;, and W; for ¢ = 0, 1 such that Equation 12 holds. Then

define, for 4 = 0,1 the scaling and controller matrices as:

Z = Y—lX— X §( —1 1:—)5 (15)
B, = Y 'L
Cei Ryt -x)""
Ao = Y 'YAXAYBF+LCX-W] (Y ' -X)"

Schur complements can be used to show that Condition 12
implies that X — Y ! is positive definite and hence Z >
0. Next, define the transformation T = [V []. If we
plug the matrices given in Equation 15 into Equation 11

and multiply on the left and right by diag(T7,... ,TT)

and diag(T, ... ,T), respectively, we recover Equation 12.
Hence Equation 11 holds with the matrices defined in
Equation 15. O

Before proceeding, we make several comments about
this theorem. If Equation 12 has a feasible solution, the
proof gives a procedure for constructing a mean-square
stabilizing controller. If no feasible solution exist, then
it is known that no mean-square stabilizing controller of
the given form exists for the particular packet loss rate,
p. Fast algorithms exist to solve LMIs, making this feasi-
bility problem computationally tractable. Also note that
the proof given above can be extended to derive an LMI
condition for the existence of a mode-dependent dynamic
output feedback controller for any discrete time MJLS
satisfying the constraint p;; = p; for all 1.

5 Numerical Examples

In this section, we present two examples which exploit
the LMI condition given in the previous section. The first
example is a simple second order system. This example is
not physically motivated, but it will display the structure
of the controller produced by the LMI condition. Next, we
put a simple vehicle following problem in this framework
and examine the effect of communication losses.

5.1

The following (randomly generated) second order exam-
ple will be used to study the LMI condition given in the
preceding section: A = [ 03058 2202] [y — [ 05185],
and C' = [0.2341 0.0215]. The eigenvalues of this system
are -1.3739 and 2.0946. We try to estimate an upper
bound on p such that stabilizing controllers exist. Using
bisection, we found that stabilizing controllers exist when
p < .121 and the LMI condition is infeasible for higher
packet loss rates.

For p = .12, the following MSS controller was found:

Simple 2nd Order System

—0.2153 —0.0709 0.0171 0.0193
Ao = —1.2196 —0.3590 —0.0190 | B,y = | —0.0203

0.0000 0.0000 0.0012 —0.9989
Ceoo = [0.0968 4.1097 —0.0042



—0.8702 —0.1311 —0.0011 —2.8003
Agq = 0.3994 —0.2105 —0.0007 | B.1 = | 6.9182

0.0001 0.0000 0.0000 —0.9997
Cop = [.0979 4.1095 —.0021 ]

Controller 0 is used when the packet is dropped and
controller 1 is used when the packet is received. We note
that the plant modes are Ag = [# 9], Co = [02x1 1], A1 =
[49],C1 = [co]. The controller structure satisfies Ao ~
Ao + Bcoc_’o - B()Cco and Ao ~ Al + Bclél - BlCcl. In
other words, the controller possesses an observer based
structure with with x.(k) being an estimate of —Z(k), the
state of the augmented plant. Furthermore, B.; are the
observer gains and C¢; are the feedback gains. We note
that Beo ~ [0 0 —1]7 and B,y ~ [L —1]T where H € R?
is an observer gain making A+ H C stable. This controller
structure is very intuitive. When a packet is received the
estimates of the original plant states are updated with the
plant A and corrected with the observer gain H. When
a packet is dropped, the observer gain H is set to zero
and the estimates are updated using A, which is the best
we can do when no new sensor information arrives. The
—1 term in both feedback gains causes the augmented
network state to be estimated perfectly (the second block
row of A; + B.;C; is zeroed out in both modes). This is
not surprising since the controller has knowledge of 6(k)
which completely determines the evolution of this state.
Finally, C.o =~ C.1. Thus, once our estimate of the state
is obtained, there is no advantage to varying the feedback
gain based on the loss or arrival of sensor information.

5.2 Vehicle Following

Let 21 and x5 denote the longitudinal positions of a leader
and a follower vehicle, respectively. The goal is to have
vehicle 2 follow a distance 4.5 behind vehicle 1. In other
words, the controller should regulate the spacing error,
€ = des — 0 = ges — (X1 — T2), to zero. We assume that
feedback linearization has been applied to the nonlinear
vehicle model. The goal is to design a controller for the
following linearized plant:

T = a; (16)

Ta; + a; = u;

where a; is the acceleration of vehicle ¢ and u; is the
desired acceleration. The first order dynamics between u;
and a; are due to the throttle/brake actuator dynamics.
It is easy to show that the spacing error dynamics are
given by:

(17)

T'é'+'€':U2—U1

Typically a radar is used to measure the vehicle spacing,
4. During a radar failure, the fault diagnostic system may
reconfigure the controller to use position and velocity in-
formation communicated from the leading vehicle. The
spacing error can then be viewed as communicated infor-
mation since the leading vehicle position is required for

its computation. In this scenario, we desire a controller,
K, which uses the communicated spacing error to regulate
the error to zero (Figure 2). The continuous time system
is replaced with an equivalent discrete time system as-
suming a sample and hold at the plant input and an ideal
sampler at the plant output. It is clear that this problem
is in the form of Figure 1 with no controller to actuator
delays. We would like to apply Condition 12 find an up-
per limit on the acceptable packet loss rate p. If a feasible
controller is found, then the system is MSS when u; = 0
(lead vehicle desires a constant velocity trajectory).

M) 1 € -
s2(rs+1)

Network

Figure 2: Vehicle Problem: Spacing Error Dynamics

A normalized version of this problem was solved with
the following data: T = 7 = 1. Since the plant is
marginally stable, it is actually possible to find a MSS
controller for any p € [0, 1). For example, Figure 3 shows
a simulation of the closed loop when p = 0.9. The up-
per subplot shows the spacing error starting from an ini-
tial condition of 1m and assuming that the lead car is
traveling at a constant velocity. The solid line shows
the actual spacing error and the dashed line shows the
communicated spacing error used by the controller. The
lowest subplot shows 6(k); the spikes are time instances
where packets are received. Even at this very high packet
loss rate, the controller is able to mean-square stabilize
the system. The control effort (middle subplot) shows
how the controller stabilizes the system. When the first
packet arrives, the controller decelerates the vehicle to re-
duce the spacing error and then accelerates to bring the
vehicle back to the speed of the preceding vehicle. Ev-
ery time a packet arrives, the controller is able to tap the
spacing error a bit closer to zero and then bring é close to
zero. The controller is able to wait long periods of time
between packets since the plant is not strictly unstable.

This example shows that MSS is a rather weak con-
dition for the vehicle following problem. In particular,
it is possible to find stabilizing controllers even for very
high packet loss rates, but this does not guarantee that
the performance will be adequate. In fact, the H,, gain
from u; to € will be quite large for high packet loss rates.
This example shows that we need to extend these results
to find a performance metric as a function of packet loss
rate.
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Figure 3: Vehicle Simulation: Spacing Error, Control Ef-
fort, and 6, (k)

6 Conclusions

In this paper we studied the effect of communication
packet losses which occur in various vehicle control prob-
lems. By considering a simple network model, we were
able to apply results for discrete-time MJLS. An LMI
condition was developed for the existence of a stabilizing
dynamic output feedback controller. Simple numerical
examples show several areas for future research. The ve-
hicle following example shows that these results need to
be extended to measure performance versus packet loss
rate. Furthermore, our vehicle following problem has the
rather naive set up that each vehicle uses only informa-
tion from its predecessor. Future research should focus on
a large scale version of this problem where each vehicle
can receive and transit information from many vehicles.
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