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Abstract

Coordinated Control of Unmanned Aerial Vehicles

by

Peter Joseph Seiler

Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor J.K. Hedrick, Chair

This thesis considers the problem of coordinated control of unmanned aerial ve-

hicles (UAVs). This problem has recently received significant attention in the controls

community due to its numerous applications. To realize the benefits of advanced UAV sys-

tems, we must build hierarchically from simple to complex tasks. The focus of this thesis is

one step in this process: formation flight. This problem is interesting in its own right and

leads to several scientific questions.

Consider two possible distributed control architectures. First, each vehicle could

use a control law that depends on measurements from all vehicles in the formation. This

architecture allows us to design centralized controllers but requires the vehicles to commu-

nicate large amounts of information. Alternatively, we could design a distributed control

architecture where each vehicle uses only sensor information about neighboring vehicles.

This architecture does not require communication, but it may lead to disturbance propaga-
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tion. Specifically, disturbances acting on one vehicle will propagate and, if amplified, may

have a large effect on another vehicle. This amplification of disturbances is commonly called

string instability. It is clear that formation flight requires basic research into the areas of

distributed control, disturbance propagation, and control over communication channels.

This thesis makes advances in each of these areas with application to the formation

flight problem. In a simple manner, we show that several strategies that do not require

communication tend to be string unstable. This result motivates a control design procedure

for formation flight that requires communicated leader information. We then determine how

often this information must be communicated for acceptable control. We find theoretical

bounds on network performance for a simple vehicle following problem. We also develop

tools to determine how often information must be communicated in more general networked

control systems. The main tool of interest is a computationally tractable method to find the

closed loop performance as a function of packet loss rate. These tools require supporting

results in the area of jump linear systems. Finally, we apply the control design procedure

and the network analysis tool to the formation flight problem.

Professor J.K. Hedrick
Dissertation Committee Chair
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Chapter 1

Introduction

In this thesis, we consider the problem of coordinated control of unmanned aerial

vehicles (UAVs). This problem has recently received significant attention in the controls

community due to its numerous applications. Some examples include firespotting [31], space

science missions [77, 91], surveillance [6, 98], terrain mapping [98], and formation flight

[65, 76]. In these applications, unmanned vehicles are used because they can outperform

human pilots, they remove humans from dangerous situations, or because they perform

repetitive tasks that can be automated.

Many of these tasks are complex and a systematic procedure is needed to realize the

ultimate benefits of advanced UAV systems. A logical roadmap is to build hierarchically

from simple to complex tasks. First, one should control a single UAV and be able to

command the UAV to perform various useful tasks, e.g. travel to a given wavepoint. Next,

one should coordinate several UAVs in a simple way. One simple coordinated control

problem is formation flight. As we discuss below, this problem is interesting in its own
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right and leads to several scientific questions. Finally, one should build up from simple

coordinated tasks to the final complex task.

At Berkeley, the BEAR project (see [87] and references therein) has taken the

first step of controlling a UAV. This thesis focuses on the second step of performing a

simple coordinated vehicle maneuver. In particular, we concentrate on the problem of

formation flight. While still at the beginning of the roadmap, it is an important step

toward the ultimate goal of advanced UAV systems. Moreover, formation flight itself has

many applications. For example, flying in formation can reduce fuel consumption by 30%

[65]. However, this requires tight tracking to realize these fuel savings. Formation flying

can also be used for airborne refueling and quick deployment of troops and vehicles [76].

Cooperating vehicles may also perform tasks typically done by large, independent platforms

[92, 98]. Gains in flexibility and reliability are envisioned by replacing large platforms with

smaller vehicles operating in a formation.

Even a simple coordinated task such as formation flight leads to several interesting

scientific problems. A meeting sponsored by the Air Force Office of Scientific Research

outlined several research needs in the area of advanced UAV systems [6]. Consider two

possible distributed control architectures. First, each vehicle could use a control law that

depends on measurements from all vehicles in the formation. This architecture allows us

to design centralized controllers but requires the vehicles to communicate large amounts

of information. Alternatively, we could design a distributed control architecture where

each vehicle uses only sensor information about neighboring vehicles. This architecture

does not require communication, but it may lead to disturbance propagation. Specifically,
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disturbances acting on one vehicle will propagate and, if amplified, may have a large effect

on another vehicle in the formation. This amplification of disturbances is commonly called

string instability. It is clear that formation flight requires basic research into the areas of

distributed control architectures, disturbance propagation and string stability, and control

over noisy communication channels.

1.1 Thesis Overview

The problem of formation flight provides a backdrop for the basic investigation pur-

sued in this thesis: What are the communication requirements for acceptable distributed

control? This investigation leads to advances in the areas of distributed control architec-

tures, disturbance propagation and string stability, and control over noisy communication

channels. In this section we give an outline of this thesis and the path leading to these

advances. All chapters give a review of previous work that is pertinent.

Chapter 2 gives an introduction to the coordinated vehicle control problem.

Specifically, we introduce the problem of controlling a string of vehicles in the context of

Automated Highway Systems (AHS). The possibility of disturbance propagation in vehicle

strings has been known for some time. This chapter serves to review past work by offering

new interpretations of this phenomenon. Specifically, we analyze several distributed control

architectures that do not require communication. While the architectures under consid-

eration only require sensors capable measuring distances to neighboring vehicles, we show

that a large class are string unstable. In other words, errors amplify as they propagate

through the vehicle string and hence these architectures are sensitive to disturbances. A
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simple solution is to communicate lead vehicle information to all following vehicles. This

solution has been previously used to design string stable control laws for AHS.

Chapter 3 generalizes the notion of string stability to multiple dimensions. In

mathematical terms, a string of vehicles is a collection of single-input single-output systems

with errors propagating along one direction in the string. For formation flight, we must

consider multiple-input multiple-output systems as well as formations where errors propa-

gate in multiple dimensions. We use the generalizations in this chapter to develop a simple

formation control design procedure.

The formation controller proposed in Chapter 3 requires the lead vehicle in the

formation to communicate its measurements to all followers in the mesh. The motivates an

investigation into the effect of communication delays on closed loop systems with networks

in the feedback loop. Such systems are termed Networked Control Systems (NCS). The

study of NCS is relatively new and there is a need for both theoretical results and practical

tools for such systems. The next two chapters of the thesis provide both theoretical results

and practical tools for NCS.

Chapter 4 focuses on theoretical bounds for a simple networked control system.

We pose a simple vehicle following problem involving a network. This system falls into

the general class of Markov Jump Linear Systems (MJLS). The existence of a stabilizing

controller for this problem is reduced to the existence of a stable estimator receiving mea-

surements over a network. We then investigate this estimation problem and find theoretical

bounds on the network performance (in terms of packet loss) for the existence of a stable

estimator. These results are one step on the path to general controllability / observability



5

conditions for NCS.

In Chapter 5 we develop tools for analysis and design of more general networked

control systems. Again we note that the networked control systems under consideration

fall into the class of Markov Jump Linear Systems (MJLS). First we present useful results

on stability and H∞ performance for MJLS. We derive a necessary and sufficient matrix

inequality for a MJLS to achieve a given level of H∞ performance. This yields a compu-

tationally tractable method to determine the performance of a networked control system.

Then we show how this matrix inequality can be used to synthesize optimal controllers for

networked systems. Finally we present several examples demonstrating the usefulness of

the tools.

In Chapter 6, the tools developed in the previous chapters are applied to the

problem of formation flight. We describe a linear model of a small-scale helicopter obtained

by D. Shim [87] using time-domain system identification methods. This model is valid for

hovering and low-velocity maneuvers. We also present a controller, designed by D. Shim [87],

that is used for wavepoint navigation of a single UAV. This controller is used in to design

a formation flight controller using the procedure detailed in Chapter 3 and thus results

in a mesh stable design. This formation controller requires the UAVs to communicate

information across a wireless network. Finally, we analyze the effect of communication

delays using the results obtained in Chapter 5.

Chapter 7 presents conclusions and gives recommendations for future work. Sev-

eral appendices follow the thesis and give supporting results.



6

1.2 Thesis Contributions

This thesis makes several contributions in the areas of distributed control and

control of networked systems. Supporting results in this thesis also provide contributions

in the area of Jump Linear Systems. These contributions are discussed below.

1. Distributed Control: The state of the art in distributed control is advanced by

analyzing disturbance propagation in vehicle strings and formations.

• String Stability: A simple vehicle following strategy is for each vehicle to use

a radar keep a fixed distance behind the preceding vehicle. Many researchers

have shown that this strategy is string unstable for specific control laws. In

other words, errors may be amplified as they propagate through a vehicle string

if this strategy is employed. In Chapter 2, we show in a simple manner that

this strategy is string unstable for any linear controller. We also show that this

strategy is sensitive to disturbances: a small disturbance acting on one vehicle

can propagate through the string and have a large effect on another vehicle.

One solution to this problem is to communicate lead vehicle information to all

followers.

• Mesh Stability: In Chapter 3, we extend the string stability results to formations

of vehicles. This leads to a design procedure for mesh stable formation controllers.

This is mostly a notational problem, but it does lead to some interesting ties with

graph theory. These ties remain open for future work.

2. Control of Networked Systems: Theoretical results and practical tools for net-
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worked control system are provided.

• Theoretical bounds for Networked Control Systems: In Chapter 4, we pose a

simple vehicle following problem involving a network. For this problem, we

characterize the effect of the network by a packet loss process. A necessary

and sufficient condition on the packet loss rate is derived for the existence of

a stabilizing controller for this vehicle following problem. We show that this

condition provides a hard constraint on the network performance as measured in

terms of bandwidth and packet loss rate.

• Tools for Design and Analysis of Networked Control Systems: In Chapter 5, we

develop computationally efficient methods to solve problems related to control

over wireless networks. A supporting result related to jump linear systems is a

necessary and sufficient matrix inequality for a system to achieve a given level of

H∞ performance. We show how this matrix inequality can be used to synthesize

optimal controllers for NCS. These tools are then applied to examples in vehicle

control. In particular, we analyze the effect of packet losses on a formation flight

controller.

3. Jump Linear Systems: In Appendix C, we derive a necessary and sufficient matrix

inequality for a jump linear system to achieve a given level of H∞ performance. This

leads to two computationally tractable methods to determine the performance of a

networked control system. The preferable algorithm for a particular problem depends

on the state dimension of the plant.
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Chapter 2

Error Propagation in Vehicle

Strings

2.1 Introduction

The problem, in its most basic form, is to move a collection of vehicles from one

point to another point. There are two simple solutions to this problem. First, we could

design one centralized controller to move all vehicles to the desired destination. Second,

we could decouple the problem by treating each vehicle independently. For this second

approach, the control design for an individual vehicle can be posed in a classical form with

xi denoting the position of the ith vehicle (Figure 2.1). It is sufficient to design a controller,

K(s), for the ith vehicle, Hi(s), and specify a reference trajectory, ri, to move this vehicle

to the destination. Little more than standard techniques are required for either of these

two approaches.
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xiri Hi(s)K(s)

Figure 2.1: Standard Feedback Loop

The problem becomes interesting in applications where the vehicles must interact

using incomplete information. One example is an Automated Highway System (AHS) [39].

In this application, the goal is to reduce traffic congestion by using closed loop control. To

maximize the traffic throughput, the vehicles travel in closely spaced platoons (Figure 2.2).

Centralized control is impractical for medium to large sized platoons. Thus a decentralized

controller should be used. Furthermore, treating the vehicles independently is an unsafe

approach because the inter-vehicle spacings are required to be small. A reasonable decen-

tralized control strategy is for each vehicle to use a radar to keep a fixed distance behind

the preceding vehicle. Figure 2.3 displays this control strategy. The reference trajectory for

the (i+ 1)th vehicle is a fixed distance, δi, behind the preceding vehicle: ri+1 = xi − δi. In

contrast to the decoupling strategy in Figure 2.1, the vehicles interact and their feedback

loops are coupled. It is now possible for disturbances acting on one vehicle to propagate

and affect other vehicles in the string. In fact, we show that for any control law, K(s), it is

possible for a small disturbance acting on one vehicle to have an arbitrarily large effect on

another vehicle (Sections 2.4.1 and 2.5.2).

The possibility of disturbance propagation in vehicle strings has been known for

some time. This chapter serves to review past work by offering new interpretations of
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this phenomenon. Specifically, the remainder of this chapter is devoted to finding general

properties of several decentralized control structures. This will also function as a bridge to

the next chapter: Error Propagation in Vehicle Formations. In the next section, we survey

the past work in this area. Then we formulate the problem and give a simple analysis of

several control structures. We give a more detailed analysis of the control structures in

Section 2.5. Finally we discuss the implications of these results on decentralized control

design.

2.2 Related Work

The control of a string of vehicles has a long history of research. Early research

[49, 57] was motivated by a high-speed ground transport for the Northeast United States.

The research initially focused on centralized controllers for the string of vehicles. As stated
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above, centralized designs for large platoons of vehicles are difficult to implement. Alter-

natively, each car could be treated individually using a moving cell reference [102]. This

scheme has two drawbacks. It requires a method to communicate the reference trajectory

to each vehicle. Furthermore, this scheme ignores the relative spacing between vehicles. It

is important for vehicles to maintain a specified separation even if disturbances cause the

vehicles to deviate from their moving cell reference. Thus if vehicles are closely spaced, a

moving cell reference scheme may be unsafe.

Subsequent research focused on decentralized control designs [12, 16, 19, 68]. Chu’s

research [19] on the control of an infinite string of vehicles displays several key ideas. First,

the vehicles in an actual platoon tend to have similar dynamics. A useful abstraction

of this property is a string of identical vehicle models which are indexed by a discrete

variable. Note that the dynamics have a spatial dependence (the vehicle index) and a time

dependence. The string has the property of spatial invariance with respect to this discrete

index, i.e. the dynamics of each vehicle are the same. Chu removed the spatial dependence

using the bilateral Z-transform and then investigated the stability of the string for various

decentralized control laws. He defined the closed loop string to be stable if the state of

the infinite dimensional string remained bounded and converged asymptotically to zero for

bounded initial conditions. An interesting result occurs when vehicles try to maintain a

fixed distance behind their predecessor. If each vehicle uses only relative spacing error and

a proportional control law, string stability cannot be achieved. A similar result was also

shown via a transfer function analysis [68]. Specifically, Peppard used a PID controller and

found the transfer function from one spacing error in the string to the next. If the controller
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uses only relative spacing information, this transfer function has a gain greater than 1 at

some frequency. Errors at this frequency will be amplified as they propagate through the

string.

In the early 90s, renewed interest in AHS spurred further research on the control

of vehicle strings [29, 38, 85, 88, 94, 95, 96]. Rigorous definitions of string stability and

relations to error propagation transfer functions were obtained by Swaroop [94]. While Chu

used the Z-transform to remove the spatial variable, Swaroop used the L∞ norm to remove

the temporal variable. He then used sliding control and investigated the propagation of

errors in the spatial domain. He showed that string stability could not be achieved using

only relative spacing information, but it could be achieved if the lead vehicle communicated

its state information to all other cars in the string. Eyre, et.al. [29] gave interpretations of

these results in terms of blocks connected with springs and dampers.

The research on vehicle strings can be generalized. Kamen [45] studied a class

of systems whose inputs and outputs are functions of a time variable and a discrete spa-

tial variable. This research on spatio-temporal systems was extended on several fronts by

Bamieh, Paganini and Dahleh [5]. Their work further generalizes the problem to the case

where the spatial variables form a Group and the dynamics are spatially invariant with

respect to translations in the Group. For a class of optimal control problems, they show

that the optimal controller has two nice properties. First, the optimal controller is spatially

invariant. In terms of a vehicle string, this means that each vehicle uses the same control

law. Second, the control gains have exponential rates of decay in space. For a vehicle string,

this means the optimal control law depends heavily on the neighboring vehicles. Based on
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these properties, spatial truncation of the optimal controller is suggested. The truncated

controller is a decentralized approximation of the optimal centralized controller.

To summarize, we note that many definitions of “string stability” have occurred

in previous literature. These definitions basically correspond to notions of scalability and

disturbance damping. In particular, stability of an infinite string is related to the idea that

we can add as many cars to a string without fear of instability. This scalability is reassuring

if we do not have a priori bounds on the number of vehicles. Alternatively, the attenuation

of propagating errors is related to the idea that disturbances acting on a vehicle should

have small effect on other vehicles, i.e. they should be damped. We also note that many

researchers have shown that “string stability” cannot be obtained when vehicles only use

relative spacing information to maintain a constant distance behind their predecessor. All

of these results have been for specific control laws such as proportional, PID, and sliding

controllers.

In this chapter we derive disturbance attenuation properties for several decentral-

ized control structures. In particular, we show in a simple manner that if vehicles only use

relative spacing information, then we have “string instability” for any linear controller.

2.3 Problem Formulation

The problem is motivated by the control of an AHS platoon (Figure 2.2). The

platoon is a string of N + 1 vehicles. Let x0(t) denote the position of the lead car and

xi(t) (i = 1, . . . , N) denote the position of the ith follower in the string. Define the vehicle

spacing errors as: ei(t) = xi−1(t) − xi(t) − δi(t) (i = 1, . . . , N) where δi(t) is the desired
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vehicle spacing. The goal is to force these spacing errors to zero and ensure that small

disturbances acting on one vehicle cannot have a large effect on another vehicle. Before

proceeding, we call attention to some of our assumptions:

Assumption 1: All the vehicles have the same model.

Assumption 2: The vehicle model is linear and SISO.

Assumption 3: All vehicles use the same control law.

Assumption 4: The desired spacing is a constant: δi(t) ≡ δ

We are more interested in performance at the platoon level rather than individual vehicle

control. Thus Assumptions 1 and 2 are reasonable abstractions of the problem at this

scale. Assumption 3 is a simplification for ease of implementation. However there is some

theoretical justification for this decision. The work by Bamieh, et.al. [5] shows that the

optimal controller for an infinite string of identical vehicles is spatially invariant, i.e. each

vehicle uses the same controller. The use of a different controller for each vehicle will be

discussed briefly in Section 2.4.1. Finally, there are a variety of other spacing laws and the

constant spacing policy is chosen for this analysis. In particular, a weak version of string

stability can be achieved if the the desired spacing is changed based on vehicle velocity. The

reader is referred to [94] for a complete treatment.

Given any time-domain signal, x(t), we denote its Laplace Transform, L{x(t)},

by X(s). Applying the assumptions, we can model each vehicle in the Laplace domain as

(assuming the vehicles start from rest):

Xi(s) =H(s)Ui(s) +
xi(0)

s
for i = 1, . . . , N (2.1)

where H(s) has two poles at the origin and xi(0) is the initial position of the ith vehicle. A

simple point mass model for a car is H(s) = 1
s2

with the vehicle acceleration as the control
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input. In general, H(s) can include actuator dynamics. We assume that these actuator

dynamics can be represented by a proper transfer function so that H(s) has relative degree

≥ 2. The spacing error is given by ei(t) = xi−1(t) − xi(t) − δ. We assume the platoon

starts with zero spacing errors and the leader starts at x0(0) = 0. Hence, xi(0) = −iδ for

i = 0, . . . , N .

2.4 Error Propagation

In this section we give a simple analysis of three decentralized control laws. We

show that if vehicles use only relative spacing information, then some frequency content of

the errors will be amplified as it propagates. In other words, this strategy is string unstable.

This problem can be solved if each vehicle also uses leader information. We will make use

of the following norm: ‖X(s)‖∞ := supω∈R σ̄ (X(jω)). For a SISO system, this is just the

peak magnitude on a Bode plot.

2.4.1 Predecessor Following

In this section we investigate the decentralized control law suggested at the be-

ginning of this chapter. A linear control law based only on relative spacing error is given

by:

Ui(s) = K(s)Ei(s) (2.2)

Simple algebra gives the following relations:

E1(s) =X0(s)−X1(s)−
δ

s

(a)
= X0(s)−H(s)K(s)E1(s)

Ei(s) =Xi−1(s)−Xi(s)−
δ

s

(a)
= H(s)K(s)(Ei−1(s)− Ei(s)) for i = 2, . . . , N
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where equalities labeled (a) follow from Equations 2.1, 2.2 and the platoon initial conditions.

We can obtain the spacing error dynamics from these relations:

E1(s) =
1

1 +H(s)K(s)
X0(s) := S(s)X0(s) (2.3)

Ei(s) =
H(s)K(s)

1 +H(s)K(s)
Ei−1(s) := T (s)Ei−1(s) for i = 2, . . . , N (2.4)

These equations show that the transfer function from X0(s) to E1(s) is the sensitivity

function, S(s). In a standard feedback loop, the sensitivity function is the transfer function

from reference to error. Since x0(t) and e1(t) are the reference and error for the first

follower, Equation 2.3 is not surprising. The transfer function from Ei−1(s) to Ei(s) is the

complementary sensitivity function, T (s).

There is a classical trade-off between making |S(jω)| and |T (jω)| small. Making

|S(jω)| small corresponds to disturbance rejection, reference tracking, and sensitivity to

model variations. Making |T (jω)| small corresponds to noise rejection and robustness to

high frequency unmodeled dynamics. Since S(s) + T (s) ≡ 1, we cannot make |S(jω)|

and |T (jω)| simultaneously small. Fortunately the competing objectives occur in different

frequency regions. It is typically sufficient for |S(jω)| to be small at low frequencies and

|T (jω)| to be small at high frequencies.

In the context of Equations 2.3 and 2.4, the S(s) vs. T (s) trade-off has the interpre-

tation of limiting initial spacing error (making |S(jω)| small) and limiting the propagation

of errors (making |T (jω)| small). We would like |T (jω)| < 1 at all frequencies so that prop-

agating errors are attenuated. In this case, we cannot spread these competing objectives

into different frequency bands.

In fact, it is not possible to attenuate propagating errors at all frequencies. Note



17

that if K(s) stabilizes the closed loop, then H(s)K(s) has two poles at s = 0. This follows

since no unstable pole-zero cancellations between H(s) and K(s) is a requirement for closed

loop stability. Thus T (0) = 1 and hence ‖T (s)‖∞ ≥ 1. The next theorem implies that the

inequality is strict: ‖T (s)‖∞ > 1. This is a simplified version of a theorem by Middleton

and Goodwin [61, 53].

Theorem 2.1 Suppose that H(s) is a rational transfer function with at least two poles

at the origin (i.e. two integrators). If the associated feedback system is stable, then the

complementary sensitivity function must satisfy:

∫ ∞

0
log |T (jω)|dω

ω2
≥ 0 (2.5)

where log is the natural log.

This theorem follows from Theorem 3.2 which is proved in Chapter 3. This in-

tegral relation is similar to the more common Bode Sensitivity integral. We note that

log |T (jω)| > 0 if |T (jω)| > 1 and log |T (jω)| < 0 if |T (jω)| < 1. Therefore the integral

implies that the area of error amplification is greater than or equal to the area of error

attenuation. Since H(s) is strictly proper, |T (jω)| → 0 as ω →∞. There is some frequency

band of error attenuation (high frequencies) and hence there must be a frequency band of

error amplification. Thus a simple consequence of this theorem is that for any stabilizing

controller, there exists a frequency, ω, such that |T (jω)| > 1. We also note that time delays

and right half plane zeros make the integral strictly positive. In this case, the area of error

amplification exceeds the area of error attenuation. The interested reader is referred to

[61, 53] for these generalizations.
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Figure 2.4 shows an example of this result. The vehicle model is a double integrator

with first order actuator dynamics and a lead controller is used to follow the preceding

vehicle:

H(s) =
1

s2(0.1s+ 1)
(2.6)

K(s) =
2s+ 1

0.05s+ 1
(2.7)

Figure 2.4 is a plot of |T (jω)| and |S(jω)|. Note that the y-axis is a linear scale, not the

log scale commonly used in Bode plots. As predicted by Theorem 2.1, there is a frequency

such that |T (jω)| > 1. Specifically, ‖T (s)‖∞ = 1.21 and is achieved at ω0 = 0.93 rads/sec.

Errors acting at this frequency will be amplified as they propagate.
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Figure 2.4: Plots of |T (jω)| and |S(jω)| for H(s) = 1
s2(0.1s+1)

and K(s) = 2s+1
0.05s+1 .

‖T (s)‖∞ = 1.21 and is achieved at ω0 = 0.93rads/sec. At this frequency, |S(jω0)| = 0.50.

We elaborate on this last statement. Consider a 6 car platoon (N = 5) starting

from rest with initial conditions xi(0) = −iδ for i = 0, . . . 5. The desired spacing is δ = 5m.

The lead vehicle accelerates from rest to 20 m/s over 12 seconds using the following input:

U0(s) =
1

s2
[
e−s − e−3s − e−11s + e−13s

]
(2.8)
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In the time domain, this corresponds to a trapezoidal input with peak acceleration of 2m/s2

(Left subplot of Figure 2.5). The lead vehicle motion, X0(s) = H(s)U0(s), causes an initial

spacing error, E1(s) = S(s)X0(s). The right subplot of Figure 2.5 shows that |E1(jω)| has

substantial low-frequency content. Figure 2.4 shows that |T (jω)| > 1 at low frequencies, so

we expect low-frequency content to be amplified. The right subplot of Figure 2.5 confirms

that low frequency content is amplified as it propagates from E1(s) to E5(s).
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Figure 2.5: Left: Lead vehicle input, u0(t), in the time domain. Right: |Ei(jω)| for all
vehicles in the platoon. |E1(jω)| has substantial low-frequency content and this content is
amplified as it propagates from E1(s) to E5(s).

This error amplification can also be interpreted in the time domain (Right subplot

of Figure 2.6). In this example, the vehicles farthest from the leader experience the largest

peak spacing error. We comment briefly on peak error amplification. Define the ∞-norm

for a scalar time-domain signal as ‖y‖∞ := supτ |y(τ)|. If ‖ei−1‖∞ is finite, then we can

bound the ith peak error by [89]:

‖ei‖∞ ≤ ‖t‖1 · ‖ei−1‖∞ (2.9)

where t(τ) is the impulse response of T (s) and ‖t‖1 =
∫∞
0 |t(τ)|dτ . Peak errors can never
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amplify by more than this bound, but it is possible for this bound to be achieved. For

this example, the peak error is amplified by 1.1 from i = 4 to i = 5 (Figure 2.6). This

amplification is less than ‖t‖1 = 1.37. If amplification of peak errors is a concern, then

‖t‖1 < 1 ensures that peak errors will be attenuated. Finally, we note that ‖t‖1 ≥ ‖T (s)‖∞

and hence ‖T (s)‖∞ > 1 implies that peak errors may amplify. Further results on peak error

amplification can be found in [94].

The left subplot of Figure 2.6 shows that the vehicles farthest from the leader also

use more control effort. This occurs because the control effort also propagates via T (s):

Ui(s) = T (s)Ui−1(s). The same statements regarding amplification of peak control apply

here. If more cars are added to the platoon, then either the actuators on the trailing cars will

saturate or a collision will occur. Relaxing Assumption 3 in Section 2.3 does not improve

the situation. Let each vehicle use a different controller, Ki(s). The error propagation

relation (Equation 2.4) becomes:

Ei(s) =
H(s)Ki−1(s)

1 +H(s)Ki(s)
Ei−1(s) for i = 2, . . . , N

We can make errors attenuate by choosing the controllers to be progressively stronger. The

control effort now propagates via the following relation:

Ui(s) =
H(s)Ki(s)

1 +H(s)Ki(s)
Ui−1(s)

Applying Theorem 2.1, the control effort will be amplified at some frequency for any sta-

bilizing Ki(s). The extra freedom in relaxing Assumption 3 allows us to attenuate errors,

but does not solve the problem of actuator saturation on the trailing cars.
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Figure 2.6: Time domain plots of predecessor following strategy. Left: Control input for all
cars in the platoon. Right: Spacing error for all cars in the platoon.

2.4.2 Leader Following

In this section we analyze the decoupling strategy initially proposed in the chapter.

In this case, each vehicle computes their control action based on the error with respect to

the lead vehicle: ui(t) = k(t)∗(x0(t)−xi(t)− i ·δ) where ∗ denotes convolution. The control

law in the Laplace domain is given by:

Ui(s) = K(s)

(

X0(s)−Xi(s)−
iδ

s

)

(2.10)

Intuitively this strategy is unsafe if the vehicles are closely spaced since it ignores the relative

spacing between vehicles. This point will be discussed in Section 2.5. For now we ignore

the issue of safety and show that this approach decouples the problem into N simple vehicle

following problems.

As in Section 2.4.1, we can substitute the plant model (Equation 2.1) and the

control law (Equation 2.10) into the error relation, Ei(s) = Xi−1(s)−Xi(s)− δ
s , to obtain
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the error dynamics:

E1(s) =
1

1 +H(s)K(s)
X0(s) = S(s)X0(s) (2.11)

(1 +H(s)K(s))Ei(s) = 0 for i = 2, . . . , N (2.12)

These equations again show that the transfer function from X0(s) to E1(s) is the sensitivity

function, S(s). They also show that all relative spacing errors, Ei(s) (i = 2, . . . , N), will be

zero. Each vehicle tries to maintain a fixed distance behind the leader and by assumption,

each vehicle has the same model and controller. In theory, the vehicles perform identical

maneuvers when tracking x0(t) (modulo the constant offset) and hence the relative spacings

between the followers are always zero. In a certain sense, we can view this control structure

as perfectly attenuating the propagating errors. In the next section, we combine the ’Pre-

decessor Following’ law with the ’Leader Following’ law to obtain a decentralized control

law which is both safe and also attenuates propagating errors.

2.4.3 Predecessor and Leader Following

In this section we combine the control laws used in the previous two sections. Each

vehicle computes their control action as follows:

Ui(s) = Kp(s)Ei(s) +Kl(s)

(

X0(s)−Xi(s)−
iδ

s

)

(2.13)

This controller tries to keep the errors with respect to the preceding vehicle and with

respect to the lead vehicle small. The leader motion is essentially the reference for the

string. Intuitively, this control law gives each vehicle some preview information of this

reference. In the predecessor following strategy, the ith vehicle is not aware of the desired
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platoon motion until the (i − 1)th vehicle moves. The dynamics of all preceding vehicles

contribute to this information lag. However, if each vehicle uses leader information, then

the desired platoon motion is known immediately. Similar to the previous sections, we can

obtain the error dynamics:

E1(s) =
1

1 +H(s) (Kp(s) +Kl(s))
X0(s) := Slp(s)X0(s) (2.14)

Ei(s) =
H(s)Kp(s)

1 +H(s) (Kp(s) +Kl(s))
Ei−1(s) := Tlp(s)Ei−1 for i = 2, . . . , N (2.15)

If Kp(s) ≡ 0 or Kl(s) ≡ 0 then these equations reduce to the corresponding equations

in the previous sections. Note that Tlp(0) =
Kp(0)

Kp(0)+Kl(0)
so we are free from the constraint

T (0) = 1. For example, if we have access to the leader position, we can chooseKl(s) = Kp(s)

so that Tlp(0) = 0.5. More importantly, we can easily design Kl(s) and Kp(s) so that

‖Tlp(s)‖∞ < 1.

We compare this strategy to the predecessor following strategy described in Sec-

tion 2.4.1. We use the same vehicle model given in Equation 2.6. Figure 2.7 shows |T (jω)|

using the predecessor following strategy again with K(s) = 2s+1
0.05s+1 . This figure also shows

|Tlp(jω)| using the control law in Equation 2.13 with Kl(s) = Kp(s) =
1
2K(s). With this

choice, the total control effort with Equation 2.13 should be comparable to the control effort

with Equation 2.2 using K(s). Moreover, Tlp(s) =
1
2T (s), so the peak magnitude is dropped

to ‖Tlp(s)‖∞ = 0.605. Thus all frequency content of propagating errors is attenuated.

Figure 2.8 shows the time responses for comparison. Note that the leader is also

the preceding vehicle for the first follower. Therefore, Equations 2.2 and 2.13 are the same

control law for the first follower. Consequently, e1(t) and u1(t) are the same in Figures 2.6

and 2.8. The right subplot shows that the spacing errors are attenuated as they propagate
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Figure 2.7: Plots of |T (jω)| and |Tlp(jω)| for H(s) = 1
s2(0.1s+1)

, K(s) = 2s+1
0.05s+1 , and

Kl(s) = Kp(s) = s+1/2
0.05s+1 . ‖T (s)‖∞ = 1.21 and ‖Tlp(s)‖∞ = 0.605, both achieved at

ω0 = 0.93rads/sec.

down the chain. The left subplot shows that the control effort still grows, albeit slowly, as

it propagates down the chain. For this control law, the ith control effort is given by:

Ui(s) =

[

Tlp(s)
i +

H(s)Kl(s)

1 +H(s)(Kp(s) +Kl(s))

i−1∑

k=0

Tlp(s)
k

]

U0(s) (2.16)

Although the control effort is increasing, it will not grow without bound since ‖Tlp(s)‖∞ < 1.

This is in contrast to the predecessor following strategy where Ui(s) = T (s)Ui−1(s) and

‖T (s)‖∞ > 1.

2.5 Sensitivity to Disturbances

In the previous section we examined error propagation for several decentralized

control structures. In that analysis, the leader motion, x0(t), caused some initial spacing

error, e1(t). We then examined the propagation of this error back through the string. In

this section we want to further the analysis and determine the effect of disturbances acting
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Figure 2.8: Time domain plots of predecessor and leader following strategy. Left: Control
input for all cars in the platoon. Right: Spacing error for all cars in the platoon.

on each vehicle.

2.5.1 Single Vehicle

Let us first consider the control of a single vehicle with a disturbance at the input.

Figure 2.9 is a standard control loop for a single vehicle, H(s), with a disturbance, di, acting

at the plant input. If H(s) is a double integrator, then di is a force disturbance such as a

wind gust. K(s) is the designed controller and ri(t) is a reference trajectory from the initial

point to the desired final point. The effect of the disturbance on the tracking error is shown

in the following equation:

Ei(s) = S(s)Ri(s)− S(s)H(s)Di(s) (2.17)

where S(s) is the complementary sensitivity function, S(s) := 1
1+H(s)K(s) . Thus −S(s)H(s)

governs the effect of an input reflected disturbance on the tracking error.
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Figure 2.9: Feedback Loop with Disturbance at Plant Input

2.5.2 Look-ahead

Next consider an N + 1 car platoon where each vehicle has an input reflected dis-

turbance. As mentioned above, this disturbance is effectively a force disturbance acting on

the vehicle. The vehicle model given in Equation 2.1 is modified to include this disturbance:

Xi(s) =H(s) (Ui(s) +Di(s)) +
−iδ
s

for i = 1, . . . , N (2.18)

In this relation, we have assumed the platoon initial conditions are given by xi(0) = −iδ.

We will now derive the closed loop transfer function matrix from disturbances to errors

when each vehicle uses preceding and lead vehicle information.

The ith spacing error is given by Ei(s) = Xi−1(s) −Xi(s) − δ
s . Using the vehicle

model (Equation 2.18), we can write the spacing error dynamics for the platoon as:

E(s) = P11(s)
[
X0(s)

D(s)

]

+ P12(s)U(s) (2.19)

where we have stacked the platoon errors, disturbances, and control inputs into N dimen-

sional vectors and defined the necessary transfer function matrices:

E(s) := [E1(s) . . . EN (s)]
T , D(s) := [D1(s) . . . DN (s)]

T , U(s) := [U1(s) . . . UN (s)]
T
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P11(s) :=















1 −H(s)

0 H(s) −H(s)

...
. . .

. . .

0 H(s) −H(s)















P12(s) :=















−H(s)

H(s) −H(s)

. . .
. . .

H(s) −H(s)















We assume each vehicle uses the control law given in Equation 2.13. This control law can

be written in terms of the platoon spacing errors:

Ui(s) = Kp(s)Ei(s) +Kl(s)

(
i∑

k=1

Ei(s)

)

(2.20)

This form of the control law is strictly for convenience in the derivation that follows. In

other words, the ith control law, when implemented, would not require E1(s), . . . , Ei(s).

The vector of platoon inputs is given by:

U(s) = K(s)E(s) (2.21)

where:

K(s) =















Kl(s) + Kp(s)

Kl(s) Kl(s) + Kp(s)

...
. . .

. . .

Kl(s) · · · Kl(s) Kl(s) + Kp(s)















We can eliminate U(s) from Equations 2.19 and 2.21 to obtain the closed loop equation

from disturbances to errors:

E(s) =

[(
I − P12(s)K(s)

)−1
P11(s)

] 





X0(s)

D(s)







(2.22)
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Substitute for the matrices (P11(s), P12(s), K(s)) and after some algebra:















E1(s)

E2(s)

...

EN (s)















=− Slp(s)H(s)×















1

(Tlp(s)− 1) 1

...
. . .

. . .

(Tlp(s)− 1)Tlp(s)
N−2 · · · (Tlp(s)− 1) 1





























D1(s)

D2(s)

...

DN (s)















+















1

Tlp(s)

...

Tlp(s)
N−1















· Slp(s)X0(s) (2.23)

Tlp(s) and Slp(s) are as defined in Equations 2.14 and 2.15. There are several things to note

in this relation. The transfer function vector from X0(s) to E(s) agrees with the analysis

in the previous section (Equations 2.14 and 2.15). We can also find the transfer function

from U0(s) to Ui(s) by U(s) = K(s)E(s). This result agrees with Equation 2.16. Recall

that the transfer function from disturbance to error for a single vehicle is −S(s)H(s). Thus

the first matrix on the right side would be an identity matrix if the vehicle dynamics were

decoupled. The matrix shows how the coupling causes disturbances to propagates to other

vehicles.

Two cases show the trade-off between disturbance propagation and safety. If we use

only leader information then Tlp(s) = 0. There is no disturbance propagation in this case,

but Di(s) affects Ei+1(s) through Slp(s)H(s). On the other hand, if we use only preceding

vehicle information, then the effect of Di(s) on Ei+1(s) is through −(Tlp(s)− 1)Slp(s)H(s).

Typically, (Tlp(s)− 1) << 1 at low frequencies, so the use of preceding vehicle information
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reduces the effect of a disturbance on the spacing error. The price for this safety is that

there always exists a frequency such that |Tlp(jω)| > 1. Hence disturbances may amplify

as they propagate through the chain. For example, the effect of D1(s) on Ek(s) is given

by −(Tlp(s)− 1)T klp(s)Slp(s)H(s). If |Tlp(ω)| > 1, then this effect is amplified geometrically

for increasing k. The control law proposed in Section 2.4.3 provides a compromise to this

trade-off.

This discussion of disturbance propagation is made rigorous in the ensuing the-

orem. In words, the theorem says that following the preceding vehicle is not a scalable

algorithm. With this algorithm, as the platoon length tends to infinity, we can get an arbi-

trarily large gain from disturbances to errors. The theorem also states that the algorithm

can be made scalable by including leader information. Then the gain from disturbances to

errors will be uniformly bounded as the platoon length tends to infinity. The proof makes

use of the following lemma:

Lemma 2.1 Given any complex numbers, a, b ∈ C, define the following sequence of matri-

ces:

XN :=



















1

b 1

ab b 1

...
. . .

. . .
. . .

aN−2b · · · ab b 1



















∈ CN×N (2.24)

If |a| < 1 then σ̄ (XN ) ≤ 1 + |b|
1−|a| for all N .

Lemma 2.1 is proved in Appendix A. We are now ready to state the disturbance propagation
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theorem.

Theorem 2.2 Assume H(s) has 2 poles at the origin and the closed loop is stable. Let

T de(s) ∈ CN×N be the transfer function matrix from D(s) to E(s) in Equation 2.23. If

‖Tlp(s)‖∞ > 1, then given any M > 0 ∃N such that ‖T de(s)‖∞ ≥ M . If ‖Tlp(s)‖∞ < 1,

then ∃M > 0 such that ‖T de(s)‖∞ ≤M ∀N .

Proof. For the first part of the theorem, there exists a frequency ω0 such that |Tlp(jω0)| > 1.

Given any M > 0, choose N to satisfy the following inequality:

|Tlp(jω0)|N−2 >
M

|Slp(jω0)H(jω0)(Tlp(jω0)− 1)|

There is one technical subtlety in choosing N . The right side is infinite if H(s) has a zero

at s = jω0 or K(s) has a pole at s = jω0. Since H(s) and K(s) have a finite number

of poles and zeros, we can choose ω0 such that |Tlp(jω0)| > 1 and |Slp(jω0)H(jω0)| 6= 0.

Hence the right hand side of the inequality is finite and it is possible to choose N to satisfy

the inequality. Let e1 ∈ RN be the first basis vector. By choice of N, σ̄
(
T de(jω0)

)
≥

‖T de(jω0)e1‖2 > M . Hence ‖T de(s)‖∞ ≥M .

For the second part of the theorem, fix ω and define two complex numbers: a :=

Tlp(jω) and b := Tlp(jω)−1. Given these complex numbers, define the sequence of matrices,

XN , as in Equation 2.24. We can apply Lemma 2.1 to conclude that if |a| < 1 then

σ̄ (XN ) ≤ 1 + |b|
1−|a| for all N . Therefore, if |T (jω)| < 1, then the gain from disturbance to

error at the frequency ω can be upper bounded for all N :

σ̄
(
T de(jω)

)
≤ |Slp(jω)H(jω)| ·

(

1 +
1 + |Tlp(jω)|
1− |Tlp(jω)|

)

(2.25)
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By assumption, ‖Tlp(s)‖∞ < 1 and the closed loop is stable. Closed loop stability implies

‖Slp(s)H(s)‖∞ <∞. Equation 2.25 can now be applied to upper bound the peak gain from

disturbances to errors uniformly in N :

‖T de(s)‖∞ ≤ ‖Slp(s)H(s)‖∞ ·
(

1 +
1 + ‖Tlp(s)‖∞
1− ‖Tlp(s)‖∞

)

<∞

¥

As noted in Section 2.4.1, if we use the predecessor following strategy, then for any

stabilizing, linear controller we have ‖Tlp(s)‖∞ > 1. From Theorem 2.2 we conclude that

this strategy will always lack scalability because the gain from disturbances to errors grows

without bound as the platoon length grows. However, if we use leader information, then it

is possible to make ‖Tlp(s)‖∞ < 1. In this case, the theorem states that the algorithm is

scalable because the gain from disturbances to errors is uniformly bounded as the platoon

length grows.

The consequence of this theorem is displayed in Figure 2.10. The plot shows the

disturbance to error gain as a function of frequency for strategies with (Right subplot) and

without (Left subplot) leader information. N is the number of followers in the platoon.

H(s), K(s), Kl(s), and Kp(s) are the same as those used to generate Figure 2.7. The

curves labeled N = 1 show the disturbance to error gain for a single follower. They are

the same in both subplots since the control action for the first follower is the same in both

strategies. As shown in Section 2.5.1, the curve for N = 1 is given by |Slp(jω)H(jω)|. The

right subplot shows that the disturbance to error gain is relatively independent of vehicle

size if leader information is used. The left subplot, on the other hand, shows that if the

predecessor following strategy is used, then the platoon becomes sensitive to disturbances
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as N grows.
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Figure 2.10: σ̄
(
T de(jω)

)
for N = 1, 2, 5, 10. Left: Predecessor following strategy . Right:

Leader and predecessor following strategy.

2.5.3 Bidirectional

In the previous section, we showed that a vehicle following control law based

only on relative spacing error is not scalable. The algorithm can be made scalable if all

vehicles have knowledge of the lead vehicle motion. However, the latter algorithm requires a

network to communicate this information to all vehicles while the former algorithm can be

implemented with only on-board sensors, such as a radar. In this section, we try to construct

a scalable control law that relies only on ’local’ measurements, i.e. no communication

between vehicles is necessary.

We consider platoon controllers which use relative spacing error with respect to

adjacent vehicles. In this section, vehicles use a bidirectional controller:

Ui(s) = Kp(s)Ei(s)−Kf (s)Ei+1(s) (2.26)

Since the last vehicle in the chain does not have a follower, it uses the control law: UN (s) =
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Kp(s)EN (s). P11, P12 are as defined previously, but the controller matrix for the entire

platoon, K(s), is given by:

K(s) =















Kp(s) −Kf (s)

. . .
. . .

. . . −Kf (s)

Kp(s)















For this control structure, the closed loop equation from disturbances to errors is again

given by Equation 2.22. We will focus on the effect of disturbances which is given by:

E(s) =
[(
I − P12(s)K(s)

)−1
P12(s)

]

D(s)

=
(
P−1

12 −K(s)
)−1

D(s) (2.27)

where:

P−1
12 (s) = − 1

H(s)











1

...
. . .

1 · · · 1











The next theorem shows that this strategy also fails to be scalable for a class of these

bidirectional controllers.

Theorem 2.3 Assume H(s) has 2 poles at the origin and the closed loop is stable. Assume

the bidirectional controller is symmetric: Kp(s) = Kf (s) and Kf (s) has no poles at s = 0.

Let T de(s) ∈ CN×N be the transfer function matrix from D(s) to E(s) in Equation 2.27.

Given any M > 0 ∃N such that ‖T de(s)‖∞ ≥M .

Proof. Given the assumptions in the theorem, the disturbance to error transfer function at
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s = 0 simplifies to:

E(0) = − 1

Kf (0)











1 · · · 1

. . .
...

1











D(0)

Let UN be the N ×N matrix with ones on the upper triangle and let eN be the N th basis

vector. Then σ̄ (UN ) ≥ ‖UNeN‖ =
√
N . Given any M , choose N such that

√
N

|Kf (0)| > M .

For this N , ‖T de(s)‖∞ ≥ |T de(0)| > M . ¥

In the spirit of [29], we can interpret this result in terms of blocks and springs.

Given the assumptions in Theorem 2.3, the platoon looks like a string of blocks connected

by springs at steady state (Figure 2.11). The spring constants are given by Kf (0). The

problem with this strategy is that steady state disturbances are not attenuated. A simple

free body diagram analysis on the second block reveals that the spring force must equal the

disturbance force in steady state: Fs2 = d2. Thus the force on the first block is d1 + d2.

In a general platoon containing N followers, the steady state disturbances pile up and the

effect on the first vehicle is d1 + · · ·+ dN . The first spacing error is then given by this force

divided by the spring constant, Kf (0). The problem illustrated in Theorem 2.3 is that a

unit disturbance on the last vehicle, dN = 1, is directly transferred to all other vehicles:

ei = 1/Kf (0) for all i. Measured in the Euclidean norm, this one unit of disturbance causes

√
N

Kf (0) units of error.

The left subplot of Figure 2.12 shows an example of the effect stated in Theo-

rem 2.3. This plot shows the disturbance to error gain as a function of frequency when

Kf (s) has no poles at s = 0. The controller is given by Kp(s) = Kf (s) = 2s+1
0.05s+1 . As

predicted by Theorem 2.3, the steady state gain grows as N increases. The right subplot
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012
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Free-body diagrams 

Figure 2.11: Block and spring interpretation of Theorem 2.3

shows the effect of adding an integrator to the control law: Kp(s) = Kf (s) = 2s2+s+0.1
s(0.05s+1) .

The integrator causes the steady state gain to be 0 for all N . However, the peak gain from

disturbances to errors changes greatly as vehicles are added to the platoon. In this example,

the peak gain is actually greater for N = 5 than for N = 10. This behavior is in contrast

to the predecessor/leader following strategy. Using that strategy, we can be assured that

the disturbance to error gain is relatively independent of platoon size (Right subplot of

Figure 2.10). Future work should further explore the properties of bidirectional controllers.

2.6 Implications for Decentralized Control Design

The key point of this chapter is that extending single vehicle designs to large

platoons can lead to unintended problems. The most obvious design for vehicle following is

to use a radar to follow the preceding vehicle. Section 2.4.1 shows that error amplification

is always possible if this design is used for the control of a platoon. The addition of leader

information can be used to solve this problem. Theorem 2.2 gives another interpretation of
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Figure 2.12: σ̄
(
T de(jω)

)
for N = 1, 2, 5, 10. Left: Bidirectional strategy: Kf (s) with no

poles at s = 0. Right: Bidirectional strategy: Kf (s) with a pole at s = 0.

these results. The disturbance to error gain is relatively independent of platoon size when

leader information is used. This algorithm is scalable in the sense that it does not become

sensitive to disturbances for large platoons.

Theorem 2.3 states that a symmetric, bidirectional algorithm with no integrators

fails to be scalable. While this does not imply that all bidirectional controllers lack scal-

ability, the simple example in Section 2.5.3 demonstrates that the design of bidirectional

controllers is not as straight forward as the controllers with leader information. Note that

the optimal controllers designed in [5] have the property of spatial invariance and the con-

nections between vehicles decay exponentially in space. It is suggested that the optimal

controller should be truncated in space. This truncation yields a local decentralized con-

troller that approximates the optimal controller. Unfortunately, approximating the optimal

controller with a decentralized controller does not guarantee that the closed loop perfor-

mance will be close to optimal. In the case of vehicle following, truncating down to a

bidirectional controller may cause scalability problems.
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In some cases, communication between vehicles is not possible. For example, an

Adaptive Cruise Control (ACC) is a system which tracks a desired velocity similar to a

standard automotive cruise control. An ACC has the additional capability to follow a

slower moving vehicle using a radar. In this case, a control designer must be aware of the

S(s) versus T (s) trade-off described in Section 2.4.1. Suppose that we want to improve

tracking performance by increasing the low frequency gain. Figure 2.13 shows gain plots

for Ti(s) and Si(s) using two different controllers. The first controller, K1(s) =
2s+1

0.05s+1 , is

the same controller used to generate Figure 2.4. For the second controller, K1(s) =
2s+2

0.05s+1 ,

the proportional gain is increased to improve tracking. As a result, |S(jω)| is pushed down

at low frequencies. However, this causes ‖T1(s)‖∞ = 1.21 to pop up to ‖T2(s)‖∞ = 1.44.

Looze and Freudenberg give a detailed discussion of this phenomenon [53].

Figure 2.14 shows the time responses when each vehicle uses K2(s). In comparison

to Figure 2.6, the right subplot of Figure 2.14 shows that e1(t) is smaller when K2(s) is

used. Increasing the proportional gain improves the tracking. However, Figure 2.13 shows

that this causes an increase in the error amplification (a larger peak in |T2(jω)|). One

manifestation of this error amplification is that the peak error is amplified by 1.18 from

i = 4 to i = 5. Using the lower gain controller, K1(s), this peak amplification is only

1.10. For platoons longer than 6 vehicles, the loss in performance via error amplification

will eventually outweigh the performance gain made in reducing e1. Similarly, the control

usage (Left subplot of Figure 2.14) is growing at a faster rate than in Figure 2.6. In fact,

the fifth car uses much more control effort when K2(s) is used. The actuator on the rear

vehicles will quickly become saturated if a high gain controller is used. Intuitively, using a
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high gain controller makes it progressively more difficult for each following vehicle to track

its predecessor. If we must use the predecessor following strategy, then a low gain controller

should be used. We sacrifice some initial tracking performance (Increase |S(jω)| at low

frequencies) to improve the error amplification properties (Drop the peak of |T (jω)|).

The end result is that some communication between vehicles can vastly improve

platoon performance and ease controller design. This leads to two interesting questions.

What information should be communicated to obtain performance which is close to the

optimal centralized performance? What is the effect of adding a network in the feedback

loop of a large scale system? We have already shown that communicating leader informa-

tion can lead to structural improvements in closed loop performance (i.e. no disturbance

amplification). In subsequent chapters, we generalize this idea to vehicle formations and

then focus on the effect of communicating information over a network.

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ω (rads/sec)

|T
(jω

)|
 a

nd
 |S

(jω
)|

Gain plots for T(s) and S(s)

|T
1
(jω)|

|S
1
(jω)|

|S
2
(jω)|

|T
2
(jω)|

Figure 2.13: Plots of |Ti(jω)| and |Si(jω)| forK1(s) =
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Chapter 3

Error Propagation in Vehicle

Formations

3.1 Introduction

The control of vehicle formations has recently received significant attention in

the controls community. Autonomous vehicles operate in a variety of environments such as

space, air, water, and on the ground [80]. Applications for unmanned vehicles are numerous

and they include firespotting [31], space science missions [77, 91], surveillance [6, 98], terrain

mapping [98], and formation flight [65, 76]. In these applications, unmanned vehicles are

used because they can outperform human pilots, they remove humans from dangerous

situations, or because they perform repetitive tasks that can be automated.

The Air Force Scientific Advisory Board found that unmanned aerial vehicles

(UAVs) are typically deployed in coordinated clusters rather than independent units [6].
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Operating in formations offers benefits for a variety of tasks. For example, flying in for-

mation can reduce fuel consumption by 30% [65]. However, this requires tight tracking to

realize these benefits. Formation flying can also be used for airborne refueling and quick

deployment of troops and vehicles [76]. Cooperating vehicles may also perform tasks typ-

ically done by large, independent platforms [92]. For example, high optical resolutions for

astrophysical sources can be achieved with an extremely large aperture telescope or a long

baseline spatial interferometer [91]. The same objective can be achieved by placing optical

components aboard separate spacecraft. The use of cooperating vehicles permits flexibility

in changing the baseline as well as ensuring vibrational isolation of the components. Similar

gains in flexibility and reliability are envisioned by replacing large, independent satellites

with clusters of cooperating microsatellites [98].

Along with the potential benefits comes the need for basic research into the control

of vehicle formations. A meeting sponsored by the Air Force Office of Scientific Research

outlined several research needs in this area [6]. Distributed control architectures, distur-

bance propagation and string stability, and control over noisy communication channels were

specified as important components of the problem.

String instability refers to the amplification of disturbances as they propagate

through a string of vehicles (see [94] and references therein). In this chapter, we focus on

the generalization of this notion, termed mesh stability, for vehicle formations. In the next

section, we survey related work on control of vehicle formations. Then we formulate the

problem and in Section 3.4, we give an analysis of several control structures. We use these

results to develop a simple formation control design procedure that is mesh stable.
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3.2 Related Work

The numerous applications for vehicle formations, in particular formation flight,

have driven research into this problem. The basic goal is to design a controller such that

each vehicle maintains the formation and avoids collisions [35]. This basic goal leads to

several interesting questions. How should the information topology (i.e. the sensing and

communication capabilities of the formation) be chosen? More generally, how should the

information topology and control law be designed for good performance? If centralized

control is not possible, what is the minimum information necessary to ensure the attenuation

of propagating disturbances? If we are interested in large formations, can we design a

scalable control architecture? Below we outline some of the research that attempts to

answer these questions.

The most natural way to represent the information topology is through directed

graphs [30, 34, 58, 59, 62]. A directed graph consists of a set of vertices and a set of

directed edges pointing from one vertex to another. The vertices represent the vehicles in the

formation. The communication channels and sensing capabilities generate the edges of the

graph. In general, these edges may be directed or bidirectional depending on the capabilities

of the vehicles. Figure 3.1 shows the Blue Angels in Delta Formation (left subplot) and an

information topology where each vehicle senses its predecessors (right subplot). The arrows

are directed to show the flow of information through the formation. If the lead vehicle

communicated to all followers, then this graph would have edges from the (1,1) vertex to

all other vertices. An interesting observation is that the information topology is likely to

change as vehicles move around. Mesbahi, using this observation as motivation, is working
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on a dynamic extension of graph theory [58].
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Figure 3.1: Left: Blue Angels in Delta formation Right: Graph representing a possible
information topology for the Delta formation

Graphs are not only useful as a representation of the information topology, but

also as a tool for control design. For example, Giulietti, et.al. give each edge of the graph

a cost and they find the optimal topology with respect to these costs using the Dijkstra

algorithm [34]. However, the assignment of the edge costs relative to their importance for

control is a difficult and non-intuitive task. Fax and Murray use the Laplacian matrix of

a graph to state a Nyquist-like stability criterion for a formation [30]. However, if the

Laplacian condition shows a small stability margin, it is not clear if you need to change

the information topology (keeping the controller fixed), change the controller (keeping the

information topology fixed) or some combination of the two. Finally, Mesbahi has suggested

the use of combinatorial optimization over valid graphs as a tool for control synthesis [59].

These are all useful tools but the effect of disturbance propagation is not directly

considered. This is particularly important in tight formation flight for drag reduction. In

this case, the vehicles are aerodynamically coupled due to vortices created by preceding

vehicles [65]. These disturbances may propagate through the formation and, if amplified,
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cause serious degradation in performance. Pachter showed that a controller that neglects

aerodynamic coupling can maintain a tight formation during lead vehicle maneuvers [65].

The formation consisted of two F-16 class aircraft. One might try to extend this result

to larger formations using the same control law with each vehicle treating its predecessor

as the leader. In this chapter, we show that, for any stabilizing control law, disturbances

will be amplified as they propagate through the formation. Several researchers have used

communicated leader information to solve this problem [34, 55, 82].

Finally, we note that flocks of birds and schools of fish are able to perform formation

maneuvers with apparent ease [22, 52, 69, 84, 103]. Moreover, some natural flocks appear to

be scalable to any size as evidenced by 17 mile spawning runs formed by herring [84]. The

amount of information used by each animal in the formation is debatable. In particular, the

V formations of geese observed in nature [22] are not the optimal shape for drag reduction

[52]. Furthermore, experimental observations show that the V-angle is correlated to the

formation size [103] and wing-tip spacing is correlated to depth [22]. These observations

support the hypothesis that the V formation is a trade-off between energy savings and

visual contact of neighboring birds. In other research, Reynolds [75] developed a distributed

behavior model to animate the motion of a bird flock. Each bird in the flock uses three

simple rules listed in order of decreasing precedence: don’t collide with neighbors, match

velocity of neighbors, stay close to neighbors. A migratory urge is built into each bird so

that the flock moves toward its migratory target. Natural flocks and schools point to the

existence of a scalable, formation flight algorithm which may or may not require some global

reference information.
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3.3 Problem Formulation

The problem is motivated by advanced UAV systems. In particular, we focus on

one step toward coordinating multiple UAVs: formation flight. In the previous chapter, the

subsystems were connected so that information passed linearly along one direction. In this

chapter, we consider information topologies where information naturally flows along two

dimensions. Figure 3.2 (Left subplot) shows the follow-the-predecessor topology suggested

in Figure 3.1. We also consider the information topology where the lead vehicle broadcasts

his state information to all followers in addition to the predecessor sensing. The right

subplot of Figure 3.2 shows this topology. The dashed edges from the (1,1) vertex to other

vertices represent this broadcasted leader information.
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Figure 3.2: Formation Information Topologies. Left: Follow the predecessor Right: Follow
the predecessor with leader information

Let pi,j(t) be an np × 1 vector containing the outputs of the (i, j)th vehicle (1 ≤

i, j ≤ N). We assume that the outputs are translational or angular positions. For a UAV,

pi,j could be a 4× 1 vector containing the (x, y, z) positions and the heading, ψ. Define the
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formation spacing errors as:

εRi,j(t) = pi,j−1(t)− pi,j(t)− δRi,j(t) for 1 ≤ i ≤ N, 1 < j ≤ N

εCi,j(t) = pi−1,j(t)− pi,j(t)− δCi,j(t) for 1 < i ≤ N, 1 ≤ j ≤ N (3.1)

Figure 3.3 shows the specific error vectors for a point mass moving in a plane and i = j = 2.

For this example, the output contains the x− y position in a plane, pi,j = [xi,j ; yi,j ]
T . For

simplicity, only one of the output vectors, p2,1, is shown. The desired spacing vectors are

given by δR2,2(t) = [−L; 0]T and δC2,2(t) = [0; L]T . If all vehicles use these desired spacing

vectors, the formation will have a grid-like shape similar in appearance to the information

topology in Figure 3.2. Notice, however, that the formation is not required to have this rigid

grid shape. By properly choosing δRi,j and δ
C
i,j at each i, j we can obtain a myriad of spatial

arrangements while maintaining the same subsystem communication/sensing dependencies.

The εRi,j ’s are the errors with respect to the ’left’ neighbor along the row and the εCi,j ’s are

the errors with respect to the ’above’ neighbor along the column. These errors are each

vectors in Rnp .

The goal is to force these formation errors to zero and ensure that small distur-

bances acting on one vehicle cannot have a large effect on another vehicle. As in Chapter 2,

we make some assumptions about the formation:

Assumption 1: All the vehicles have the same model.

Assumption 2: The vehicle model is linear.

Assumption 3: The vehicle has the same number of inputs and outputs.

Assumption 4: All vehicles use the same control law.

Assumption 5: The desired spacings are constants independent of time and
formation index: δRi,j(t) ≡ δR and δCi,j(t) ≡ δC .

Again, we are more interested in performance at the formation level rather than individual
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Figure 3.3: Formation Error Definitions

vehicle control. Thus Assumption 1 is a reasonable abstraction of the problem at this

scale. Assumption 2 is not valid over a wide operating region because the dynamics are

nonlinear. However, the results are valid for a vehicle linearized about an operating point.

Alternatively, an inner loop controller could be used to regulate the UAV and make the

dynamics approximately linear via feedback linearization. Assumption 3 implies that we

have enough inputs to control all outputs. Thus we can force each output to track an

independent reference trajectory. Assumption 4 a simplification for ease of implementation.

As noted in Chapter 2, there is some theoretical justification for this decision. Finally,

there are a variety of other spacing laws and the constant spacing policy is chosen for this

analysis. As noted above, the formation can take on many arrangements by choosing the

desired spacing vectors properly for each vehicle.

Given any time-domain signal, x(t), we denote its Laplace Transform, L{x(t)},

by X(s). Applying the assumptions, we can model each vehicle in the Laplace domain as
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(assuming the vehicles start from rest):

Pi,j(s) =H(s)Ui,j(s) +
pi,j(0)

s
for 1 ≤ i, j ≤ N (3.2)

where H(s) = 1
s2
H̃(s) and H̃(s) is an np × np rational, proper transfer function matrix.

pi,j(0) is the initial condition for the vehicle output. As mentioned above, the outputs

are translational or angular positions. Thus H̃(s) represents the actuator dynamics that

generate forces and torques on the vehicle. These forces and torques are then integrated

twice to obtain the translational or angular positions. A very simple two-dimensional point

mass model for a UAV is H(s) = 1
s2
I2 with the vehicle accelerations in the x,y directions

as the control inputs. In general, H̃(s) includes the actuator dynamics and the outputs

include the vehicle heading and altitude (z direction).

The spacing errors are given by εRi,j(t) = pi,j−1(t) − pi,j(t) − δR and εCi,j(t) =

pi−1,j(t) − pi,j(t) − δC . We assume p1,1(0) = 0 and the platoon starts with zero spacing

errors: pi,j(0) = −(i− 1)δC − (j − 1)δR for 1 ≤ i, j ≤ N . We will find it useful to define an

averaged error vector, ei,j = (εRi,j + εCi,j)/2, at each point in the mesh. For subsystems on

the boundaries of the mesh, one of the two error terms, εRi,j(t) or ε
C
i,j(t), will be undefined.

In this case, the averaged error vector is defined as ei,j = εRi,j if i = 1 and ei,j = εCi,j if j = 1.

3.4 Error Propagation

In this section we give an analysis of decentralized control laws with the informa-

tion topologies depicted in Figure 3.2. We show that if vehicles use a follow-the-predecessor

information topology (Figure 3.2), then some frequency content of the errors will be ampli-

fied as it propagates. This problem can be solved if each vehicle also uses leader information.
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We will make use of the following norm: ‖X(s)‖∞ := supω∈R σ̄ (X(jω)). We also denote

the spectral radius of A by ρ[A].

3.4.1 Predecessor Following

A linear control law using only predecessor information (left subplot of Figure 3.2)

in the form of the averaged error vector is given by:

Ui,j(s) = K(s)Ei,j(s) (3.3)

Since Ei,j(s) ∈ Cnp×1 and Ui,j(s) ∈ Cnp×1, K(s) is an np × np transfer function matrix.

Simple algebra using the vehicle models (Equation 3.2), initial conditions, control laws

(Equation 3.3), and error definitions gives the following relations:

Ei,j(s) =So(s)P1,1(s) for (i, j) = (1, 2) or (2, 1) (3.4)

Ei,1(s) =To(s)Ei−1,1(s) for i > 2 (3.5)

E1,j(s) =To(s)E1,j−1(s) for j > 2 (3.6)

Ei,j(s) =To(s)

(
Ei,j−1(s) + Ei−1,j(s)

2

)

for 1 < i, j ≤ N (3.7)

where So(s) := [I+H(s)K(s)]−1 and To(s) := [I+H(s)K(s)]−1H(s)K(s). Using terminol-

ogy from [111], these are the output sensitivity and complementary sensitivity functions.

Equation 3.4 shows that the transfer function matrix from P1,1(s) to E1,2(s) and E2,1 is the

output sensitivity function, So(s). Equations 3.5 and 3.6 show that the output complemen-

tary sensitivity function governs the propagation of errors along the first column and row,

respectively. Finally, Equation 3.7 shows that the internal errors of the mesh propagate, on

average, via To(s).
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By Assumption 1 in Section 3.3, the formation is actually symmetrical. We can

think of subsystems as lying on ’level sets’ given by L = i + j − 2 (Figure 3.4). The

(1, 2) and (2, 1) subsystems comprise the first level set and so on. Due to the formation

symmetry, all subsystems on a given level set have the same error trajectories. For example,

E1,2(s) = E2,1(s) as verified by Equation 3.4. Induction can be used to prove the general

result that Ei,j(s) = Ek,l(s) if i + j = k + l. Define EL(s) := Ei,j for any (i, j) such that

L = i + j − 2. EL(s) is well defined because all error trajectories on a given level set are

the same. Using this notation, Equations 3.4-3.7 can be simplified:

E1(s) =So(s)P1,1(s) (3.8)

EL(s) =To(s)EL−1(s) for L > 2 (3.9)

Thus So(s) governs the ’initial’ spacing error generated by the leader motion, P1,1(s), and

To(s) governs the propagation of errors away from the leader along these level sets. We will

use this level set notation in the remainder of the section with the understanding that all

vehicles on a given level set have identical averaged spacing errors.
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Figure 3.4: Formation level sets
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We can obtain similar relations for the propagation of control effort. Below we

only list the analogue for Equation 3.7, but the propagation along boundaries is similar:

Ui,j(s) =Ti(s)

(
Ui,j−1(s) + Ui−1,j(s)

2

)

for 1 < i, j ≤ N (3.10)

where Ti(s) := [I+K(s)H(s)]−1K(s)H(s) is the input complementary sensitivity function.

Again, this can be simplified to UL(s) = Ti(s)UL−1(s) using induction and the level set

definition. Moreover, U1(s) = Ti(s)U1,1(s) where U1,1(s) is the input to the leader.

There is a classical trade-off between making σ̄ (So(jω)) and σ̄ (To(jω)) small.

Since So(s) + To(s) ≡ I, we cannot make σ̄ (So(jω)) and σ̄ (To(jω)) simultaneously small.

Fortunately the competing objectives occur in different frequency regions. It is typically

sufficient for σ̄ (So(jω)) to be small at low frequencies and σ̄ (To(jω)) to be small at high

frequencies. In the context of Equations 3.8-3.9, the So(s) vs. To(s) trade-off has the inter-

pretation of limiting initial spacing error (making σ̄ (So(jω)) small) and limiting the prop-

agation of errors (making σ̄ (To(jω)) small). In this case we cannot spread these competing

objectives into different frequency bands. In other words, we would like σ̄ (To(jω)) < 1 at

all frequencies so that propagating errors are attenuated.

There are two versions of error amplification that can occur in the mesh. They are

based on two conditions: σ̄ (To(jω)) > 1 and ρ[To(jω)] > 1. Consider the first condition.

There exists a unit vectors, v, w ∈ Cnp , such that To(jω)v = σ̄ (To(jω))w. If EL−1(jω) = v

then EL(jω) = σ̄ (To(jω))w and the error is amplified at this frequency. However, w is not

necessarily aligned with v, so EL(jω) will not necessarily be amplified when it propagates

to EL+1(jω). This leads to the second type of error amplification. Assume the second

condition holds. There exists a unit vector v ∈ Cnp such that To(jω)v = ρ[To(jω)]v. If
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EL−1(jω) = v, then EL(jω) = ρ[To(jω)]v and the error is amplified at this frequency.

EL(jω) is now just a scaled version of v and it will again be amplified when it propagates:

EL+1(jω) = ρ[To(jω)]
2v. The error is being geometrically amplified at this frequency and

direction as it propagates away from the leader.

In summary, the two types of error propagation are the peak amplification between

vehicles and the geometric amplification for a large mesh. The following theorem states

that the spectral radius is the proper notion for error propagation in large systems. If

Equation 3.9 is viewed as a dynamical system, the theorem is just a statement about its

stability. This is a minor variation of Theorem 6.1 in [26] and the proof is omitted.

Theorem 3.1 Given A ∈ Cnp×np, Akv → 0 for all v ∈ Cnp if and only if ρ[A] < 1.

Moreover, if ρ[A] > 1 then there exists v such that ‖Akv‖2 →∞.

Thus to attenuate errors between all vehicles in the formation, we require σ̄ (To(jω))

< 1 at all frequencies. To ensure the eventual decay of all errors in the formation, we require

ρ[To(jω)] < 1 at all frequencies. In fact, neither condition is possible. Note that if K(s)

stabilizes the closed loop, then it cannot have zeros at s = 0 because closed loop stability

precludes unstable pole-zero cancellations. Thus To(0) = I and hence DC errors are prop-

agated without attenuation. Moreover, the next theorem implies that there is a frequency

and a direction such that error amplification occurs. This theorem is a generalization of a

SISO result by Middleton and Goodwin [61, 53]. It is similar to results obtained by Chen

[14, 15].

Theorem 3.2 Let L̃(s) be a rational, proper transfer function and L(s) = 1
s2
L̃(s) be the

open loop transfer function. Let T (s) = [I + L(s)]−1L(s) be the complementary sensitivity
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function. If the closed loop system is stable, then the complementary sensitivity function

must satisfy:
∫ ∞

0
log ρ [T (jω)]

dω

ω2
≥ 0 (3.11)

where log is the natural log.

Proof. This proof is similar to the proof of Theorem 4.1 in [15]. By assumption, T (s) is an

np×np matrix with entries that are analytic and bounded in the open right half plane. Boyd

and Desoer [8] showed that log ρ [T (s)] is subharmonic and satisfies the Poisson Inequality

for x > 0:

log ρ [T (x)] ≤ 1

π

∫ ∞

−∞
log ρ [T (jω)]

xdω

x2 + ω2
(3.12)

Multiplying Equation 3.12 by 1/x and taking the limit of both sides as x→ 0 gives inequality

(a) below:

lim
x→0

log ρ [T (x)]

x

(a)

≤ lim
x→0

1

π

∫ ∞

−∞
log ρ [T (jω)]

dω

x2 + ω2

(b)
=

1

π

∫ ∞

−∞
log ρ [T (jω)]

dω

ω2
(3.13)

(c)
=

2

π

∫ ∞

0
log ρ [T (jω)]

dω

ω2

Equality (b) follows by applying the monotone convergence theorem [78] to the positive and

negative parts of the integrand. Equality (c) follows from a conjugate symmetry property

of T (s): ρ [T (−jω)] = ρ [T (jω)].

The proof is concluded by showing limx→0(1/x) log ρ [T (x)] = 0 and applying the

end-to-end inequality in Equation 3.13. Since the open loop transfer function, L(s), has

two poles at s = 0, T (x) can be expanded for sufficiently small x as:

T (x) = I + o(x) where lim
x→0

o(x)

x
= 0 (3.14)
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Thus ρ [T (x)] = 1 + o(x) and log ρ [T (x)] = o(x) (where each o(x) is, in general, a dif-

ferent function with the same limiting property as in Equation 3.14). We conclude that

limx→0(1/x) log ρ [T (x)] = 0 as desired. ¥

We note that log ρ[T (jω)] > 0 if ρ[T (jω)] > 1 and log ρ[T (jω)] < 0 if ρ[T (jω)] < 1.

Therefore the integral implies that the area of error amplification is greater than or equal to

the area of error attenuation when weighted by 1
ω2 . We can apply this theorem to To(s) with

L(s) := 1
s2
H̃(s)K(s). Since L(s) is strictly proper, ρ[To(jω)]→ 0 as ω →∞. There is some

frequency band of error attenuation (high frequencies) and the theorem implies there must

be a frequency band of error amplification. Thus for any stabilizing controller, there exists

a frequency, ω, such that ρ[To(jω)] > 1. Moreover, σ̄ (To(jω)) > 1 because the maximum

singular value upper bounds the spectral radius. Thus both types of error amplification

may occur at this frequency and along particular directions. In general, there is an interval

of frequencies and a set of directions (a subspace) such that amplification occurs.

Figure 3.5 shows a simple example of this result. The vehicle model is a 2 × 2

system with coupling between the outputs. A lead controller designed one loop at a time

(ignoring the coupling) is used to follow the preceding vehicles:

H(s) =
1

s2







1
0.1s+1

0.1
s+1

0.2
2s+1

1
0.2s+1







(3.15)

K(s) =







2s+1
0.05s+1 0

0 2s+1
0.05s+1







(3.16)

Figure 3.5 is a plot of the spectral radius of To(jω). As predicted by Theorem 3.2, there is

a frequency such that ρ[To(jω)] > 1. Specifically, the peak is ρ[To(jω)] = 1.30 achieved at
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ω = 1.29 rad/sec. The corresponding eigenvector is [0.30 + 0.30i 0.90]T . Errors acting at

this frequency and direction will be amplified as they propagate. For this particular example,

σ (To(jω)) > 1 for frequencies less than 2 rad/sec. Thus any frequency content below 2

rad/sec will be amplified independent of the direction: ω < 2 rad/sec ⇒ ‖EL(jω)‖ >

‖EL−1(jω)‖.
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Figure 3.5: Plot of ρ[To(jω)]. Peak is ρ[To(jω)] = 1.30 achieved at ω = 1.29 rad/sec. The
corresponding eigenvector is [0.30 + 0.30i 0.90]T

We elaborate on this example. Consider a 9 vehicle formation starting from rest

with the initial conditions pi,j(0) = −(i− 1)δC − (j− 1)δR. The desired spacing vectors are

given by δR = [−5; 0]T and δC = [0; 5]T . The lead vehicle accelerates in the x direction

from rest to 20 m/s over 12 seconds using the input U1,1(s) = [Ux(s) Uy(s)]
T :

Ux(s) =
1

s2
[
e−s − e−3s − e−11s + e−13s

]

Uy(s) = 0

In the time domain, Ux(s) corresponds to a trapezoidal input with peak acceleration of

2m/s2 (Left subplot of Figure 3.6). The lead vehicle motion, P1,1(s) = H(s)U1,1(s), causes
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an initial spacing error, E1(s) = So(s)P1,1(s). The right subplot of Figure 3.6 shows that

‖E1(jω)‖ has substantial low-frequency content. Figure 3.5 shows that ρ[To(jω)] > 1 at

low frequencies, so we expect low-frequency content to be amplified along some direction.

As noted above, we actually have σ (To(jω)) > 1 for frequencies less than 2 rad/sec and so

the error will be amplified along all directions at low frequencies. Consequently, ‖Ei(jω)‖

will be amplified at low frequencies. The right subplot of Figure 3.6 confirms that low

frequency content is amplified as it propagates from E1(s) to E4(s). In general, we can only

conclude that the vector E1(jω) is amplified along a certain direction. However, the results

demonstrated in this example will be typical for any loop transfer function with dominant

dynamics on the diagonal and small cross-coupling terms (as with H(s)K(s)).
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Figure 3.6: Left: Lead vehicle input, ux(t), in the time domain. Right: ‖Ei(jω)‖ for all
level sets. ‖E1(jω)‖ has substantial low-frequency content and this content is amplified as
it propagates from E1(s) to E4(s).

This error amplification can also be viewed in the time domain (Right subplot of

Figure 3.7). In this example, the vehicles farthest from the leader experience the largest

spacing errors (measured in the Euclidean norm). The statements related to peak error

amplification made in Section 2.4.1 can be generalized and are applicable here. The left
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subplot of Figure 3.7 shows that the vehicles farthest from the leader also use more control

effort. As noted above, the control effort propagates via Ti(s). Theorem 3.2 can also be

used to conclude the existence of a frequency, ω, such that ρ[Ti(jω)] > 1. The control effort

will be amplified at this frequency and along the appropriate direction. If more vehicles are

added to the formation, then either the actuators on the trailing vehicles will saturate or a

collision will occur.
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Figure 3.7: Time domain plots of predecessor following strategy. Left: Control input for all
vehicles in the formation. Right: Spacing error for all vehicles in the formation.

3.4.2 Predecessor and Leader Following

A linear control law using only information from the lead and preceding vehicles

(right subplot of Figure 3.2) is given by:

Ui,j(s) = Kp(s)Ei,j(s) +Kl(s)

(

P1,1(s)− Pi,j(s)−
(i− 1)δC + (j − 1)δR

s

)

(3.17)

This controller tries to keep the errors with respect to the preceding vehicles and with

respect to the lead vehicle small. Intuitively, this control law gives each vehicle some
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preview information. Similar to the previous section, we can obtain the error dynamics:

E1(s) =Slp(s)P1,1(s) (3.18)

EL(s) =Tlp(s)EL−1(s) for L > 2 (3.19)

where Slp(s) := [I + H(s) (Kp(s) +Kl(s))]
−1 and Tlp(s) := [I + H(s) (Kp(s) +Kl(s))]

−1

H(s)Kp(s). We have continued to use the level set notation introduced in the previous

section. A similar induction proof can be used to show that this notation is still well

defined. If Kl(s) ≡ 0 then these equations reduce to the corresponding equations in the

previous section. Note that we are free from the constraint To(0) = I. In fact, Tlp(0) =

[Kp(0) + Kl(0)]
−1Kp(0). For example, if we have access to the leader position, we can

choose Kl(s) = Kp(s) so that Tlp(0) = 0.5I. More importantly, we can easily design Kl(s)

and Kp(s) so that ρ[Tlp(jω)] < 1 for all ω or so that ‖Tlp(s)‖∞ < 1. As discussed in the

previous section, the former condition ensures that errors eventually decay in the mesh while

the latter condition implies that errors are attenuated between all vehicles in the formation.

We compare this strategy to the predecessor following strategy described in the

previous section. We use the same vehicle model given in Equation 3.15. Figure 3.8 shows

ρ[To(jω)] using the predecessor following strategy again with K(s) defined in Equation 3.16.

This figure also shows ρ[Tlp(jω)] using the control law in Equation 3.17 with Kl(s) =

Kp(s) = 1
2K(s). With this choice, the total control effort with Equation 3.17 should be

comparable to the control effort with Equation 3.3 using K(s). Moreover, Tlp(s) =
1
2To(s),

so the peak spectral radius is dropped to ρ[Tlp(jω)] = 0.65. Thus all frequency content of

propagating errors is attenuated.

Figure 3.9 shows the time responses for comparison. Note that ‖e1(t)‖ and ‖u1(t)‖
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Figure 3.8: Plots of ρ[To(jω)] and ρ[Tlp(jω)]. Peaks are ρ[To(jω)] = 1.30 and ρ[Tlp(jω)] =
0.65, both achieved at ω0 = 1.29rad/sec.

are the same in Figures 3.7 and 3.9 because the leader is also the preceding vehicle for

the first follower. The right subplot shows that the spacing errors are attenuated as they

propagate down the chain. The left subplot shows that the control effort still grows, albeit

slowly, as it propagates down the chain. The control effort on the Lth level set is given by:

UL(s) =

[

Tpi(s)
L−1 + Tli

L−2∑

k=0

Tpi(s)
k

]

U1,1(s) (3.20)

where we have defined Tli(s) := [I + (Kp(s) +Kl(s))H(s)]−1Kl(s)H(s) and Tpi(s) := [I +

(Kp(s) +Kl(s))H(s)]−1 Kp(s)H(s). Although the control effort is increasing, it will not

grow without bound since ρ[Tli(jω)] < 1 for all ω (Lemma 2.1 in [26] can be applied to make

this statement rigorous). This is in contrast to the predecessor following strategy where

UL(s) = Ti(s)UL−1(s) and ρ[To(jω)] > 1 for some ω.
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Figure 3.9: Time domain plots of predecessor and leader following strategy. Left: Control
input for all vehicles in the formation. Right: Spacing error for all vehicles in the formation.

3.4.3 Disturbance Propagation

In this section we give a brief analysis of disturbance propagation in the formation.

Let D1,2(s) be an input disturbance acting on vehicle (1, 2):

P1,2(s) = H(s)[U1,2(s) +D1,2(s)] +
p1,2(0)

s

E1,2(s), E1,3(s), and E2,2(s) are functions of P1,2(s) and are affected directly by D1,2(s).

If the control law with leader information (Equation 3.17) is used, then E1,3(s) can be

expressed in terms of P1,1(s) and D1,2(s):

E1,3(s) = Tlp(s)Slp(s)P1,1(s)− [Tlp(s)− I]Slp(s)H(s)D1,2(s) (3.21)

This error propagates across the first row by E1,j(s) = Tlp(s)E1,j−1(s). Using this relation

and Equation 3.21, we can write E1,j(s) for j ≥ 3:

E1,j(s) = T j−2
lp (s)Slp(s)P1,1(s)− T j−3

lp (s)[Tl,p(s)− I]Slp(s)H(s)D1,2(s)

If leader information is used, then we can make ‖Tl,p(s)‖∞ < 1. More importantly, we

can make ρ[Tl,p(jω)] < 1 for all ω. Repeating arguments from the previous sections (in
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particular, we can apply Theorem 3.1), we conclude that the effect of D1,2(s) on E1,j(s)

will tend to zero as j gets large. If leader information is not used, then Tlp(s) reduces to

To(s). We showed in Section 3.4.1 that ρ[To(jω)] > 1 for some ω. Another application of

Theorem 3.1 shows that the effect of the disturbance will grow geometrically if D1,2(jω)

acts along a certain direction.

Disturbances propagating internally in the mesh have a similar effect in relation

to ρ[To(jω)]. In summary, disturbances are propagated via Tlp(s). Thus it is important for

ρ[Tlp(jω)] < 1 at all frequencies to ensure that the effect of propagating disturbances does

not grow geometrically.

3.5 Formation Control Design

We can use the results of the previous sections to motivate a simple formation

controller design procedure.

1. First design a controller for a single vehicle: P (s) = H(s)U(s). Let R(s) denote the

reference trajectory and choose U(s) = K(s)[R(s)− P (s)]. Design K(s) so that P (s)

tracks the desired reference trajectories.

2. Plot σ̄ (To(jω)) and find ‖To(s)‖∞. Choose λ < 1
‖To(s)‖∞ .

3. For formation flight, use the control law given in Equation 3.17 with Kp(s) := λK(s)

and Kl(s) := (1− λ)K(s). Essentially, we are using the control law designed in Step
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1 to track the following reference:

Ri,j(s) =λ ∗
1

2

[
(Pi,j−1 − δR) + (Pi−1,j − δC)

]

+ (1− λ) ∗
[

P1,1(s)−
(i− 1)δC + (j − 1)δR

s

]

This is a combination of our desired position with respect to three vehicles: the leader

and two predecessors. As a result of our design, Tlp(s) = λTo(s). Hence ‖Tlp(s)‖∞ < 1

and ρ[Tlp(jω)] < 1 for all ω.

We can design and test the control law, K(s), on an individual vehicle. Modifying

this control law for formation flight as specified above ensures that we get performance that

is similar to the individual vehicle case. Specifically, we have designed the controller such

that propagating errors due to leader movement and disturbances will be attenuated. Thus

disturbances acting on one vehicle should have a small effect on the performance of another

vehicle. The cost inherent in this design is that we must broadcast leader information to all

vehicles. In other words, the control law cannot be implemented with only the capability

to sense neighboring vehicles. We will apply this design procedure in Chapter 6 to design

a controller for a formation of UAVs. The broadcasted leader information is subject to

communication network delays and in the next chapter we investigate the effect of these

delays on control.
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Chapter 4

Theoretical Bounds for Networked

Control Systems

4.1 Introduction

A networked control system (NCS) is one in which a control loop is closed via a

communication channel [101]. In the previous chapters, we showed examples in transporta-

tion systems and unmanned aerial vehicles where control is enhanced by communicated

information. Other applications include flight control systems [73], manufacturing [109],

automotive systems [70], and building automation [70]. In many of these applications, NCS

are used not only to improve control performance, but also to increase flexibility and reduce

long-term maintenance costs.

Several challenges are introduced when implementing networks in the feedback

loop. In a standard sampled-data system, the sensor measurement arrives at the controller
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at fixed sample instants. In theory, the controller acts on this measurement and the control

action is fed back to the actuator instantaneously. In a NCS, the network introduces a

time varying delay in the feedback loop due to processing (coding/decoding), waiting for

access to the network, and transmission [51]. An artifact of this time-varying delay is

the introduction of jitter [104]. For example, when a sensor takes a measurement, it may

take some time to gain access to the network and communicate this measurement to the

controller. Even if the sensor takes measurements at a fixed sample rate, the controller

does not receive the measurements at fixed intervals. If this jitter is significant, then the

feedback problem can no longer be modeled as synchronous. Finally, transmitted data can

arrive with errors that corrupt the packet. Packets of data typically have redundant bits

for error detection and correction. However, there will always be some probability of an

undetected error or a detected error that cannot be corrected. These errors will either lead

to longer delays or the use of incorrect information by the controller.

We have just discussed some aspects that make NCS unique from standard sampled

data control. Before proceeding, we should discuss some of the aspects of control networks

that differentiate them from typical data networks. A data network typically transmits

large data packets at high data rates. They frequently have bursty traffic but rarely have

hard real-time constraints [51, 70]. However, they usually have the constraint that the

received data is an exact replication of the sent data. Retransmission of corrupted data

is used to satisfy this requirement. Control networks, on the other hand, must transmit

small packets frequently with real-time constraints [51, 100]. Moreover, for control it is

sufficient for the received data to be a close approximation of the sent data [100]. Finally,
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an interesting trade-off arises in NCS. Smaller sample times lead to better control because a

discretized controller closely approximates a continuous time controller. The smaller sample

time means larger network traffic as the sensor and controller signals must be transmitted

more frequently. As a result, the smaller sample time may increase the communication

delays [74, 110].

The study of NCS is relatively new and there is a need for both theoretical results

and practical tools for such systems. With this in mind, this chapter will focus on theoret-

ical bounds for a simple networked control system. In the following chapter, we will derive

tools which have more immediate use for the design of NCS. The remainder of this chap-

ter has the following structure: In the next section, we discuss related work on networked

control systems. We then formulate a vehicle following problem involving a network. The

existence of a stabilizing controller is reduced to the existence of a stabilizing estimator

receiving measurements over a network. In Section 4.4 we investigate this estimation prob-

lem. We find theoretical bounds on the network performance (in terms of packet loss) for

the existence of a stabilizing estimator.

4.2 Related Work

The issues raised in the introduction show that the study of NCS is interdis-

ciplinary and includes communication, information theory, and control. One approach to

NCS design is to treat the network conditions as given and synthesize a controller to account

for the delays. Alternatively, the controller can be synthesized by neglecting the network

and the network can be designed to minimize the probability of delays. These approaches
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leave open the possibility of jointly designing the network and the controller. Some work of

this nature has been undertaken by Xiao, et.al. [107]. However, ’joint design’ does not have

to imply that the controller and network are designed simultaneously in one step. In fact,

the great success of control theory is that design does not rely on a complex and completely

accurate model of the plant. Rather, ’joint design’ may simply imply that the network

should be designed with the intention of carrying control data and the controller should be

designed to account for network induced delays. Below we discuss some work aimed at NCS

design in the following order: network modeling, stability analysis, information theoretic

approaches, controller design, and network design.

First, we will discuss modeling of networks for control design. Network models can

vary greatly in complexity. For instance, wireless networks depend on complex radio wave

propagation (e.g. multipath fading) that is not well understood [63]. These effects increase

the bit error probability by several orders of magnitude over wired links. Moreover, the delay

pattern for both wired and wireless networks depends greatly on the network protocol. As

discussed below, Ethernet is nondeterministic so packets can have an arbitrarily long delay

[51]. On the other hand, the delay can be treated as approximately constant for some

protocols, e.g. token ring/bus [110]. Since the complexity of a controller depends on the

complexity of a model, we would like a network model that is as simple as possible without

sacrificing accuracy. For control, a model that ignores the complex issues underlying the

data transmission and focuses on the delivery of the packet seems appropriate. Common

techniques are to model the packet delivery characteristics with a jump system [13, 47, 81,

108, 110], a time-varying delay [28, 36, 64, 101, 99, 104], or an asynchronous dynamical
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system [37, 110]. However, a scientific modeling of network characteristics for control has

yet to be undertaken. Nguyen, et.al. [63] have proposed a trace-based approach to modeling

wireless channels at the packet-delivery level. They obtain a simple two-state Markov model

for the packet loss process and then evaluate the impact of errors on higher-layer network

protocols. Stubbs and Dullerud are setting up an experimental facility with the capability

to model and test both wireless and wired (Internet) networked control systems [93]. More

work of this nature is required to obtain a variety of network models suitable for control.

Next we discuss stability analysis results for NCS. The basic assumption is that we

have designed a controller that stabilizes the plant in the absence of the network. The goal

is to determine if the closed loop will remain stable in the face of network delays. These

approaches can be classified as deterministic or stochastic. Deterministic approaches rely

on Lyapunov theory [37, 47, 99, 100, 101, 110]. One technique is to model the NCS as an

asynchronous dynamical system with a rate constraint on packet transmission. The search

for a Lyapunov function that decays on average can be posed as a convex optimization

problem [37, 110]. Another approach is to assume the delays are bounded and treat them

as time-varying perturbations on the nominal closed loop plant [99, 100, 101]. Using ideas

from perturbation theory, bounds on the maximum delay are found to ensure stability. Since

these bounds are only sufficient conditions for stability, they may restrict the acceptable

network performance more than necessary. It is important to consider the time-varying

nature of the delays if the jitter is significant. Suppose τ(t) is a time varying delay bounded

by τmax. It has been noted in the literature that an analysis based on the constant delay

τ(t) = τmax can lead to optimistic results [74, 104]. Stochastic approaches try to prove a
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version of stability such as mean square stability [108] or exponential mean-square stability

[47]. For a class of jump systems, Ji, et.al. showed many of these notions of stochastic

stability are equivalent and each implies almost sure stability [43].

Controller synthesis techniques are needed to complement the analysis tools pre-

sented above. The first step is to develop notions of stabilizability and detectability for

NCS so that we can ensure that a stabilizing controller exists. Information theoretic tools

have been applied to find bounds on the network rate that must be satisfied for stabilizing

estimators and controllers to exist [97, 105, 106]. As an example, Tatikonda considers a

discrete time estimation problem where the sensor measurement is sent across a network

with a rate constraint of R bits per time step [97]. In general, the quantized measurement

is coded, transmitted, decoded, and then used for estimation. For the deterministic case

(no channel noise and no packet loss), Tatikonda has an elegant proof that the rate must be

larger than a lower bound depending on the unstable eigenvalues of the plant [97]. Based

on several assumptions, he constructs an encoder, decoder, and estimation scheme that

achieves this lower bound. There are more general results on control and estimation over a

network and they all give bounds on the network rate. However, it has been observed that

information theoretic tools may not be useful in practice [100]. The results in [97, 105, 106],

which are information theoretic in flavor, give lower bounds on how much useful data must

be transmitted per time step or per second. The useful control data for an individual packet

on a network is small relative to its header size. For example, Walsh et.al. note that control

data is only 2% of the payload on an Ethernet network [100]. Thus decreasing the data size

using information theoretic tools may not lead to noticeable results in practice.
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Tools from control theory have also been applied to design controllers for networked

control systems. An LQG style cost has been used to find optimal feedback gains for

systems with network delays. [13]. The computation of these gains is a difficult task. If the

data packets are time stamped, an observer can be used to compensate for delays in the

transmission of sensor measurements [28, 64, 110]. Another approach is to model the pure

time delay with a Pade approximation and use µ-synthesis to make the system robust to the

delay [36, 104]. In wireless systems, two techniques have been employed by Eker, et.al. [28].

Corrupted packets can be retransmitted to guarantee the receipt of a correct packet. This

increases the network delay, but as mentioned above an observer can be used to compensate

for delays. Alternatively, corrupted packets can be accepted and an observer can be used

to correct bit errors. This decreases network delay, but some bit errors will go uncorrected.

Finally, the NCS can be modeled as a jump linear system and optimization can be used to

synthesize a controller [108, 81]. This will be discussed further in the following chapter.

Finally, the requirements for acceptable feedback performance has led to numerous

insights into the design of networks for control. A suitable network for real time control

should be deterministic, i.e. it should transmit data within a bounded delay. It should

also allow messages to be prioritized so that warnings and fault mode messages can be

transmitted. Lian, et.al. compared the use of Ethernet, Token Bus, and CAN bus for

control [50, 51]. The general conclusion is that Ethernet is unsuitable for control since it

is not deterministic and does not support message prioritization. Walsh, et.al. have pro-

posed a Try-Once-Discard (TOD) protocol using a Maximum-Error-First scheduler (MEF)

[100, 101]. The dynamic scheduler grants the node with the largest error access to the
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network. The remaining nodes discard their data and new data is used the following time.

The data is discarded because newer data is generally better for control and hence queues

are undesirable. Ray also noted that reducing queues improves control performance [73].

Ye, et.al. have proposed a protocol for wireless local area networks based on the definition

of IEEE 802.11 [109]. Their protocol supports various priority levels and they also propose

static and dynamics scheduling schemes. Finally, Lee, et.al. [48] have proposed a wire-

less token ring protocol for intelligent transportation systems. They develop a distributed

medium access protocol that is robust against single node failures.

4.3 Vehicle Following Problem

4.3.1 Problem Formulation

In the previous chapters, we showed that communication improves control in ve-

hicle following problems. In this section, we propose a simple vehicle following problem

involving communication. Like the information theoretic approaches mentioned above, our

goal is to find bounds on network performance that must be satisfied for a stabilizing con-

troller to exist. Our approach differs in that the limiting factor of the network is the packet

loss rate not the bit rate capacity.

The goal is to have one vehicle follow another vehicle using communicated infor-

mation. Figure 4.1 shows a block diagram of the problem. P1 is the model for the first

vehicle. This vehicle communicates its position measurement, y1, across a network to the

second vehicle. The controller on the second vehicle has access to this communicated infor-

mation, y1c, as well as on-board measurements of its position, y2. The goal is to synthesize
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a controller so that y2 tracks y1 (modulo the desired spacings between the vehicles). In the

absence of a network, Anderson and Moore term this the model following problem [2].

y
1

P1
P2

2
u

2
y

K
2Network

y
1c

Figure 4.1: Vehicle Following Problem

We make several assumptions about the network, quantization, coding/decoding,

and protocol. These assumptions are discussed below.

Assumption 1: Communication occurs over a wireless network.

Assumption 2: Quantization errors are small.

Assumption 3: Error detection is perfect.

Assumption 4: The protocol is such that jitter and transmission delays are
negligible. Moreover, corrupted data is not retransmitted.

The first assumption is motivated by the use of wireless networks at California PATH

(Partners for Advanced Transit and Highways) for automated highway systems [48, 54]

and at the University of California-Berkeley for Unmanned Aerial Vehicle research [48, 87].

The implication is that packet errors are more likely than for wired systems. Empirical

observations suggest that the packet loss process can be described by a two state Markov

model [63]. We will use an even simpler two-state Markov model than developed in [63],

but further work on channel modeling is needed. The second assumption implies that

quantization errors can be modeled as noise [79] or as norm bounded disturbances [90].

Information theoretic tools give lower bounds on the number of bits needed to represent the

sensor measurements. Instead of applying these results, we will assume that measurements

are quantized to a reasonable precision at every sampling. The third assumption implies
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that we can always detect packet errors but not necessarily correct them. In reality, error

detection schemes are not perfect. However, observers and/or physically meaningful bounds

can also be used to eliminate corrupted packets that contain unrealistic data. If a packet

is corrupted, it is not used. The implication of the final assumption is that the NCS

can be modeled as a synchronous process. That is, at every sample time the first vehicle

sends a packet of data and the second vehicle receives this packet. The assumption that

the transmission delays are negligible means that the sample time is large enough for the

packet to be sent and received. If the packet is corrupted, the controller discards it and

waits for the next packet. Moreover, if jitter causes the packet to be excessively delayed, the

controller considers it a lost packet. The assumptions are valid for a deterministic protocol,

such as token bus, that uses the Try-Once-Discard strategy. As an example, PATH uses

such a protocol for the control of small platoons of vehicles [54]. This assumption can be

relaxed to handle pure (i.e. constant) time delays.

If we apply the assumptions and use a simple packet-loss process for the network,

then y1(k) and y1c(k) are related by:

y1c(k) = θ(k)y1(k) (4.1)

where θ(k) is a Bernoulli process given by Pr[θ(k) = 0] = p and Pr[θ(k) = 1] = 1 − p.

Thus p represents the probability that any given packet will be lost. The communication

model given by Equation 4.1 simply states that a packet is either received (θ(k) = 1) or lost

(θ(k) = 0). If a packet of data is corrupted or delayed, it is just discarded and considered

to be lost. Experimental testing has shown that Equation 4.1 is a reasonable model for the

packet delivery characteristics of a wireless link if θ(k) is governed by a Markov process [63].
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In reality, the probability of a packet loss after receiving a correct packet is lower than after

receiving a corrupt packet. In other words, the packet loss process of a wireless channel has

a bursty characteristic. For our analysis, we use the simpler Bernoulli process so that the

packet loss characteristics of the network can be specified by one parameter, p. The plants

are modeled by the following discrete time systems:

P1 : x1(k + 1) = A1x1(k) + w1(k)

y1(k) = C1x1(k) + v1(k)

P2 : x2(k + 1) = A2x2(k) +B2u2(k) + w2(k)

y2(k) = C2x2(k) + v2(k)

where wi(k), vi(k) are zero mean, white, Gaussian noises. The initial conditions, xi(0),

are also Gaussian and (xi(0), wi(k), vi(k)) are all mutually independent. The relevant

dimensions are: y1(k), y2(k), u2(k) ∈ Rnp×1; x1(k) ∈ Rnx1×1; x2(k) ∈ Rnx2×1. As stated

above, the goal is to design K2 so that y2(k) tracks y1(k) in a stable fashion. In the next

subsection, this problem is posed in an LQG framework.

4.3.2 Optimal Control for Model Following

A reasonable performance index for the model following problem is given by:

JN = E





N−1∑

j=0

(y2(j + 1)− y1(j + 1))T Q (y2(j + 1)− y1(j + 1)) + uT2 (j)Ru2(j)



 (4.2)

where the expectation is taken over all random quantities: (xi(0), wi(k), vi(k), θ(k)). Q is

positive semi-definite (denoted Q ≥ 0) and R is positive definite (denoted R > 0). As

noted in [2], minimizing y2(j) − y1(j) basically imposes np constraints on the state of P2.
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We can add nx2 − np further constraints on x2(k) without conflicting with the tracking

objective. Anderson and Moore pose a method to add nonconflicting objectives to the cost

in Equation 4.2 (see Chapter 4 of [2] for details). The end result is that the model following

problem can be posed as an LQG regulator problem with the following cost:

JN = E





N−1∑

j=0

xT (j + 1)Q̂x(j + 1) + uT2 (j)Ru2(j)



 (4.3)

where R is given above and Q̂ ≥ 0 if Q ≥ 0. x(k) is the state of the augmented plant which

includes the packet loss model and the plant models, P1 and P2:

x(k + 1) = Ax(k) +Bu2(k) + w(k)

y(k) = Cθ(k)x(k) +Dθ(k)v(k) (4.4)

where we have used the following notation:

x(k) :=







x1(k)

x2(k)






, y(k) :=







y1c(k)

y2(k)






, w(k) :=







w1(k)

w2(k)






, v(k) :=







v1(k)

v2(k)







A :=







A1 0

0 A2






, B :=







0

B2






, Cθ(k) :=







θ(k)C1 0

0 C2






, Dθ(k) :=







θ(k)I 0

0 I







The mean/variance of the state initial condition and the variances of the noise processes

are given by:

x0 := E[x(0)] X0 := E
[
(x(0)− x0)(x(0)− x0)

T
]
> 0

W := E[w(k)w(k)T ] > 0 V := E[v(k)v(k)T ] > 0

Note that plant in Equation 4.4 is a time varying system because the output matrices, Cθ(k)

and Dθ(k), depend on the packet loss parameter, θ(k). Specifically, it is a stochastic hybrid
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system because these matrices stochastically hop between two modes: θ(k) = 0 when the

communicated packet is dropped and θ(k) = 1 when the packet is received. The probability

of being in a given mode at time k depends on the underlying probability for θ(k). For

example, the probability of being in mode given by θ(k) = 0 is equal to p. This system falls

into the class of discrete time Markovian Jump Linear Systems (MJLS) for which there is

a large body of work.

Under our network assumptions, the controller has knowledge of θ(k), i.e. the

controller knows when a packet has been dropped. Thus at time k, the controller has access

to the following information:

Ik := {u2(0), . . . , u2(k − 1); y1c(0), . . . , y1c(k); y2(0), . . . , y2(k); θ(0), . . . , θ(k)} (4.5)

The finite horizon LQG problem is to find the control input, u2(k), as a function of all

the information available to the controller, Ik, so that the quadratic cost (Equation 4.3)

is minimized. As in the standard LQG problem, we impose no restriction of linearity or

time-invariance on the controller. This is an instance of the Jump LQG problem solved by

Chizeck and Ji and the next theorem follows from their solution [17, 42].

Theorem 4.1 Define x̂(k|j) := E[x(k)|Ij ]. x̂(k|k) is the optimal state estimate (in the
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sense of mean square error) which is given by a time varying Kalman filter:

x̂(k|k) = x̂(k|k − 1) + F (k)[y(k)− Cθ(k)x̂(k|k − 1)]

x̂(k|k − 1) = Ax̂(k − 1|k − 1) +Bu2(k − 1)

F (k) =M(k)CTθ(k)

[

Cθ(k)M(k)CTθ(k) +Dθ(k)V D
T
θ(k)

]−1
(4.6)

Z(k) =M(k)−M(k)CTθ(k)

[

Cθ(k)M(k)CTθ(k) +Dθ(k)V D
T
θ(k)

]−1
Cθ(k)M(k)

M(k + 1) = AZ(k)AT +W

The initial conditions for the filter are given by x̂(0| − 1) = x0 and M(0) = X0. Given the

information available to the controller, Ik, the optimal control law that minimizes the cost

function, JN , is given by:

u2(k) = −L(k)x̂(k|k) (4.7)

for k = 0, . . . , N − 1 where the feedback gains are computed recursively from a Riccati

Difference Equation:

L(k) = [R+BTP (k + 1)B]−1BTP (k + 1)A

P (k) = ATP (k + 1)A−ATP (k + 1)B[R+BTP (k + 1)B]−1BTP (k + 1)A+ Q̂ (4.8)

The boundary condition for the recursion is P (N) = Q̂. The optimal cost is:

J∗N =xT0 (P (0)− Q̂)x0 + tr[(P (0)− Q̂)X0] +

N−1∑

k=0

tr[P (k + 1)W ]

+
N−1∑

k=0

tr

[

ATP (k + 1)BL(k) E
θ(0),...,θ(k)

[Z(k)]

]

(4.9)

where tr[A] is the trace of the matrix A and E
θ(0),...,θ(k)

[Z(k)] is the expected value of Z(k)

taken over the packet loss parameters, {θ(0), . . . , θ(k)}.
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The optimal controller, Equation 4.7, is linear but time-varying. Furthermore,

it satisfies the separation property. The feedback gains are computed from a backward

recursion of a Riccati Difference Equation (Equation 4.8). Note that the feedback gains are

independent of the packet loss process. The state estimate is computed using a forward

recursion of a Riccati Difference Equation (Equation 4.6). Since the controller has knowledge

of the packet loss parameter, θ(k), the output matrices are time-varying but known. Thus

the estimation problem is solved with a time-varying Kalman Filter. The filter gains and

estimation error covariance, Z(k), depend on the time-varying output matrices and hence

depend on the packet loss process.

The optimal controller has a very simple structure which is shown in Figure 4.2. It

is easy to show that the Kalman filter in Equation 4.6 decouples into two separate Kalman

filters. The first filter computes an estimate of x1(k) from y1c(k) while the second filter

estimates x2(k) from y2(k). As one would expect, the second filter is independent of the

packet loss process. In other words, Z(k) =
[
Z1(k) 0

0 Z2(k)

]

where Zi(k) are the estimation

error covariances for the appropriate filter. Z1(k) depends on the packet loss process, but

Z2(k) does not. We can also block partition the feedback gain as L(k) =
[
L1(k)
L2(k)

]

and

write the control law as u2(k) = −L1(k)x̂1(k|k) − L2(k)x̂2(k|k). Block partitioning the

Riccati recursion (Equation 4.8) reveals that the feedback gain, L2(k), depends only on P2.

Specifically, L2(k) is equal to the feedback gain for a regulator problem involving only P2.

On the other hand, the feedforward gain, L1(k), depends on both P1 and P2. It is apparent

from the Riccati recursion (Equation 4.8) that neither control gains depend on the packet

loss process.
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Figure 4.2: Structure of the Optimal Controller

The optimal cost is given in Equation 4.9. The terms on the first line are due to

the control. In order, the three terms correspond to the cost due to the initial condition,

the uncertain initial condition, and the plant noise. The term on the second line is the cost

due to the estimation. It is evident from Equation 4.6 that Z(k) depends on the packet loss

process. As noted above, Z(k) is actually block diagonal and only Z1(k) depends on the

packet loss process. This is the only portion of the optimal cost that is dependent on the

network performance.

It is important to emphasize that the optimal cost is a function of the packet

loss rate, p. Let J∗N (p) denote the optimal cost given by Equation 4.9 with the functional

dependence on the packet loss rate, p, made explicit. If we define the matrix function

f(k, p) := E
θ(0),...,θ(k)

[Z(k)], then we can write the optimal cost as:

J∗N (p) = J∗N (0) +
N−1∑

k=0

tr
[
ATP (k + 1)BL(k) (f(k, p)− f(k, 0))

]

If p is larger (i.e. more packets are lost), then E
θ(0),...,θ(k)

[Z1(k)] will increase and add to the

cost. In fact, it is straightforward to show that f(k, p) is a monotonically nondecreasing

function of p: p1 > p2 ⇒ f(k, p1) − f(k, p2) ≥ 0, where ≥ denotes positive semidefinite-

ness. Therefore J∗N (p) is also a monotonically nondecreasing function of p. This raises the

following question: For a given level of network performance, is the controller stabilizing?



79

Scaling the cost function does not change the optimal control law. Thus the optimal control

law described in Theorem 4.1 also minimizes JN
N for any N . Let us rephrase the question:

What conditions on the network performance ensure that the optimal cost,
J∗N (p)
N , remains

finite as N →∞?

We assume that if p = 0, then the cost,
J∗N (0)
N , stays finite as N → ∞. In other

words, we can keep cost finite if there are no packet losses. As p increases from 0, the cost

is increased by a term depending on E
θ(0),...,θ(k)

[Z1(k)]. In the next section we find necessary

and sufficient conditions on p to ensure that E
θ(0),...,θ(k)

[Z1(k)] and hence
J∗N (p)
N stay bounded

as N →∞.

4.4 Estimation over a Network

In this section we consider the problem of estimating the state of a plant using

measurements obtained over a network, Figure 4.3. We switch some notation and par-

tially review results from previous section to make the treatment of the estimation problem

complete. The goal is to derive the optimal estimator given communicated measurements

(Section 4.4.1) and find conditions on the network to ensure that the estimator is stable

(Section 4.4.2) in the sense that the expected value of the error covariance stays bounded.

c
y x>

EstimatorNetwork
y

P

Figure 4.3: Estimation over a Network
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4.4.1 Optimal Estimator

The plant, P, in Figure 4.3 is a discrete, linear, time-invariant system of the form:

x(k + 1) = Ax(k) +Bw(k) (4.10)

y(k) = Cx(k) + v(k)

where x(k) ∈ Rnx is the state and y(k) ∈ Rny is the measurement vector. w(k) ∈ Rnw is the

plant noise and v(k) ∈ Rny is the sensor noise. We assume that v(k) and w(k) are zero mean,

white, Gaussian noises with variances E[v(k)v(k)T ] = V > 0 and E[w(k)w(k)T ] = W > 0,

respectively. The state initial condition is also Gaussian with mean E[x(0)] = x0 and

variance E
[
(x(0)− x0)(x(0)− x0)

T
]
= X0 > 0. Finally, w(k), v(k), and x(0) are all

mutually independent.

The measurement, y(k), is obtained across a network. Thus, the estimator has

access to the communicated y(k), notated as yc(k). The network assumptions given in

Section 4.3.1 are still in force. We again use the simple packet loss model for the network,

so y(k) and yc(k) are related by:

yc(k) = θ(k)y(k) (4.11)

where θ(k) is a Bernoulli process given by Pr[θ(k) = 0] = p and Pr[θ(k) = 1] = 1 − p.

Again, p represents the probability that any given packet will be lost.

Given the plant, Equation 4.10, and the network model, Equation 4.11, we can

form the combined plant viewed by the observer:

x(k + 1) = Ax(k) +Bw(k) (4.12)

yc(k) = Cθ(k)x(k) +Dθ(k)v(k)
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where Cθ(k) = θ(k)C and Dθ(k) = θ(k)I. We again assume that the estimator is aware of

packet losses, θ(k). We now state the estimation problem.

Problem 4.1 Given measurements Yk = {yc(0), . . . , yc(k)} and network observations Θk =

{θ(0), . . . , θ(k)} for the combined plant (Equation 4.12), find the state estimate, x̂(k), which

minimizes:

E
[
‖x(k)− x̂(k)‖2

]
(4.13)

where the expectation is taken over the sensor and plant noises as well as the packet loss

process.

The fact that we can observe the network performance, θ(k), is important. It

implies that the combined plant, Equation 4.12, consists of a time-varying output equation

where the estimator knows both Cθ(k) and Dθ(k). As a result, the optimal estimator is just

the Kalman filter for a time-varying plant. The notation is given by:

Optimal Estimate: x̂(k|j) = E[x(k)|Yj ,Θj ] (4.14)

Estimation Error: x̃(k|j) = x(k)− x̂(k|j) (4.15)

Error Covariances: Z(k) = E[x̃(k|k)x̃(k|k)T ] (4.16)

M(k + 1) = E[x̃(k + 1|k)x̃(k + 1|k)T ] (4.17)

Theorem 4.2 The optimal state estimate is given by the Kalman filter:

x̂(k|k) = x̂(k|k − 1) + F (k)[yc(k)− Cθ(k)x̂(k|k − 1)]

x̂(k|k − 1) = Ax̂(k − 1|k − 1) (4.18)
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where the observer gain and error covariances are found from the following recursions:

F (k) =M(k)CTθ(k)

[

Cθ(k)M(k)CTθ(k) +Dθ(k)V D
T
θ(k)

]−1

Z(k) =M(k)−M(k)CTθ(k)

[

Cθ(k)M(k)CTθ(k) +Dθ(k)V D
T
θ(k)

]−1
Cθ(k)M(k)

M(k + 1) = AZ(k)AT +BWBT

The Kalman filter is started with the initial condition x̂(0| − 1) = x0 and initial error

covariance given by M(0) = X0.

Proof. The combined plant, Equation 4.12, is a simple case of a jump linear system where

the plant mode is known. While studying the Jump Linear Quadratic Gaussian problem,

Chizeck and Ji noted that the optimal state estimate for such systems is obtained with

a time varying Kalman filter [17, 42]. Kalman derived the optimal estimator for linear,

discrete, time-varying plants in [44]. The forward Riccati Difference equation gives the

estimation error covariance for a particular realization of the packet loss process. ¥

4.4.2 Estimator Stability

The Kalman Filter gives the optimal state estimate in terms of the least squares

cost given in Equation 4.13. This cost can be written as:

E
[
‖x(k)− x̂(k)‖2

]
= tr

[

E
θ(0),...,θ(k)

[Z(k)]

]

(4.19)

where tr[·] denotes the trace of a matrix and the expectation on the right side is taken

over the packet loss process. For the remainder of this section, the expectations are taken

over the packet loss process, {θ(0), . . . , θ(k)}. While the Kalman filter is optimal, it is not

guaranteed to be stable in the sense of this cost staying bounded as k →∞. The goal of this
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section is determine conditions on the network such that this cost stays bounded in time.

For a symmetric, positive semidefinite matrix, the trace of matrix can be upper and lower

bounded by its maximum singular value (denoted by σ̄ (A) for a matrix A): A = AT ∈ Rn×n

and A ≥ 0 ⇒ σ̄ (A) ≤ tr[A] ≤ nσ̄ (A). Thus the cost in Equation 4.19 stays bounded if

and only if σ̄ (E[Z(k)]) stays bounded. Moreover, σ̄ (E[Z(k)]) stays bounded if and only if

σ̄ (E[M(k)]) stays bounded. For simplicity, we now focus on the propagation of M(k) and

the boundedness of σ̄ (E[M(k)]).

If p = 0, i.e there is no probability of packet loss, then the plant is time-invariant.

M(k) propagates forward via the standard Riccati Difference equation:

M(k + 1) = AM(k)AT +BWBT −AM(k)CT [CM(k)CT + V ]−1CM(k)AT (4.20)

If (A,C) is detectable, then one can show that the variance, M(k), is uniformly bounded

in time [10]. That is, there exists a matrix U such that M(k) ≤ U for all k. Hence

σ̄ (M(k)) ≤ σ̄ (U) for all k and the cost stays bounded in time. Conversely, if we drop all

packets (p = 1), then the best estimate is obtained by propagation through our model of

the plant. In this case M(k) propagates forward as follows:

M(k + 1) = AM(k)AT +BWBT (4.21)

If the plant is unstable, then M(k) will grow unbounded as it propagates in time. As a

result, the cost will grow unbounded.

When p ∈ (0, 1), the propagation of M(k) is a stochastic process which depends
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on θ(k):

M(k + 1) =







AM(k)AT +BWBT if θ(k)=0

AM(k)AT +BWBT −AM(k)CT [CM(k)CT + V ]−1CM(k)AT if θ(k)=1

(4.22)

The objective is to determine the largest packet loss rate such that E[M(k)] stays bounded

as k →∞. The following theorem gives a necessary condition for E[M(k)] to stay bounded.

This condition is also sufficient when C is nonsingular. C nonsingular corresponds to the

case where we can observe the full state whenever a packet is received. Define the spectral

radius of A as ρ(A) := max|λi(A)| where λi(A) are the eigenvalues of A.

Theorem 4.3 We make the technical assumption that (A,B) is stabilizable, i.e. the plant

noise actually disturbs the state dynamics. Given the plant (Equation 4.12) and Kalman

filter (Equation 4.18), then uniform boundedness of σ̄ (E[M(k)]) implies pρ(A)2 < 1. If C

is nonsingular, then pρ(A)2 < 1 is sufficient for σ̄ (E[M(k)]) to stay bounded as k →∞.

Proof. First we show that σ̄ (E[M(k)]) grows unbounded if pρ(A)2 ≥ 1. From the propa-

gation relation, Equation 4.22, we have:

E
[
M(k + 1)

∣
∣M(k) =M

]
= p

(
AMAT +BWBT

)

+(1− p)
(
AMAT +BWBT −AMCT [CMCT + V ]−1CMAT

)
(4.23)

AMAT +BWBT −AMCT [CMCT +V ]−1CMAT is the error variance ifM(k) =M and we

receive a packet, θ(k) = 1. Since a variance matrix is positive semidefinite, we conclude the

second term of Equation 4.23 is positive semidefinite. The same conclusion can be reached

from simple linear algebra arguments. Either way, E[M(k + 1)|M(k) = M ] can be lower
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bounded as follows:

E
[
M(k + 1)

∣
∣M(k) =M

]
≥ p

(
AMAT +BWBT

)
(4.24)

The importance of this lower bound is that it is a linear function of M and we can apply

it inductively. Let v the left eigenvector of A which achieves ρ(A) and is normalized to

‖v‖ = 1. Apply the lower bound to obtain:

E[vTM(k + 1)v]
(a)
=E

[
E[vTM(k + 1)v

∣
∣M(k)]

]

≥E[pρ(A)2vTM(k)v + pvTBWBT v] (4.25)

=pρ(A)2E[vTM(k)v] + pvTBWBT v

On the right side of Equality (a), the inner expectation is taken over θ(k+1) while the outer

expectation is taken over {θ(0), . . . , θ(k)}. Since p ∈ [0, 1] and ρ(A)2 ≥ 1
p by assumption, the

eigenvector v corresponds to an unstable mode of the plant. (A,B) stabilizable implies that

vTB 6= 0. The lower bound obtained in Equation 4.25 implies that E[vTM(k + 1)v] → ∞

as k →∞ and hence σ̄ (E[M(k)]) grows unbounded.

Next we show that if C is nonsingular and pρ(A)2 < 1, then E[M(k)] is uniformly

bounded. We return to the propagation relation in Equation 4.23 and try to upper bound

the last term. To this end, we use properties of the maximum singular value to obtain the

following bound:

σ̄
(
M −MCT [CMCT + V ]−1CM

) (a)
= σ̄

(
C−1V (CMCT + V )−1CM

)

(b)

≤ σ̄
(
C−1V

)
σ̄
(
(CMCT + V )−1CMCT

)
σ̄
(
C−T

)

(c)

≤ σ̄
(
C−1V

)
σ̄
(
C−1

)
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Equality (a) follows because M −MCT [CMCT + V ]−1CM = C−1V (CMCT + V )−1CM

when C is invertible. Inequality (b) follows from the submultiplicative property of the

maximum singular value: σ̄ (AB) ≤ σ̄ (A) σ̄ (B) [40]. If two symmetric matrices satisfy

A > B ≥ 0 then σ̄
(
A−1B

)
≤ 1. Inequality (c) follows from this fact and σ̄

(
AT
)
= σ̄ (A).

The final term of Equation 4.23 can be upper bounded using this result:

(1− p)A
(
M −MCT [CMCT + V ]−1CM

)
AT ≤ (1− p)σ̄ (A)2 σ̄

(
C−1V

)
σ̄
(
C−1

)
· I (4.26)

where I is an nx × nx identity matrix. The key point is that this term is upper bounded

by a matrix which is independent of M . We can use this to bound E[M(k + 1)]:

E[M(k + 1)]
(a)
= E [E[M(k + 1)|M(k)]]

(b)

≤ E
[

pAM(k)AT +BWBT + (1− p)σ̄ (A)2 σ̄
(
C−1V

)
σ̄
(
C−1

)
· I
]

(c)
= pAE[M(k)]AT +BWBT + (1− p)σ̄ (A)2 σ̄

(
C−1V

)
σ̄
(
C−1

)
· I

On the right side of Equality (a), the inner expectation is taken over θ(k+1) while the outer

expectation is taken over {θ(0), . . . , θ(k)}. Inequality (b) follows by applying the bound in

Equation 4.26 to the propagation relation in Equation 4.23. Equality (c) follows because

M(k) is the only term depending on the packet loss process and the upper bound is linear

in M(k). This bound can be written more compactly as:

E[M(k + 1)] ≤ pAE[M(k)]AT +Q

where Q is the appropriately defined positive definite matrix. If pρ(A)2 < 1, then we can

use this upper bound inductively to show that E[M(k+1)] is uniformly bounded as k →∞.

From this we conclude that σ̄ (E[M(k + 1)]) is uniformly bounded. ¥
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4.4.3 Generalized Estimator Stability Result

One might conclude that p < 1
ρ(A)2

is necessary and sufficient for boundedness of

σ̄ (E[M(k)]) even under the less restrictive assumption of (A,C) observable. This intuition

is false as the following example shows. Consider a second order system, P, in the form of

Equation 4.10:

A =







0 2

2 0






, B =







1

0






, C =

[

1 0

]

V = 1, W = 1, M(0) =







m11(0) 0

0 m22(0)







This plant satisfies the assumptions of (A,B) stabilizable and (A,C) observable. The con-

dition in Theorem 4.3, if applied to this example, predicts that E[M(k)] stays bounded if

and only if p < 1
ρ(A)2

= 0.25. We now show that this condition does not apply for this

example.

We use the notationM(2)|(θ0,θ1) to denote the value ofM(2) propagated fromM(0)

along the path (θ0, θ1). M(2) is computed using the propagation relation in Equation 4.22.

Using this notation, we can computed the expected value of M(2) as:

E[M(2)] = p2M(2)|(0,0) + p(1− p)
(
M(2)|(0,1) +M(2)|(1,0)

)
+ (1− p)2M(2)|(1,1)

M(2)|(θ0,θ1) ≥ 0 for any (θ0, θ1) since it is the estimation error variance for the given path.
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Using this fact, we can lower bound E[M(2)] by:

E[M(2)]
(a)

≥ p2M(2)|(0,0) + p(1− p)M(2)|(1,0)
(b)

≥ pA2M(0)(AT )2 − p(1− p)A2M(0)CT [CM(0)CT + V ]−1CM(0)(AT )2

(c)
=







16p2m2
11(0)+16pm11(0)
m11(0)+1 0

0 16pm22(0)







Inequality (a) follows because M(2)|(1,1) ≥ 0 and M(2)|(1,0) ≥ 0 as mentioned above.

Inequality (b) follows from applying Equation 4.22 along the paths (θ0, θ1) = (1, 0), (0, 0)

and then noting that ABWBTAT , BWBT are positive semidefinite. Equality (c) follows

from the given values of A, C, M(0), and V. Let e2 = [0 1]T and apply this lower bound to

obtain:

E[m22(2)] = E[eT2M(2)e2] ≥ 42pm22(0)

Using induction, this inequality can be generalized:

E[m22(2N)] = E[eT2M(2N)e2] ≥ 42NpNm22(0) = [16p]Nm22(0)

If p > 1
16 = .0625 then 16p > 1 and we can conclude that E[M(k)] grows unbounded. Thus

p < 1
ρ(A)2

= 0.25 is not a necessary and sufficient condition for boundedness of E[M(k)]

when (A,C) is observable. It is clear that observability is lost along the path of where

all packets are dropped (θ(k) = 0 ∀k). The problem displayed in this example is that

observability is lost along other paths even if packets are received frequently. Along the

path (θ0, θ1, . . .) = (1, 0, 1, 0, . . .), the output of the system (neglecting plant and sensor

noise) is:

(yc(0), yc(1), yc(2), yc(3), . . .) = (Cx(0), 0, CA2x(0), 0, . . .) (4.27)



89

By construction, A2 = 4 [ 1 0
0 1 ] and in general A2k is a multiple of the identity for all k. Thus

the plant appears unobservable along this path since we can only observe the state space

along the direction given by C = [1 0]. To ensure boundedness of E[M(k)], we must ensure

that the probability of an unobservable path occurring is sufficiently small.

Theorem 4.3 needs to be generalized to the case where (A,C) is observable. Let

A ∈ Rn×n and assume (A,C) is observable. If rank[Ai1C . . . AinC] = n for any collec-

tion of distinct, nonnegative integers, {i1, . . . , in}, then pρ(A)2 < 1 is still necessary and

sufficient for boundedness of σ̄ (E[M(k)]). It is not clear for what systems this ’strong

observability’ property is satisfied and hence this proof is omitted. A second method to

extend Theorem 4.3 is to estimate the state prior to transmission across the network. In

other words, (A,C) observable implies that we can design a stable observer to estimate

x from y. We then transmit this estimate, x̂1, across the network. The estimator on the

receiving end of the network constructs a second state estimate, x̂2, from the communicated

information, x̂1c. If the first estimator is stable, then our goal is to make x̂2 estimate x̂1

using x̂1c. We have effectively turned the problem into an estimation problem of the form

specified in Theorem 4.3.

4.5 Implications for NCS Design

The goal of this chapter was to derive bounds on the required network performance

that are independent of a particular control law. For a simple vehicle following problem, we

determined the level of network performance required for a stabilizing controller to exist.

The network performance was measured in terms of packet loss rate, but we now show
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that the condition inherently constrains network bandwidth and packet loss rate. Let us

consider how this condition can be applied. Suppose the dynamics of vehicle 1 in Figure 4.1

are modeled by a continuous time system with state matrix Ac ∈ Rn×n. Assume that vehicle

1 can measure its full state, y1(t) = x1(t), and the sampling interval is T seconds. The state

matrix for the discrete time representation of vehicle 1 is given by eAcT . From the results

contained in this chapter, we conclude that a stabilizing controller for the model following

problem exists if and only if pρ(eAcT )2 < 1. Now suppose that each state measurement

is quantized to b bits. At the given sample rate we must send R := bn
T bits per second

of useful information. The actual rate will need to be higher to include the overhead of

addressing, error checking bits, etc. Neglecting this fact, we can rewrite the constraint in

terms of packet loss rate, p, and network bandwidth, R, as follows: pρ(eAc(bn)/R)2 < 1.

A simple example illustrates this constraint. Consider the following continuous

time state matrix:

Ac =











1.06 −0.83 0.71

0.06 0.29 1.62

−0.10 −1.34 −0.69











The eigenvalues of Ac are 1.04 and −0.19±1.42. The state dimension is n = 3 and we assume

that the state measurements are quantized with b = 16 bits. Under the assumption of full-

state measurements (C nonsingular), a stabilizing controller exists if pρ(eAc(48/R))2 < 1.

Figure 4.4 shows the feasible region for the existence of a stabilizing controller. Since

the we are considering a randomly generated plant, the actual numerical results are not

significant. However, the qualitative result that we seek is important. Specifically, this

plot gives constraints on the network performance that must be satisfied for a stabilizing
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controller to exist. Under the assumption of Gaussian noise, Theorem 4.1 gives the optimal

controller for the LQG problem. Thus if this condition fails, then no controller, even if it

is time-varying and/or nonlinear, can keep the LQG cost finite. This condition provides a

hard constraint on network performance that must be satisfied for acceptable control.
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Figure 4.4: Feasible (p,R) region for the existence of a stabilizing controller

Conditions on the network performance that are independent of the control law

are extremely general and useful results. The condition we have derived is one step in that

direction, but it can certainly be extended in many ways. In the short term, Theorem 4.3

must be extended to find necessary and sufficient conditions for the existence of a stable

estimator. If (A,C) is observable, Theorem 4.3 only gives a necessary condition on the

network performance for the existence of a stable estimator. The next goal should be to

include some measure of performance in this simple problem. Stabilization is a rather

weak condition and this is clearly evidenced in Theorem 4.3. If the plant is stable, then
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the condition is satisfied for any p ∈ [0, 1]. In other words, no information is required

(i.e. we can lose all packets) to synthesize a stable estimator. Clearly some notion of

control performance is required to strengthen the requirements on the network performance.

Finally, the results evidenced by this simple vehicle following problem need to be extended

to large scale, networked control systems.
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Chapter 5

Controller Analysis and Synthesis

for Networked Control Systems

5.1 Introduction

In the previous chapter, we described networked control systems (NCS) and dis-

cussed some related work in this area. We then gave a theoretical analysis for a simple

vehicle following problem. Our ultimate vision is to coordinate large numbers of unmanned

aerial vehicles (UAVs) to accomplish a complex task. The clusters of UAVs will communi-

cate on an ad-hoc wireless network. Figure 5.1 shows that the nodes of the network may

consist of the UAVs themselves, ground robots, and a satellite backbone. In contrast to

the Automated Highway System problem, there may be malicious forces which try to jam

communication links. To combat this possibility, the UAVs will be able to form alternative

communication paths to the destination. As a concrete example, suppose that cluster C1
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is performing a task with cluster C2 and they are exchanging information on link L1. If

the clusters sense that the performance of this wireless link is too poor, they may reroute

packets up through the satellite backbone, which is assumed to be more reliable. Note that

the backbone does not have sufficient resources to handle all information from all clusters.

Thus it is important for clusters to route information through the satellite network only

when control performance objectives cannot be met otherwise. Knowledge of the bounds

on acceptable network performance is key to making this distributed agent system robust

in hostile environments.
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Figure 5.1: Coordinated UAV Network

In this chapter, we develop a computationally efficient method to solve problems

related to formation flight of UAVs. Specifically, we develop a tractable condition for the

analysis problem: Given an open loop model and a controller, determine how the closed-loop

performance degrades as the probability of a packet loss increases. Using this condition,

a control engineer can determine what probability of packet loss can be tolerated before

the performance degradation is unacceptable. We also develop a tractable condition for the
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centralized controller synthesis problem: Given an open loop plant and a level of network

performance, synthesize a centralized controller that is optimal with respect to some cost

function. This condition can be used to give the limits of closed loop performance for a given

probability of packet loss. If a control performance objective is specified, this will then yield

a hard bound that the network must satisfy. We will not develop a tractable condition for

the decentralized controller synthesis problem: Given an open loop plant, a level of network

performance, and structural constraints on the controller, synthesize a controller that is

optimal with respect to some cost function. Such a condition would be extremely useful as

it would allow us to synthesize decentralized controllers of various forms and investigate the

limits of achievable performance. We could then determine how the cost of communicating

additional information improves the closed loop performance. Unfortunately, this problem

is extremely hard from a computational point of view. Hence we will leave this question

unresolved for now and note that future research should look for tractable conditions which

can approximately solve this problem.

As in the previous chapter, the networked control system consisting of UAVs in

formation flight falls into the class of Markov Jump Linear Systems (MJLS). In the remain-

der of the chapter, we will develop an H∞ control design method for discrete-time MJLS.

First we give a review of past work on MJLS. Then we present useful results on stability and

H∞ performance for MJLS. We will derive a necessary and sufficient matrix inequality for a

MJLS to achieve a given level ofH∞ performance. This gives us a computationally tractable

method to determine the performance of a networked control system. In Section 5.6, we

show how this matrix inequality can be used to synthesize optimal controllers. Finally we
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present several examples demonstrating the usefulness of the tools. In the following chapter,

we show that UAVs in formation flight can be modeled using the MJLS framework. We

then apply the tools developed in this chapter to analyze the effect of packet losses on a

formation flight controller.

5.2 Related Work

As noted in the previous chapter, a NCS can be modeled as a jump linear system

[13, 47, 81, 108, 110]. The benefit of this modeling approach is that there is a large body of

literature for this class of systems. In this section, we review some of the results available

for Markovian Jump Linear Systems (MJLS).

Chizeck and Ji have obtained many results for discrete-time MJLS. Chizeck, et.al.

extended Linear Quadratic control for MJLS [18]. Ji and Chizeck subsequently defined and

developed algebraic conditions for controllability and observability of MJLS [41]. These

ideas led to a solution of the Jump Linear Quadratic Gaussian control problem [17, 42].

Ji, et.al. have also shown that several notions of stability are equivalent for MJLS

[43]. Specifically, mean square stability, stochastic stability, and exponential mean square

stability are equivalent and any one implies almost sure stability. The authors refer to the

equivalent notions stability as second-moment stability (SMS). It is interesting to note that

stability of each mode is neither necessary nor sufficient for the system to be SMS. See [42]

for several examples of this and other interesting properties of MJLS. Costa and Fragoso

have established that mean square stability is equivalent to the existence of a solution to a

Lyapunov equation [21]. The significance of this result is that the Lyapunov condition is



97

easily checkable. We will discuss these stability results in greater detail in Section 5.4.

Control design for MJLS has focused on using convex and nonconvex optimization

for synthesis. For example, state feedback controllers for MJLS can be found by solving a

set of linear matrix inequalities (LMIs) [7, 11, 20, 33, 72]. The benefit of this approach is

that the problem can be efficiently solved by interior-point methods [9, 32] with a guarantee

that the global optimum will be found. However, as noted in [108], the structure of the

networked control problem results in an output feedback even if the problem was originally

state feedback. It should be clear from the previous chapter that the output of the combined

plant/network model viewed by the controller is not the full state if a packet is dropped.

The output feedback problem for MJLS is quite complex when placed in the optimization

framework. This problem has been attacked as a nonconvex optimization problem in [71]

for the continuous time case and in [108] for the discrete time case. Unfortunately, these

routines may converge to local extrema and do not guarantee convergence to the global

optimum. Another approach is to use a congruence transformation to convert the problem

into an LMI optimization problem. This approach was used in [24] to find mode-dependent

dynamic output feedback controllers for continuous time MJLS. In this chapter, we take

the latter approach to find LMI conditions for control design. The drawback is that the

congruence transformation only converts the problem to an LMI for a restricted class of

MJLS.
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5.3 Markovian Jump Linear Systems

In this section, we give notation that will be used throughout the remainder of the

chapter. Consider the following stochastic system, denoted S:






x(k + 1)

z(k)






=







Aθ(k) Bθ(k)

Cθ(k) Dθ(k)













x(k)

w(k)







(5.1)

where x(k) ∈ Rnx is the state, w(k) ∈ Rnw is the disturbance vector and z(k) ∈ Rnz is

the error vector. The state matrices are functions of a discrete-time Markov chain taking

values in a finite set N = {1, . . . , N}. The Markov chain has a transition probability matrix

P = [pij ] where pij = Pr(θ(k + 1) = j | θ(k) = i) subject to the restrictions pij ≥ 0 and

∑N
j=1 pij = 1 for any i ∈ N . When the plant is in mode i ∈ N (i.e. θ(k) = i), we will use

the following notation: Ai := Aθ(k), Bi := Bθ(k), Ci := Cθ(k), and Di := Dθ(k). Plants of

this form are called discrete-time Markovian jump linear systems. As a concrete example,

the augmented plant for the vehicle following problem, Equation 4.4, is a MJLS with two

modes: mode 1 if a packet is dropped and mode 2 if a packet is received. The transition

probability matrix is P =
[
p 1−p
p 1−p

]

.

We also define `2 as the space of square summable (deterministic) sequences. That

is, w = (w(0), w(1), . . .) ∈ `n2 if w(k) ∈ Rn ∀k and ‖w‖2 <∞, where the norm is defined by:

‖w‖2 =

( ∞∑

k=0

w(k)Tw(k)

)1/2

(5.2)

If we input the deterministic sequence, w, into the MJLS given by Equation 5.1, then

x = (x(0), x(1), . . .) and z = (z(0), z(1), . . .) are stochastic sequences depending on the

sequence of Markov parameters, θ = (θ(0), θ(1), . . .). The norm for the output sequence
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will be given by:

‖z‖2E =

(

E

{ ∞∑

k=0

z(k)T z(k)

})1/2

(5.3)

where the expectation is taken over the sequence of Markov parameters, {θ(0), . . .}. The

notation ‖ ·‖2E is similarly used for any other sequence, such as x, depending on {θ(0), . . .}.

5.4 Stability Results

In this section, we review several useful results related to the stability of discrete-

time jump linear systems. First we define several forms of stability for such systems [43].

Definition 1 For the system given by (5.1) with w ≡ 0, the equilibrium point at the origin

is:

1. mean-square stable if for every initial state (x0, θ0), limk→∞E{‖x(k)‖2 | x0, θ0} = 0.

2. stochastically stable if for every initial state (x0, θ0), E
{∑∞

k=0 ‖x(k)‖2 | x0, θ0
}
<∞.

In other words, ‖x‖2E <∞ for every initial state.

3. exponentially mean square stable if for every initial state (x0, θ0), there exists constants

0 < α < 1 and β > 0 such that ∀k ≥ 0, E
{
‖x(k)‖2 | x0, θ0

}
< βαk‖x0‖2.

4. almost surely stable if for every initial state (x0, θ0), Pr {limk→∞ ‖x(k)‖ = 0} = 1.

We must determine which notion of stability we seek when dealing with the jump

systems. Ji, et.al. showed that for System (5.1), the first three definitions of stability

are actually equivalent [43]. The authors refer to the equivalent notions of mean-square,

stochastic, and exponential mean square stability as second-moment stability (SMS). More-

over, SMS is sufficient but not necessary for almost sure stability. In the remainder of the
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chapter, references to stability will be in the sense of second-moment stability. The major

motivation for this choice is that computable conditions exist to check for SMS but not for

almost-sure stability. Below we present necessary and sufficient matrix inequality conditions

for SMS of the jump linear system. Theorem 5.1 was proved in [21] by showing equivalence

of the matrix inequality conditions to mean-square stability.

Theorem 5.1 System (5.1) is SMS if and only if there exists matrices Gi > 0 for i =

1, . . . , N that satisfy any of the following conditions:

1. Gi −ATi
(
∑N

j=1 pijGj

)

Ai > 0 for i = 1, . . . , N

2. Gj −Aj
(
∑N

i=1 pijGi

)

ATj > 0 for j = 1, . . . , N

3. Gi −
∑N

j=1 pijA
T
j GjAj > 0 for i = 1, . . . , N

4. Gj −
∑N

i=1 pijAiGiA
T
i > 0 for j = 1, . . . , N

Thus SMS is equivalent to finding N positive definite matrices which satisfy N

discrete Lyapunov conditions in a stochastic sense. We will actually apply a simplified

version of this Theorem which is presented in [21]. For completeness, the following Theorem

is proved in Appendix B using a stochastic Lyapunov function approach.

Theorem 5.2 If pij = pj for all i, j ∈ N then System (5.1) is SMS if and only if there

exists a matrix G > 0 such that:

G−
N∑

j=1

pjA
T
j GAj > 0 (5.4)

In words, if θ(k) is an independent process, we only need to find one positive definite

matrix such that the associated Lyapunov function decreases on average at every step. It
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is interesting to note that stability of each mode is neither necessary nor sufficient for the

system to be SMS. See [42] for several examples of this and other properties of MJLS.

5.5 H∞ Results

Next we give the definition of the H∞ norm for discrete-time MJLS. We consider

disturbances, w ∈ `nw2 , to the jump system given by Equation 5.1. The H∞ norm of the

system [20] is defined below.

Definition 2 Assume the system, S, given by Equation 5.1 is an SMS system. Let x(0) = 0

and define the H∞ norm, denoted ‖S‖∞, as:

‖S‖∞ := sup
06=w∈`nw2

‖z‖2E
‖w‖2

(5.5)

Below we derive a matrix inequality condition for a MJLS to achieve a given level of

H∞ performance. To derive this condition, we need a stochastic definition of controllability

given by Ji and Chizeck [41]. The following is a simplification of their definition for the case

where pij = pj .

Definition 3 Consider system, S, given by Equation 5.1 and transition probabilities sat-

isfying pij = pj. For every initial state, x0, and any choice of target value xf , if Tc =

infw{k > 0 : Pr(x(k) = xf ) > 0} is finite, then the system is weakly controllable.

Next we present a necessary and sufficient matrix inequality condition for a restricted class

of MJLS to satisfy a given level of H∞ performance. The weak controllability ensures that

the disturbance can, in a stochastic sense, affect the system state. If the system is not

weakly controllable, the matrix condition is still sufficient, but it may not be necessary.
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Theorem 5.3 Assume pij = pj for all i, j ∈ N and the system, S, given by Equation 5.1 is

weakly controllable. S is SMS and satisfies ‖S‖∞ < γ if and only if there exists a symmetric

matrix G > 0 satisfying the following matrix inequality:







G 0

0 γ2I






−

N∑

j=1

pj







Aj Bj

Cj Dj







T 





G 0

0 I













Aj Bj

Cj Dj






> 0 (5.6)

Theorem 5.3 is proved in Appendix C. A stochastic Lyapunov approach is used to show

sufficiency of the matrix inequality condition. Necessity follows by showing that ‖S‖∞ < γ

implies that a related Riccati equation has a solution. The Riccati equality can be converted

to an inequality by a perturbation argument which then leads to the matrix inequality given

in Equation 5.6. We make several remarks concerning this H∞ condition. We note that

for the case of one mode (N = 1), the H∞ condition given by Equation 5.6 reduces to the

standard necessary and sufficient condition [66]. This condition also has an interpretation in

terms of the coordinate transformation: x̃(k) := G1/2x(k). Multiplying the matrix condition

on the left/right by
[
G−1/2 0

0 γ−1I

]

shows that the search for a suitable scaling matrix, G, is

equivalent to a search for a single coordinate transformation (for all modes), G1/2, which

makes the plant satisfy a singular value condition, σ̄
([

I 0
0 γ−1

] [
A B
C D

] [ I 0
0 γ−1

])

< 1, in a

stochastic sense.

This Theorem can be tied to the condition for SMS. Using the proof of Theorem 5.2

in Appendix B, if the system is SMS then there exists G > 0 such that:

G−
N∑

j=1

pjA
T
j GAj =

N∑

j=1

pjC
T
j Cj + I
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For γ sufficiently large, G satisfies Equation 5.6. This can be seen by using Schur comple-

ments1 to put Equation 5.6 in the equivalent form:

G−
N∑

j=1

pjA
T
j GAj > W̃ (5.7)

where:

W̃ =
N∑

j=1

pjC
T
j Cj +





N∑

j=1

pj
(
BT
j GAj +DT

j Cj
)





T 

γ2I −
N∑

j=1

pj
(
BT
j GBj +DT

j Dj

)





−1

·





N∑

j=1

pj
(
BT
j GAj +DT

j Cj
)





If S is SMS then there exists γ > 0 and G > 0 which satisfy Equation 5.6. In other

words, if a system is SMS, then there exists some finite γ > 0 such that ‖S‖∞ < γ. By

contraposition, if we cannot find G > 0 and γ > 0 to satisfy Equation 5.6, then the system

is not SMS.

In the following section, we will use this matrix inequality condition for controller

synthesis. It will turn out that the controller matrices will be embedded in the Aj , Bj ,

and Cj matrices. Unfortunately, Equation 5.6 contains quadratic and cross terms which

are functions of these matrices. Our ultimate goal is to arrive at a linear matrix inequality

(LMI) condition, i.e. a condition which is a linear function of unknown matrices. Before

preceding, we will present an equivalent form of Equation 5.6 which is more suitable for

this purpose.

Let Z = G−1 and multiply Equation 5.6 on the left and right by the following

congruence transformation: [ Z 0
0 I ]. Since positive definiteness is invariant under congruence

1See [9]: R > 0 and Q − SR−1ST > 0 if and only if
[
Q S

ST R

]

> 0
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transformations, Equation 5.6 is equivalent to:






Z 0

0 γ2I






−

N∑

j=1

pjR
T
j







Z−1 0

0 I






Rj > 0

where Rj = [
AjZ Bj
CjZ Dj

]. Use Schur complements to convert this inequality into the following

equivalent condition where (•)T denote entries which can be inferred from the symmetry of

the matrix:

































Z 0

0 γ2I







(•)T . . . (•)T

√
p1







A1Z B1

C1Z D1













Z 0

0 I







. . . (•)T

...
. . .

...

√
pN







ANZ BN

CNZ DN













0 0

0 0







. . .







Z 0

0 I


































> 0 (5.8)

5.6 H∞ Controller Synthesis

In this section we will apply Theorem 5.3 to derive an LMI condition for controller

synthesis. We consider plants, S, of the form:










x(k + 1)

z(k)

y(k)











=











Aθ(k) B1,θ(k) B2,θ(k)

C1,θ(k) D11,θ(k) D12,θ(k)

C2,θ(k) D21,θ(k) 0





















x(k)

w(k)

u(k)











(5.9)

where x(k) ∈ Rnx is the state, u(k) ∈ Rnu is the control input, y(k) ∈ Rny is the measure-

ment vector, w(k) ∈ Rnw is the disturbance vector and z(k) ∈ Rnz is the error vector. We

consider the case where θ(k) ∈ N = {1, 2}, i.e. the plant has two modes. This is done for
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clarity of exposition and the results of this section can easily be extended to the general

case where the plant has N modes. We also assume that the probability matrix for the

Markov process satisfies the constraint pij = pj ∀i, j ∈ N .

K

z(k)

y(k) u(k)
S

w(k)

Figure 5.2: Feedback Loop for H∞ Control Design

Our goal is to design a controller, K, for the feedback loop (Figure 5.2) which

minimizes the closed loop gain from w to z. The gain from disturbances to errors is measured

with the H∞ norm. We assume that the controller has access to θ(k) and the output of the

system, y(k), but not the system state. The goal is to find an optimal H∞ controller of the

form:

xc(k + 1) = Ac,θ(k)xc(k) +Bc,θ(k)y(k)

u(k) = Cc,θ(k)xc(k) (5.10)

where xc(k) ∈ Rnc is the controller state and the subscript c is used to denote the controller

matrices/states. We will subsequently search for a controller of this form that gives the

optimal H∞ performance. We are not restricting the state dimension of the controller.

The controller state dimension is only assumed to be finite, nc < ∞. That is, we have

not made any a priori assumptions on the state dimension of the controller. We will show

in Theorem 5.4 that if a stabilizing controller giving a certain level of H∞ performance

exists, then we can always find a controller giving the same level of performance and with
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state dimension equal to the state dimension of the original plant, nc = nx. On the other

hand, it should be noted that we are restricting the search to finite dimensional, linear,

time-varying controllers. More importantly, we are restricting the controller to depend only

on the current plant mode, θ(k). Therefore, the controller is time-varying, but it can only

hop between N modes depending on the current jump parameter θ(k). The LQG controller

derived in the previous chapter was time-varying and used all past values of θ(k). This

controller was time-varying and was not restricted to N modes.

With the controller structure above and the plant defined above, the closed loop

becomes: 





xcl(k + 1)

z(k)






=







Acl,θ(k) Bcl,θ(k)

Ccl,θ(k) Dcl,θ(k)













xcl(k)

w(k)







(5.11)

where:

Acl,θ(k) :=







Aθ(k) B2,θ(k)Cc,θ(k)

Bc,θ(k)C2,θ(k) Ac,θ(k)







Bcl,θ(k) :=







B1,θ(k)

Bc,θ(k)D21,θ(k)







Ccl,θ(k) :=

[

C1,θ(k) D12,θ(k)Cc,θ(k)

]

Dcl,θ(k) := D11,θ(k)

The subscript ’cl’ denotes the closed loop matrices. For the closed loop system, the transition

probabilities satisfy the assumption given in Theorem 5.3: pcl,ij = pcl,j for all i, j. Apply

Theorem 5.3 to conclude that the closed loop system is SMS and has H∞ gain less than γ

if and only if there exists a matrix 0 < G ∈ R(nx+nc)×(nx+nc) such that Equation 5.6 holds.
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Or we can apply the equivalent condition given by Equation 5.8; the closed loop system

has H∞ gain less than γ if and only if there exists a matrix 0 < Z ∈ R(nx+nc)×(nx+nc) such

that: 




























Z 0

0 γ2Inw







(•)T (•)T

√
p1







Acl,1Z Bcl,1

Ccl,1Z Dcl,1













Z 0

0 Inz







(•)T

√
p2







Acl,2Z Bcl,2

Ccl,2Z Dcl,2













0 0

0 0













Z 0

0 Inz






























> 0 (5.12)

A controller yielding closed loop H∞ gain less than γ exists if and only if there exists Z > 0

and the appropriate controller matrices satisfying Equation 5.12. This is a bilinear matrix

inequality since it is linear in the controller parameters (for a fixed scaling matrix Z) or in

Z (for fixed controller matrices). The following theorem gives an equivalent linear matrix

inequality condition.

Theorem 5.4 There exists 0 < Z = ZT ∈ R(nx+nc)×(nx+nc), Aci ∈ Rnc×nc , Bci ∈ Rnc×ny ,

and Cci ∈ Rnu×nc for i ∈ {1, 2} such that Equation 5.12 holds if and only if there exists

matrices Y = Y T ∈ Rnx×nx, X = XT ∈ Rnx×nx, Li ∈ Rnx×ny , Fi ∈ Rnu×nx, and Wi ∈

Rnx×nx for i ∈ {1, 2} such that:










R11 RT21 RT31

R21 R22 0

R31 0 R22











> 0 (5.13)
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where the block matrices are defined as:

R11 :=

[
Y I 0
I X 0
0 0 γ2I

]

R22 :=
[
Y I 0
I X 0
0 0 I

]

R21 :=
√
p1

[
Y A1+L1(C2)1 W1 Y (B1)1+L1(D21)1

A1 A1X+(B2)1F1 (B1)1
(C1)1 (C1)1X+(D12)1F1 (D11)1

]

R31 :=
√
p2

[
Y A2+L2(C2)2 W2 Y (B1)2+L2(D21)2

A2 A2X+(B2)2F2 (B1)2
(C1)2 (C1)2X+(D12)2F2 (D11)2

]

The parenthesis are to distinguish (B1)2, the second mode of B1, and (B2)1, the first mode

of B2.

Proof. (⇒) The proof uses a transformation motivated by the proof for the contin-

uous time output feedback MJLS problem [24]. Assume Equation 5.12 holds and partition

Z compatibly with Acl:

Z =







Z1 Z2

ZT2 Z3







(5.14)

where Z1 ∈ Rnx×nx , Z2 ∈ Rnx×nc , Z3 ∈ Rnc×nc . Without loss of generality, we assume

nc ≥ nx. If nc < nx, we can add stable, unobservable, uncontrollable modes to the controller

without affecting closed loop performance. Under the assumption that nc ≥ nx, if Z2 is

not full row rank, then we can find a full rank matrix arbitrarily close to Z2 such that

Equation 5.12 still holds. This follows since the set of full rank matrices of a given dimension

is dense in the set of all matrices of the same dimension. Again without loss of generality,

we assume that Z2 is full row rank. Define the matrix Y := (Z1 − Z2Z
−1
3 ZT2 )

−1 and note
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that Y > 0 since Z > 0 (by Schur complements). Next, define the transformation:

T :=











Y Inx 0

−Z−1
3 ZT2 Y 0 0

0 0 Inw











(5.15)

Since Z2 is full row rank, T is full column rank. Positive definiteness is preserved under

full column rank congruence transformations. That is, if A > 0 and B is full column

rank, then BTAB > 0. Thus we can multiply Equation 5.12 on the left by the congruence

transformation diag(T T , T T , T T ) and on the right by diag(T, T, T ) and the resulting matrix

will still be positive definite. Letting T11 be the upper left block of T , we note the following

block multiplications:

T T11ZT11 =







Y Inx

Inx Z1







T T11Acl,iZT11 =







Y Ai + Li(C2)i Wi

Ai AiZ1 + (B2)iFi







Ccl,iZT11 =

[

(C1)i (C1)iZ1 + (D12)iFi

]

T T11Bcl,i =







Y (B1)i + Li(D21)i

(B1)i









110

where:

Y := (Z1 − Z2Z
−1
3 ZT2 )

−1

X := Z1

Fi := CciZ
T
2

Li := −Y Z2Z
−1
3 Bci

Wi := Y AiZ1 + Y (B2)iFi + Li(C2)iZ1 − Y Z2Z
−1
3 AciZ

T
2

The congruence transformation shows that Equation 5.13 is satisfied with the Y = Y T ,

X = XT , Li, Fi, and Wi for i ∈ {1, 2} defined above. Furthermore, the dimensions of Z1,

Z2, and Z3 imply that Y = Y T , X = XT , Li, Fi, and Wi for i ∈ {1, 2} defined above have

the dimensions given in the Theorem.

(⇐) Assume that we have found Y = Y T , X = XT , Li, Fi, and Wi for i = 0, 1 of the

dimensions listed in the Theorem such that Equation 5.13 holds. Define the transformation:

T̃ =











0 Y −1 0

Inx −Inx 0

0 0 Inw











(5.16)

Multiply Equation 5.12 on the left by the congruence transformation diag(T̃ T , T̃ T , T̃ T ) and

on the right by diag(T̃ , T̃ , T̃ ). After the appropriate matrix multiplications, we see that
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Equation 5.12 is satisfied with the following scaling and controller matrices:

Z =







X Y −1 −X

Y −1 −X X − Y −1







(5.17)

Bci = Y −1Li

Cci = Fi
(
Y −1 −X

)−1

Aci = −Y −1 [Y AiX + Y (B2)iFi + Li(C2)iX −Wi]
(
Y −1 −X

)−1

Also note that Condition 5.13 implies that Y and X are positive definite, hence we can

apply the Schur complement lemma to show Z > 0. This reconstructed controller has state

dimension nc = nx, i.e. Aci ∈ Rnx×nx . ¥

Before proceeding, we make several comments about this theorem. The constraint

is a linear matrix inequality involving the scalar γ and matrices Y , X, Li, Fi, Wi. The H∞

optimal controller can be obtained by solving the semi-definite programming problem:

min γ

subject to Equation 5.13

As noted previously, this problem can be efficiently solved by interior-point methods using

freely available software [9, 32]. This problem is conceptually solved in two stages. A

feasibility stage solves for matrices Y , X, Li, Fi, Wi and the scalar γ (not necessarily

the minimum) which satisfies the constraint, Equation 5.13. The optimization stage then

searches for the minimal value of γ along with the matrices which satisfy the constraint for

the this optimal value. If the optimization fails at the feasibility stage, then by the discussion

in Section 5.5, the system is not SMS. If there is a feasible solution, the optimization will find
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the minimal value of γ. The proof then gives a procedure for constructing the H∞ optimal

controller. A key point here is that the procedure generates a controller with dimension

nc ≤ nx. Thus, if there exists a controller (of any state dimension) which gives closed loop

H∞ norm less than γ, then there exists a controller with state dimension nc ≤ nx which

achieves the same performance. In words, the algorithm gives the optimal controller of the

form given in Equation 5.10. Finally, note that the proof given above can be easily extended

to systems with more than 2 modes.

5.7 Numerical Examples

In this section, we show how the tools in this chapter can be used for analysis of

and controller synthesis for networked control systems. The first example is a simple second

order example. This example is not physically motivated, but it displays the structure of

the optimal H∞ controller and gives some comparison to the LQG results obtained in

the previous chapter. Next, we synthesize an optimal controller for the vehicle following

problem presented in the previous chapter. In the next chapter, we use the H∞ matrix

condition (Equation 5.6) to analyze the effect of communication delays on the formation

flight performance.
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5.7.1 Controller Synthesis for a Second Order System

We will use a randomly generated second order model in the form of Equation 5.9

to study the LMI condition of the previous section:










x(k + 1)

z(k)

y(k)











=











A B1 B2

C1 D11 D12

θ(k)C2 θ(k)D21 0





















x(k)

w(k)

u(k)











where x(k) ∈ R2, u(k) ∈ R, y(k) ∈ R, z(k) = [xT (k) εuu(k)]
T ∈ R3 and w(k) ∈ R3. εu is a

scalar used to weight the penalty we are putting on the control input. The state matrices

are given by:

A =







−0.2656 −2.2023

−1.1878 0.9863







B1 =







εd 0 0

0 εd 0







B2 =







−0.5186

0.3274







C1 =











1 0

0 1

0 0











D11 =











0 0 0

0 0 0

0 0 0











D12 =











0

0

εu











C2 =

[

0.2341 0.0215

]

D21 =

[

0 0 εn

]

The error vector, z(k), has entries to penalize each state and the control effort. The distur-

bance vector, w(k), includes plant disturbances which inject into each state equation and a

disturbance which injects into the measurement to model sensor noise. The scalars εd and

εn can be used to weight the size of these disturbances. For this simple problem, we use

εd = εn = .1 and εu = 1. Finally, we note that the eigenvalues of this system are -1.3739

and 2.0946. Thus feedback is necessary to stabilize the system and we expect that a very

high packet loss rate will make this impossible. In fact, we know from the previous chapter
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(Theorem 4.3) that no second-moment stable estimator exists if p ≥ 1/ρ(A)2 ≈ 0.228. The

separation theorem (Theorem 4.3) that we applied for the vehicle following problem also

holds for this control problem. Thus if p ≥ 0.228, then no controller exists which stabilizes

the closed loop system.

The LMI condition given in Theorem 5.4 is used to find the H∞ optimal controller

for each packet loss rate. Figure 5.3 shows the performance of the optimal H∞ controller as

a function of the packet loss rate, p. The H∞ gain has been normalized to give a value of 1

for the nominal case of no packet losses, p = 0. For packet loss rates above p∗ = 0.121, the

LMI condition is infeasible. Thus we conclude that no stabilizing controller of the form given

in Equation 5.10 exists above this critical packet loss rate. However, we cannot conclude

that a stabilizing controller does not exist. A time-varying and/or nonlinear controller may

exist to stabilize the system for p ∈ (0.121, 0.228). Recall that the design procedure in

Section 5.6 restricts the class of controllers and does not use the knowledge of θ(k) to the

fullest extent possible. If we conjecture that p < 0.228 is a necessary and sufficient condition

for stabilizability, then (0.121, 0.228) represents the conservativeness in this control design

procedure.

Both conditions, p∗ < 0.228 or p∗ < 0.121, give a hard constraint which the

network must satisfy for the associated design procedure to return a stabilizing controller.

A more practical constraint is given by the optimal performance vs. packet loss rate curve.

Figure 5.3 shows that we can obtain reasonable performance, relative to the nominal case

of p = 0, for packet loss rates under 0.1. However, the performance curve has a sharp

knee around p = .11 which means that, although it may be possible to find a stabilizing
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controller, the performance will be quite poor. For the LQG controller, we have yet to

develop a tractable method to compute the optimal cost.
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Figure 5.3: Normalized H∞ Performance vs. Packet Loss Rate

We now investigate the structure of the controller produced by the H∞ optimiza-

tion. For p = .12, the following controller was found:

xc(k + 1) = Ac,θ(k)xc(k) +Bc,θ(k)y(k)

u(k) = Cc,θ(k)xc(k) (5.18)

where the controller matrices are:

Ac0 =







−0.0143 −0.2359

−1.3479 −0.2549







Bc0 =







0

0







Cc0 =

[

0.4815 3.7916

]

Ac1 =







−1.2813 −0.3529

0.6178 −0.0749







Bc1 =







−5.4482

8.3861







Cc1 =

[

0.4814 3.7916

]

Controller 0 is used when the packet is dropped and controller 1 is used when the packet

is received. It can be verified that the controller has an observer based structure where
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Bci are the observer gains and Cci are the feedback gains: Ac0 ≈ A − B2Cc0 and Ac1 ≈

A+Bc1C2−B2Cc1. In other words, the controller state, xc(k), is an estimate of −x(k). We

note that Bc0 = [0 0]T and Bc1 is an observer gain making A+Bc1C2 stable. This controller

structure is very intuitive. When a packet is received the estimates of the original plant

states are updated with the plant A and corrected with the observer gain Bc1. When a

packet is dropped, the observer gain Bc1 is set to zero and the estimates are updated using

our knowledge of A, which is the best we can do when no new sensor information arrives.

Finally, Cc0 ≈ Cc1. In words, once our best estimate of the state is obtained, there is no

advantage to varying the feedback gain based on the loss or arrival of sensor information.

The optimization has arrived at a controller that has a separation property.

We also remark that the observer gains are adjusted as the packet loss rate changes.

For example, the observer gain for p = 0.01 is given by: Bc1 =

[

−4.7403 7.4543

]T

. This

observer gain has decreased when compared to the gains for p = 0.12. The interpretation

is that for higher packet loss rates, the observer must weight measurements more heavily.

This makes sense because the time until another correct packet is received may be large if

the packet loss rate is high.

5.7.2 Controller Synthesis for Vehicle Following

In this section, we synthesize a controller for the vehicle following problem de-

scribed in the previous chapter. Figure 5.4 depicts the problem and notation for two cars.

Let x1 and x2 denote the longitudinal positions of a leader and a follower vehicle, respec-

tively. The goal is to have vehicle 2 follow a distance δ behind vehicle 1. In other words, the

controller should regulate the spacing error, e := x1 − x2 − δ, to zero. We will use the LMI
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condition derived in Section 5.6 to design a controller assuming the vehicles are governed

by linear dynamics for i = 1, 2:

ẍi = ai

τ ȧi + ai = ui

where ai is the acceleration of the vehicle and ui is the desired acceleration. The first order

dynamics between ui and ai are due to the throttle/brake actuator dynamics. The time

constant for these dynamics is τ = 0.1 seconds. We discretized these dynamics by sampling

the output every T seconds and applying a first-order hold at the input. The notation for

discrete time vehicle model is given by:

x̄i(k + 1) = Ad,ix̄i(k) +Bd,iui(k) for i = 1, 2

where x̄i(k) ∈ R3 is the state of vehicle i.

x2

x1
δ e

Figure 5.4: Vehicle Following Problem

We will assume that both vehicles can measure their full state: position, velocity

and acceleration. Typically a radar is used to measure the vehicle spacing, but we will

assume that every T seconds vehicle 1 communicates its state information across a wireless

link. In this scenario, we desire a controller which uses the communicated state information

to regulate the error to zero. The vehicle following problem can be placed in the form of
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Equation 5.9:










x(k + 1)

z(k)

y(k)











=











A B1 B2

C1 D11 D12

C2,θ(k) D21,θ(k) 0





















x(k)

w(k)

u2(k)











(5.19)

where x(k) := [x̄1(k)
T x̄2(k)

T ]T ∈ R6 and y(k) := [x̄1c(k)
T x̄2(k)

T ]T ∈ R6. x̄1c(k) is the

state information communicated from vehicle 1 to the controller on-board vehicle 2. We

again use the Bernoulli communication model (Equation 4.1):

x̄1c(k) = θ(k)x̄1(k) (5.20)

where θ(k) is a Bernoulli process given by Pr[θ(k) = 0] = p and Pr[θ(k) = 1] = 1 − p.

The error vector, z(k), penalizes the spacing error and the weighted control effort: z(k) :=

[x̄1(k)
T − x̄2(k)

T εuu2(k)] ∈ R2. The weighting on the control effort is given by εu = 1.0.

The disturbance vector is given by: w(k) := [u1(k) d2(k) n
T
1 (k) n

T
2 (k)]

T ∈ R8. This

vector includes the lead vehicle acceleration (u1(k) ∈ R), a plant disturbance on vehicle 2

(d2(k) ∈ R), and sensor noises for all measurements (n1(k) ∈ R3 and n2(k) ∈ R3). The

vehicle 2 plant disturbance is scaled by εd = 0.1 and all the sensor noises are scaled by

εn = 0.1. Given all these definitions, the generalized plant matrices are given by:

A :=







Ad,1 0

0 Ad,2







B1 :=







Bd,1 0 0

0 εdBd,2 0







B2 :=







0

Bd,2







C1 :=







1 0 0 −1 0 0

0 0 0 0 0 0







D11 := 0 D12 :=







0

εu







C2,θ(k) =







θ(k)I 0

0 I







D21,θ(k) =







0 εnθ(k)I 0

0 0 εnI






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Note that no controller can be make this plant SMS because vehicle 1 is unstable (it has two

poles at z = 1) and uncontrollable from u2(k). To solve this problem, we use a technique

that is common to handle unstable weights in H∞ design problems [56]. The model for

vehicle 1 is altered slightly by moving the unstable poles just inside the unit disk.

Figure 5.5 shows the performance of the H∞ optimal controller as a function of

the packet loss rate, p. The performance has been normalized by the nominal performance

at p = 0, so this curve shows the performance degradation caused by the packet losses. The

model for vehicle 1 is marginally stable (although we approximate it with a stable plant). By

the results in the previous chapter, it is possible to find a stabilizing controller for any p ∈

[0, 1). Even though stabilizing controllers always exist, Figure 5.5 shows that performance

rapidly degrades for packet loss rates above p = 0.9 when T = 0.02 seconds. It may seem

surprising that we can obtain good performance relative to the nominal performance for

packet loss rates up to 90%. Since we are assuming communication every T=20 milliseconds,

a packet loss rate of 90% still implies that new information will arrive, on average, every

200 milliseconds. This update rate is still quite fast relative to the overall dynamics of

the vehicle motion. Figure 5.5 also shows that the knee in the performance curve shifts

left as the sample time increases. This shows that if we send information less often, then

we must have a higher probability of receiving a correct packet in order to maintain good

performance. As discussed in Section 4.5, the sample rate is tied to the required network

bandwidth. Plotting these curves for several sample rates shows the trade-off between

packet loss rate and network bandwidth.
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Chapter 6

Formation Flight of Unmanned

Aerial Vehicles

6.1 Introduction

As mentioned in Chapter 3, cooperative control of unmanned vehicles has received

significant interest due to a variety of applications. At the University of California, Berkeley,

the goal of the BEAR project is to use autonomous vehicles to perform complex missions.

Modeling of Unmanned Aerial Vehicles (UAVs), hover control, and wavepoint navigation

have been completed [86, 87]. More complex tasks include using UAVs in pursuit-evasion

games [46] and implementing a vision-based landing system [83]. The BEAR project has

focused on rotorcraft-based platforms for their UAV research. The advantages of small-scale

helicopters for UAV research include their agility and their vertical take off and landing

capability. Moreover, the ability to hover is useful in many applications. Along with these
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advantages come several characteristics that make small-scale helicopters difficult to model

and control. Specifically, the dynamics are nonlinear, unstable, and subject to complex

aerodynamic effects. These aspects make the benefits of small-scale helicopters difficult to

obtain.

In the remainder of this chapter, we will describe a linear model of a small-scale

helicopter obtained using time-domain system identification methods. This model is valid

for hovering and low-velocity maneuvers. We will also present a controller, designed by

D. Shim [87], that is used for wavepoint navigation of a single UAV. In Section 6.3, this

controller is used in the design of a formation flight controller. The formation flight con-

troller is constructed using the procedure detailed in Section 3.5 and results in a mesh stable

design. This formation controller requires the UAVs to communicate information across a

wireless network. In Section 6.4, we analyze the effect of communication packet losses using

the results obtained in Chapter 5. In the final section, we present some conclusions of this

work.

6.2 Modeling and Control of a Small-Scale Helicopter

In this section, we review some results for modeling and control of small-scale

helicopters. In particular, we describe the work done by D. Shim as part of the BEAR

project [87]. The BEAR fleet consists of several helicopters of various sizes, but we will

focus on the modeling and control of a Yamaha R-50 (shown in Figure 6.1). More details

on the results contained in this section can be found in [87] and the references therein.

As noted in [60], scaling down a helicopter increases its bandwidth and makes
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Figure 6.1: Yamaha R-50 Helicopter

it harder to control. Thus stabilizer bars are common in small-scale helicopters to add

damping to the pitch and roll dynamics. This stabilizer bar is a unique feature of small-

scale helicopters and prevents the use of full size helicopter models. Mettler, et.al. have

developed a parametric model for a Yamaha R-50 helicopter that includes the effect of this

stabilizer bar [60]. The authors then used a frequency domain identification technique to

fit the model parameters. Shim, et.al. used the model proposed in [60], but applied a

time-domain system identification technique to find the best parameter values for a Kyosho

small-scale helicopter [86] and a Yamaha R-50 [87]. These linear models are valid for

hovering and low velocity maneuvers. The model of the Yamaha R-50 is given by:

ẋ1 = A1x1 +B1ū (6.1)

where the state vector, x1, and control input, ū, are given by:

x1 := [u v p q φ θ a b w r rfb]
T

ū := [δlat δlon δcol δped]
T

u, v, and w are the longitudinal, lateral, and vertical speeds (in feet/sec) in the helicopter
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coordinate frame. p, q, and r are the roll, pitch, and yaw rates (in rads/sec) in the helicopter

frame. φ and θ are the roll and pitch of the helicopter. a and b are the longitudinal and

lateral rotor flapping angles. rfb is a yaw rate feedback term in the dynamics. δlat and δlon

correspond to the cyclic lateral and longitudinal control inputs, respectively. These two

inputs basically control the lateral and longitudinal motions. δcol and δped are the collective

and directional inputs. These inputs basically control the vertical motion and the helicopter

heading.

Let g := 32.2 ft/sec2 be the gravitational constant. The state matrices are given

by:

A1 =











−0.126 0 0 0 0 −g −g 0 0 0 0
0 −0.425 0 0 g 0 0 g 0 0 0

−0.168 0.087 0 0 0 0 36.705 161.109 0 0 0
−0.082 −0.052 0 0 0 0 63.576 −19.493 0 0 0

0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 −3.444 0.829 0 0 0
0 0 −1 0 0 0 0.361 −3.444 0 0 0
0 0 0 0 0 0 −38.995 9.640 −0.760 8.423 0
0 0 −1.33 0 0 0 0 0 0.057 −5.511 −44.873
0 0 0 0 0 0 0 0 0 1.816 −11.021











B1 =










0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−0.842 2.823 0 0
−2.409 −0.351 0 0

0 0 70.504 0
0 0 23.626 44.873
0 0 0 0










Note that the velocities and angular rates are given in the helicopter frame. To obtain

positions in an earth-fixed frame, a nonlinear coordinate rotation must be used. For the

purposes of this chapter, we assume that the UAV is sufficiently close to hovering conditions

that this rotation can be neglected. Since the model obtained above is only valid for low

speed maneuvers, this is not a severe limitation beyond the current assumptions. However,

this assumption must clearly be relaxed before testing formation flight at significant cruising

speeds. At any rate, given this assumption, the positions (x, y, z) and heading (ψ) in an
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earth-fixed frame can be obtained by integrating the velocities (u, v, w) and yaw rate (r).

Augmenting these integrators on to the state equations given in Equation 6.1 gives:

˙̄x = Ax̄+Bū (6.2)

where x̄ := [xT1 x y z ψ]T and ū is defined above. The augmented state matrices are defined

as:

A :=







A1 011×4

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0

04×4







B :=







B

04×4







Next we discuss a controller proposed and experimentally tested by by D. Shim

[87]. First, note that the helicopter has six degrees of freedom: three positions and three

Euler angles. Since the helicopter has only four control inputs, it is an underactuated sys-

tem. The four inputs will be used to control the three positions and the heading of the

UAV. Physically, the helicopter moves longitudinally by pitching and laterally by rolling.

Thus, the remaining two degrees of freedom, roll and pitch, are constrained by the heli-

copter motion. The helicopter dynamics can be roughly broken down into four subsystems:

roll/lateral, pitch/longitudinal, yaw, and heave (vertical) dynamics. There is significant

coupling between the channels, but Shim stabilizes each subsystem independently with a

proportional-derivative (PD) controller. The justification is that this control structure is

simple, intuitive, and has been effectively tested in experimental flights. The control law
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designed and tested by Shim [87] is given by:

δlat = −Kφφ+Kv(vd − v) +Ky(yd − y)

δlon = −Kθθ +Ku(ud − u) +Kx(xd − x) (6.3)

δcol = Kw(wd − w) +Kz(zd − z)

δped = Kψ(ψd − ψ)

The reference trajectories are denoted by the subscript ’d’. The gains used in the controller

are given by: Kφ = −0.55, Kv = −0.02, Ky = −0.01, Kθ = 0.55, Ku = −0.02, Kx = −0.01,

Kw = 0.035, Kz = 0.12, and Kψ = 1.

A block diagram of the feedback system is shown in Figure 6.2. Ca ∈ R2×15 is

defined so that
[
φ
θ

]
= Cax̄. The inner loop stabilizes the attitude dynamics of the helicopter

and the feedback gain is given by Ka :=

[
Kφ 0
0 Kθ
0 0
0 0

]

. We define the plant with this stabilizing

inner loop as Hstab(s) := C (sI − (A−BKaCa))
−1B. The outer loop attempts to track a

desired reference trajectory. As noted above, we can only use the inputs to control four of

the helicopter’s six degrees of freedom. The output matrix, C, is defined to return the states

that we will control: [y x z ψ]T . K(s) is a 4×4 transfer function matrix with PD controllers

on the diagonal. Even though the PD controllers are not proper, they are realizable because

we have access to the velocity measurements. Thus we can implement the PD controllers

by feeding back the velocities and yaw rate. With this in mind, K(s) is given by:

K(s) :=

[
Kvs+Ky 0 0 0

0 Kus+Kx 0 0
0 0 Kws+Kz 0
0 0 0 Kψ

]

(6.4)

Experimental test results of a Yamaha R-50 performing a low speed maneuver

using this control law are shown in [87]. A simulation of a low speed maneuver is shown
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Figure 6.2: Feedback Block Diagram for UAV and Controller

in Figure 6.3. The reference trajectory, shown in the right subplot, starts from rest and

accelerates up to a cruising speed of 3 ft
sec in the x-direction. The desired heading is kept

constant, ψd ≡ 0, as are yd and zd. As discussed above, the controller, K(s), can be imple-

mented as a static gain when the velocities and yaw rate are fed back. In this simulation,

the plant is sampled every 100msec and the output of this static gain controller is zero-order

held. The right subplot of Figure 6.3 shows the tracking response, x(t), with this discretized

implementation of the PD controller. The left subplot shows the cyclic longitudinal control

effort, δlon. All other control inputs and state variables remain small and are not shown.

In the next section, we use this controller to design a formation flight control law.

6.3 Formation Controller

In this section we design a control law to coordinate a mesh of UAVs. The mesh

consists of 9 UAVs as depicted in Figure 6.4. Let pi,j(t) ∈ R4 be the output of the ijth

vehicle: Pi,j(s) := Hstab(s)Ui,j(s). As shown in Figure 6.2, pi,j(t) ∈ R4 contains the three

global positions and the heading of the ijth vehicle. We use the spacing errors defined in
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Figure 6.3: Time domain plots of reference tracking: Left: Control effort: Cyclic longitudi-
nal input (δlon(t)). Right: Reference (xd(t)) and UAV (x(t)) trajectories in the x-direction.

Equation 3.1:

εRi,j(t) = pi,j−1(t)− pi,j(t)− δRi,j(t) for 1 ≤ i ≤ N, 1 < j ≤ N

εCi,j(t) = pi−1,j(t)− pi,j(t)− δCi,j(t) for 1 < i ≤ N, 1 ≤ j ≤ N

We also use the averaged spacing error, ei,j = (εRi,j + εCi,j)/2, defined in Chapter 3. As

shown in Figure 6.4, the desired spacing vectors are given by: δR := [−10ft 0 0 0 ]T and

δC := [ 0 10ft 0 0 ]T . The control law presented in the previous section (Equation 6.4), can

be used as a formation controller:

Ui,j(s) = K(s)Ei,j(s) (6.5)

From the theory developed in Chapter 3, we expect that this control law, which

uses only preceding vehicle information, will perform poorly. Recall that the output comple-

mentary sensitivity function is defined as To(s) := [I +Hstab(s)K(s)]−1H(s)stabK(s). Since

Hstab(s) is of the form Hstab(s) =
1
sH̃stab(s), closed loop stability implies To(0) = I. There-

fore, low frequency errors are not attenuated as they propagate through the mesh. Note
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Figure 6.4: Formation of 9 UAVs

that the UAV has internal force feedbacks due to aerodynamic effects and hence Hstab(s)

does not have two free integrators. Thus Theorem 3.1 technically does not apply here.

However, Figure 6.5 shows that error amplification will still occur. This figure shows plots

of ρ[To(jω)] and σ̄ (To(jω)). σ̄ (To(jω)) = 2.27 at ω0 = 2.44 radssec . This is the peak ampli-

fication from one vehicle to its neighbor. ρ[To(jω)] = 1.77 at ω0 = 1.15 radssec . This is the

peak geometric amplification in a large mesh. Moreover, the eigenvector that achieves the

spectral radius is [−0.08+ 0.32i; 0.94; 0.01− 0.01i; 0]T . This eigenvector is almost aligned

with the x-direction. In other words, the low frequency content of a desired trajectory of

the following form: (yd(t), xd(t), zd(t), ψd(t)) = (const, xd(t), const, const) will be amplified

geometrically as it propagates through the mesh.

Figure 6.6 confirms our expectations. A mesh of nine UAVs was simulated with the

lead vehicle tracking the reference depicted in Figure 6.3. This reference trajectory attempts

to bring the mesh up to a cruising speed of 3 ft
sec in the x-direction. The lead vehicle follows

this reference trajectory using the control law in Equation 6.4. Each follower uses the

control law in Equation 6.5 to maintain their position in the formation. All controllers use
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2.27. achieved at ω0 = 1.15 radssec and 2.44 radssec , respectively. The eigenvector that achieves
the spectral radius is [−0.08 + 0.32i; 0.94; 0.01− 0.01i; 0]T .

a sample time of 100msec. The right subplot of Figure 6.6 shows the spacing errors in the

x-direction. These errors are larger for vehicles that are farther from the leader. The right

subplot shows the cyclic longitudinal control input (δlon(t)) for the mesh. Similarly the

control effort is amplified for vehicles far from the leader.

To remove this amplification, we use the procedure described in Section 3.5. Fig-

ure 6.5 shows that ‖To(s)‖∞ = 2.27. We choose λ := 0.4 < 1
2.27 and define a control law

that depends on lead and preceding vehicle information:

Ui,j(s) = Kp(s)
︸ ︷︷ ︸

:=λK(s)

Ei,j(s) + Kl(s)
︸ ︷︷ ︸

:=(1−λ)K(s)

(

P1,1(s)− Pi,j(s)−
(i− 1)δC + (j − 1)δR

s

)

(6.6)

Recall that Tlp(s) := [I + Hstab(s) (Kp(s) +Kl(s))]
−1 Hstab(s)Kp(s). By construction,

Tlp(s) = λTo(s) and hence inequality (a) holds in the following relation:

ρ[Tlp(jω)] ≤ σ̄ (Tlp(jω))
(a)

≤ λ‖To(s)‖∞
(b)
< 1

Inequality (b) follows by our choice of λ. Using the control law in Equation 6.6, we can
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and (3,3) spacing errors in the x-direction

ensure that errors and control effort are attenuated as they propagate through the mesh.

Figure 6.7 shows the simulation of the mesh when all followers use the control law in

Equation 6.6. This figure shows that control effort and spacing errors are attenuated as we

expect. Note that the axes are the same scale in Figures 6.6 and 6.7.

0 5 10 15 20 25
−0.2

−0.1

0

0.1

0.2

Time (sec)

δ lo
n
(t

)

Control Effort: δ
lon

(t)

δ
lon,12

(t)

δ
lon,33

(t)

0 5 10 15 20 25

−6

−4

−2

0

2

4

6

Time (sec)

X
 s

p
a

ci
n

g
 e

rr
o

r 
(f

t)

Mesh Spacing Errors

e
x,12

(t)

e
x,33

(t)

Figure 6.7: Time domain plots of predecessor following control law: Left: Cyclic longitudinal
control input (δlon(t)) for (1,2), (1,3), (2,3), and (3,3) vehicles. Right: (1,2), (1,3), (2,3),
and (3,3) spacing errors in the x-direction

We could further decrease λ to enhance error attenuation. In the limit, λ = 0
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decouples the vehicles so that each follow the leader independent of their neighbors. As

explained in Chapter 2, this strategy is unsafe in a tight formation. Thus we should choose

λ as large as possible to increase the coupling to the neighbors while still ensuring the error

damping property (mesh stability) holds.

6.4 Analysis of Communication Packet Losses

The formation controller designed in the previous section (Equation 6.6) requires

the lead UAV to communicate information to the followers. This information is transmitted

across a wireless network and will be subject to communication packet losses. In this

section, we analyze the effect of these packet losses using the results obtained in Chapter 5.

Specifically, we will measure performance using the H∞ norm and apply Theorem 5.3 to

find the level of performance for a given packet loss rate.

Figure 6.8 shows the generalized plant for the formation of 9 UAVs. The only

disturbance we consider is a velocity command, w, for the lead vehicle. Let Fc(s) :=
1

s+0.01

be an approximate integrator. We discretize Fc(s) at a sample rate of Ts = 100msec

to obtain an approximate discrete-time integrator. F (z) ∈ C4×4 is a diagonal system

with 4 copies of this approximate discrete time integrator on the diagonal. w ∈ `42 is

a velocity command for the lead vehicle and r = F (z)w is the corresponding reference

trajectory. The lead vehicle (i.e. the (1,1) vehicle) in the mesh uses the control law in

Equation 6.4 to follow this reference trajectory. The remaining vehicles in the formation use

the formation controller, Equation 6.6, to maintain their position in the mesh. The overbar

notation in the figure denotes a stacking of all signals in the mesh: ū := [u1,1, . . . , u3,3]
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and ē := [e1,2, . . . , e3,3]. The generalized error vector, z, in Figure 6.8 consist of all spacing

errors and control efforts in the formation. We will measure performance as the H∞ gain

from generalized disturbances to generalized errors. In particular, we are measuring the

gain from the desired velocity trajectory, w, to the resulting errors and control efforts of all

vehicles in the mesh, z.

ee
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p11 p11,C

F(z)F(z)
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uu

Mesh Model: 
Contains 9 UAVs

Figure 6.8: Generalized Plant for a Formation of 9 UAVs

We assume that the UAVs are able to sense their relative positions and range

rates with respect to their neighbors. Each UAV has their own controller that depends

on this sensed information as well as communicated leader information. The (1,2) and

(2,1) followers do not require this communicated information because it is assumed they

can sense the leader motion. Conceptually, all control laws can be stacked into a large

formation control law, KMESH (Figure 6.8). This large formation control law has access

to the reference trajectory, r, all UAV measurements, pij , and the communicated leader

information, p11,C . We can then define KMESH with PD controllers in the proper entries

to represent the control actions of all UAVs. In a slight abuse of notation, we let pij ∈ R8,
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consist of the three positions and the heading of the UAV as well as their derivatives.

This allows us to write KMESH as a constant matrix. This static feedback gain acts at a

sample time of T = 100msec. We assume that every 100msec the leader communicates its

measurements to the followers. All followers either receive a correct version or a corrupted

version of the leader information. Thus the network model consists of two modes depending

on whether the leader information is successfully transmitted or not.

To summarize, the closed loop plant, denoted S, consists of a formation of 9 UAVs.

For each packet loss rate, we measure the gain from the desired velocity trajectory to the

resulting errors and control efforts of all vehicles in the mesh. According to Theorem 5.3,

S is SMS and satisfies ‖S‖∞ < γ if and only if there exists a symmetric matrix G > 0

satisfying the following matrix inequality:






G 0

0 γ2I


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
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2∑
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

G 0

0 I










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Cj Dj






> 0 (6.7)

We can find the H∞ gain for S by minimizing γ subject to this linear matrix inequality.

Since S has large state dimension, the resulting semi-definite programming problem is

time-consuming to solve. An alternative approach is given in Appendix C and is based on

bisection and iterating a Riccati difference equation. We have only proved that this method

gives a lower bound on the true gain, but we conjecture that it actually gives the true cost.

This algorithm is much faster than solving the semi-definite program for problems where

the system has large state dimension.

Figure 6.9 gives the H∞ gain as a function of packet loss rate. There are several

interesting aspects to this plot. For p = 0, the leader information is always received while

for p = 1 the leader information is always lost. For these two particular values of p, the
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network model reduces to a single mode. In this case, we can find the H∞ gain using

standard algorithms for discrete-time systems [4]. The two ’X’ labels on the plot are the

values returned by the µ-tools code. These values are within the the tolerances specified

for the bisection algorithm given in Appendix C. The plot also shows that the performance

rapidly degrades as the packet loss rate increases. Moreover, if the packet loss rate is greater

than 0.50, then we are actually better off not using the information. The dashed line is at

the performance level for the case where leader information is always lost (p = 1). This line

makes it clear that if the packet loss rate is greater than 0.50, then the performance is worse

than if p = 1. This does not necessarily say that the leader information is detrimental if

p ∈ (0.5, 1). However it does say that the leader information is detrimental given the

control structure we have specified. Thus we must be careful when designing control laws

for systems with wireless links in the feedback loop. Finally, we note that this curve was

generated for a sample rate of T = 100msec. Similar to the discussion in Section 4.5, the

network bandwidth (in bits/sec) is tied to the sample rate. Thus, we can generate several

performance curves at different sample rates to find a trade-off between network bandwidth

and packet loss rate.

6.5 Conclusions

The goal of this chapter was to demonstrate the ideas presented in the thesis on a

simple cooperative control problem: formation flight. First, we tried to design a formation

controller via simple extension of a wavepoint controller for a single UAV. This design failed

to be mesh stable and resulted in errors amplifying as they propagated through the mesh.
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Figure 6.9: Normalized H∞ performance vs. packet loss rate for a formation of 9 UAVs

Using the design procedure in Section 3, we were able to design a mesh stable formation

control law. The cost of this design is that leader information must be communicated to

the followers in the formation. In Section 6.4 we analyzed the effect of packet losses in

communicating this lead vehicle information.



137

Chapter 7

Conclusions and Recommendations

This thesis considered a simple coordinated vehicle control problem: formation

flight. The basic question in the design of a formation flight controller is: what should be

communicated and how often should it be communicated? In a simple manner we showed

that many strategies that do not require communication tend to be string or mesh unstable.

That is, errors are amplified as they propagate and hence these strategies are sensitive to

disturbances. This motivated a control design procedure for formation flight that required

communicated leader information. We then determined how often this information must

be communicated for acceptable control. The ’how often’ is determined by the sample rate

of the system as well as the packet loss characteristics of the network. In Chapter 4, we

found theoretical bounds on network performance for a simple vehicle following problem.

These bounds constrain the sample rate and packet loss rate. In Chapter 5, we developed

tools to determine how often information must be communicated in more general networked

control systems. The main tool of interest was a computationally tractable method to find
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the closed loop performance (measured using the H∞ gain) as a function of packet loss

rate. Finally, we applied the control design procedure and the network analysis tool to the

formation flight control problem.

The results presented in this thesis leave several topics open for future research.

Three areas are discussed below.

• Investigate different distributed control architectures: In this thesis, we showed

that some simple distributed control architectures are string / mesh unstable. We

then offered one solution: the communication of leader information. A more general

investigation of distributed control architectures is required. This would show the

performance benefit gained as more information is communicated. As discussed in

Chapter 3, one approach is to study the ties with graph theory. Another approach

is to improve upon the results in Chapter 5. In Section 5.6, we turned the central-

ized control design problem for NCS into a convex optimization. Instead, one could

solve this problem with various structural constraints on the controller. This will give

intuition on the effect of extra communication.

• Explore design aspects for networked control systems: This is a broad head-

ing and it encompasses several ideas for future work. First, a systematic procedure to

model networks (both wired and wireless) for the purpose of control design should be

pursued. A stochastic model of the packet delivery characteristics seems appropriate.

A second area for future research involves coding for networked control systems. Cur-

rent coding schemes try to minimize the probability of packet errors. For control, it

is more important that the coding scheme keeps the difference between the received
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and delivered packets small. There are also several ways to generalize the results in

this thesis. At the end of Chapter 4, possible extensions of the theoretical results

are given. Furthermore, the tools developed in Chapter 5 can be enhanced by ex-

tending the results to general Markov Jump Linear Systems. Moreover, the example

given in Section 6.4 is of moderate size and it is computationally difficult to solve.

Numerical algorithms for the analysis and design of large networked control systems

should be developed. Finally, the joint design of the network and controller should be

investigated. Some work of this nature has recently been done by Xiao, et.al. [107].

• Experimentally verify the theoretical results: The example presented in Chap-

ter 6 verified the theoretical results to some extent, but these results should be ex-

perimentally verified. There is an experimental facility at Berkeley to perform a

small-scale formation flight, but several steps will need to precede this experiment.

First, the system modeling should be redone to obtain a linear model valid for cruise

flight conditions. Second, simulations should be performed with the inclusion of the

nonlinear rotation from body-fixed to earth-fixed coordinates. From this we can ver-

ify or disprove the assumption that this rotation can be neglected. At this point,

a small-scale formation flight test can be performed. Unfortunately, the unmanned

helicopters are an expensive testbed and are not ideal for testing distributed control

algorithms. Another avenue for experimental verification of the theoretical results is

the construction of a robot testbed. This is currently being pursued.
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Appendix A

Matrix Sequence Lemma

In this appendix, we prove a lemma concerning sequences of matrices. This lemma

is used to bound the maximum singular value of a transfer function matrix in Theorem 2.2.

Lemma A.1 Given any complex numbers, a, b ∈ C, define the following sequence of ma-

trices:

XN :=



















1

b 1

ab b 1

...
. . .

. . .
. . .

aN−2b · · · ab b 1



















∈ CN×N

If |a| < 1 then σ̄ (XN ) ≤ 1 + |b|
1−|a| for all N .

Proof. For any matrix, ρ(A) ≤ ‖A‖1 where ρ(A) is the spectral radius and ‖A‖1 is the

induced 1-norm. Applying this fact to A = X∗
NXN gives inequality (a) in the following
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upper bound of σ̄ (XN ) [40]:

σ̄ (XN )
2

(a)

≤ ‖X∗NXN‖1 ≤ ‖X∗N‖1‖XN‖1 = ‖XN‖∞‖XN‖1 (A.1)

For all N , ‖XN‖1 = ‖XN‖∞ = 1 + |b|(1−|a|N−1)
1−|a| . If |a| < 1 then σ̄ (XN ) ≤ 1 + |b|

1−|a| ∀N .

This lemma can also be proved using an interesting dynamical system interpreta-

tion. Consider the following discrete time dynamical system:







x(k + 1)

y(k)






=







a b

1 1













x(k)

u(k)






, x(1) = 0 (A.2)

This discrete time system is intimately related to the sequence of matrices, XN . Let uN

and yN be vectors containing the input and output sequences for this discrete time system

from time 1 up to time N . One can easily show that yN = XNuN .

The transfer function for this system is G(z) := b
z−a +1. Its H∞ norm is given by:

‖G(z)‖∞ := sup
0≤ω≤2π

|G(ejω)|

This norm has an input-output gain interpretation. We define `2 as the set of all sequences,

u, such that ‖u‖2 :=
√
[∑∞

k=1 u
2
k

]
<∞. The H∞ norm for a discrete time system is equal

to its induced `2 − `2 norm [23]. Therefore, if u and y are the input and output sequences

and u ∈ `2, then ‖y‖2 ≤ ‖G(z)‖∞‖u‖2. Apply this result ( inequality (a) ) to any input

sequence such that u(k) = 0 for k > N :

‖yN‖2 ≤ ‖y‖2
(a)

≤ ‖G(z)‖∞‖u‖2 = ‖G(z)‖∞‖uN‖2

It follows that for all N, σ̄ (XN ) ≤ ‖G(z)‖∞. Since |a| < 1, the discrete time system in

Equation A.2 is stable and its H∞ norm is finite. A simple upper bound on ‖G(s)‖∞ gives
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a uniform bound on σ̄ (XN ):

σ̄ (XN ) ≤ ‖G(z)‖∞ ≤ 1 +
|b|

1− |a| (A.3)

¥

In this appendix, we prove two lemmas related to the Riccati Difference Equation.

These lemmas are used in proving theoretical bounds for networked control systems.

Lemma A.2 Consider the following Riccati Difference Equation:

M(k + 1) = AM(k)AT +Q (A.4)

−AM(k)C(k)T [C(k)M(k)C(k)T + V ]−1C(k)M(k)AT

M(0) = M

where A,M,Q ∈ Rnx×nx, C(k) ∈ Rny×nx, and V ∈ Rny×ny . Furthermore, V,M > 0 and

Q ≥ 0. Then ∀N , there exists ṼN > 0, Q̃N ≥ 0, and R̃N such that M(N + 1) and M are

related as follows:

M(N + 1) = AN+1M(AT )N+1 + Q̃N (A.5)

−
[

ONM(AT )N+1 + R̃N

]T [

ONMOTN + ṼN

]−1 [

ONM(AT )N+1 + R̃N

]

ON is the time-varying observability matrix (not necessarily full column rank) from time 0

to time N :

ON =






C(0)
C(1)A

...
C(N)AN




 (A.6)

Moreover, ON , ṼN , Q̃N , and R̃N depend only on A, Q, V and C(0),. . .,C(N).
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Proof. The following equality is proved by induction:

M(k + 1) = Ak+1M(AT )k+1 +
k∑

j=0

AjQ(AT )j −
[

OkM(AT )k+1 +
∑k

j=1Oj,kQ(AT )k+1−j
]T

·

[

OkMOTk + Vk +
∑k

j=1Oj,kQO
T
j,k

]−1 [

OkM(AT )k+1 +
∑k

j=1Oj,kQ(AT )k+1−j
]

(A.7)

where Vk and Oj,k (k ≥ j) are defined as:

Vk =

[
V 0
. . .

0 V

]

∈ R(k+1)ny×(k+1)ny , Oj,k =

















0ny×nx

...

0ny×nx







j

C(j)

...
C(k)Ak−j

















∈ R(k+1)ny×nx

Oj,k is just the time-varying observability matrix from time j up to time k with an appro-

priate block of zeros. Vk is a block diagonal matrix with k + 1 copies of V on the diagonal

blocks. For example, O0,N = ON and V0 = V .

For k = 0, Equation A.7 follows directly from Equation A.4. Next make the

induction assumption that Equation A.7 holds for k = N − 1 and prove that it must hold

for k = N as well. M(N + 1) can be written in terms of M :

M(N + 1)
(a)
=AM(N)AT +Q

−AM(N)C(N)T [C(N)M(N)C(N)T + V ]−1C(N)M(N)AT

(b)
=A

(
S − LTX−1L

)
AT +Q

−A
[
S − LTX−1L

]T
C(N)TZ−1C(N)

[
S − LTX−1L

]T
AT
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where equality (a) follows from Equation A.4. Equality (b) follows from the induction

assumption that Equation A.7 holds for k = N−1 and the notationM(N) = S−LTX−1L:

S
.
= ANM(AT )N +

N−1∑

j=0

AjQ(AT )j

X
.
= ON−1MOTN−1 + VN−1 +

N−1∑

j=1

Oj,N−1QO
T
j,N−1

L
.
= ON−1M(AT )N +

N−1∑

j=1

Oj,N−1Q(AT )N−j

Z
.
= C(N)M(N)C(N)T + V = C(N)

(
S − LTX−1L

)
C(N)T + V

Grouping terms appropriately yields:

M(N + 1) =ASAT +Q

−A
[

L
C(N)S

]T [X−1+X−1LC(N)TZ−1C(N)LTX−1 −X−1LC(N)TZ−1

−Z−1C(N)LTX−1 Z−1

] [
L

C(N)S

]

AT

=AN+1M(AT )N+1 +





N∑

j=0

AjQ(AT )j





−A
[

L
C(N)S

]T [ X LC(N)T

C(N)LT C(N)SC(N)T+V

]−1 [
L

C(N)S

]

AT (A.8)

The second equality follows from a version of the Matrix Inversion Lemma [2]. Replace the

temporary variables (S,X,L, Z) with their definitions given above to obtain the following

two relations:

[
L

C(N)S

]

AT =
[

ON−1M(AT )N+1

C(N)ANM(AT )N+1

]

+

[ ∑N−1
j=1 Oj,N−1Q(AT )N−j

C(N)
∑N−1
j=1 AN−jQ(AT )N−j

]

AT +

[
0

C(N)Q

]

AT

= ONM(AT )N+1 +
N∑

j=1

Oj,NQ(AT )N+1−j (A.9)
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[
X LC(N)T

C(N)LT C(N)SC(N)T+V

]

=

[
ON−1MOTN−1 ON−1M(AT )NC(N)T

C(N)ANMOTN−1 C(N)ANM(AT )NC(N)T

]

+
[
VN−1 0

0 V

]

+
N−1∑

j=1

[
Oj,N−1QO

T
j,N−1 Oj,N−1Q(AT )N−jC(N)T

C(N)AN−jQOTj,N−1 C(N)AN−jQ(AT )N−jC(N)T

]

+
[

0 0
0 C(N)QC(N)T

]

(A.10)

= ONMOTN + VN +
N∑

j=1

Oj,NQO
T
j,N

Equations A.8, A.9, and A.10 show that Equation A.7 holds for k = N . By induction,

Equation A.7 holds for all k.

Finally, Equation A.5 follows from Equation A.7 with the following defintions:

Q̃N =
N∑

j=0

AjQ(AT )j

R̃N =
N∑

j=1

Oj,NQ(AT )N+1−j

ṼN = VN +
N∑

j=1

Oj,NQO
T
j,N

Note that Q̃N ≥ 0 and ṼN > 0 since Q ≥ 0 and V > 0. Furthermore, ON , ṼN , Q̃N , and

R̃N depend only on A, Q, V and C(0),. . .,C(N) as claimed. ¥

Lemma A.3 We again use the Riccati Difference Equation (Equation A.4) and the as-

sumptions given in Lemma A.2. If ON is full column rank (i.e. has rank = nx) then there

exists a matrix, U , which is independent of M such that M(N + 1) ≤ U .
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Proof. Lemma A.2 gives the relation betweenM(N+1) andM (Equation A.5). Multiplying

out the quadratic term, this relation can be written as:

M(N + 1) =

(

Q̃N − R̃TN
[

ONMOTN + ṼN

]−1
R̃N

)

+AN+1

(

M −MOTN

[

ONMOTN + ṼN

]−1
ONM

)

(AT )N+1 (A.11)

−2R̃TN
[

ONMOTN + ṼN

]−1
ONM(AT )N+1

We upper bound the terms on each line of this relation. Since V,M > 0, the first line can

be upper bounded by Q̃N . Next we upper bound the term on the second line. Let O†N be

the left inverse of ON . The left inverse exists since ON is full column rank by assumption.

Use O†N to obtain the following matrix equality:

M −MOTN

[

ONMOTN + ṼN

]−1
ONM

=
{

O†N

[

ONMOTN + ṼN

]

−MOTN

}[

ONMOTN + ṼN

]−1
ONM (A.12)

= O†N ṼN
[

ONMOTN + ṼN

]−1
ONM

The term on the second line of Equation A.11 can now be upper bounded using this matrix

equality and properties of the maximum singular value:

σ̄

(

AN+1

(

M −MOTN

[

ONMOTN + ṼN

]−1
ONM

)

(AT )N+1

)

(a)

≤ (σ̄ (A))2N+2 σ̄

(

O†N ṼN
[

ONMOTN + ṼN

]−1
ONM

)

(b)

≤ (σ̄ (A))2N+2 σ̄
(

O†N ṼN
)

σ̄

([

ONMOTN + ṼN

]−1
ONMOTN

)

σ̄

((

O†N

)T
)

(c)

≤ (σ̄ (A))2N+2 σ̄
(

O†N ṼN
)

σ̄
(

O†N

)

Inequality (a) and (b) follow from the submultiplicative property of the maximum singular

value: σ̄ (AB) ≤ σ̄ (A) σ̄ (B) [40]. If two symmetric matrices satisfy A > B ≥ 0 then



161

σ̄
(
A−1B

)
≤ 1. Inequality (c) follows from this fact and σ̄

(
AT
)
= σ̄ (A).

Finally we upper bound the term on the third line of Equation A.11. Again we

apply properties of the maximum singular value:

σ̄

(

−2R̃TN
[

ONMOTN + ṼN

]−1
ONM(AT )N+1

)

≤ 2σ̄
(

R̃TN

)

σ̄

([

ONMOTN + ṼN

]−1
ONMOTN

)

σ̄
(

(O†N )
T (AT )N+1

)

≤ 2σ̄
(

R̃N

)

σ̄
(

AN+1O†N

)

Combining these three upper bounds, we conclude that M(N) ≤ U where U is defined by:

U = Q̃N + (σ̄ (A))2N+2 σ̄
(

O†N ṼN
)

σ̄
(

O†N

)

· Inx + 2σ̄
(

R̃N

)

σ̄
(

AN+1O†N

)

· Inx

Inx is a nx × nx identity matrix. Again, this upper bound depends only on N , A, Q, V

and C(0),. . .,C(N). In other words, M(N) is bounded by a matrix which is independent of

M . In terms of the Kalman filter, once the observability matrix is full column rank, we can

guarantee that the error variance is bounded by a matrix that is independent of the size of

the initial error variance. ¥
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Appendix B

Matrix Inequality for Second

Moment Stability

Theorem B.1 We are given a jump linear system with notation defined in Section 5.3. If

pij = pj for all i, j ∈ N then the system is SMS if and only if there exists a matrix G > 0

such that:

G−
N∑

j=1

pjA
T
j GAj > 0 (B.1)

Proof. This proof outline is derived from [42] with minor modifications to exploit the

property: pij = pj .

(⇐) First we show sufficiency of Equation B.1. Suppose there exists G > 0 such that

Equation B.1 holds. Define the stochastic Lyapunov function:

V (x(k)) = x(k)TGx(k) (B.2)
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Note that since Equation B.1 holds, there exists ε > 0 such that
∑N

j=1 pjA
T
j GAj−G < −εI.

Therefore,

E
θ(k)

[V (x(k + 1)) | x(k)]− V (x(k)) = x(k)T





N∑

j=1

pjA
T
j GAj −G



x(k) < −εx(k)Tx(k)

where E
θ(k)

[·] denotes the expectaction taken over θ(k). This gives inequality (a) in the

following relations:

E
θ(k)

[V (x(k + 1)) | x(k)]
(a)
< V (x(k))− εx(k)Tx(k)

(b)

≤
[

1− ε

λmax(G)

]

V (x(k)) := αV (x(k)) (B.3)

where we can choose ε sufficiently small so that α := 1− ε
λmax(G) > 0. Inequality (b) follows

because zTGz ≤ λmax(G)z
T z for any vector z. We will show by induction that the following

statements are true ∀n ∈ N:

Pn : E
θ(k),...,θ(k+n−1)

[V (x(k + n)) | x(k)] < αnV (x(k)) ∀k (B.4)

P1 follows directly from Equation B.3. Next make the induction assumption that Pn is true

and show this implies that Pn+1 holds as well.

E
θ(k),...,θ(k+n)

[V (x(k + n+ 1)) | x(k)]

=

N∑

j=1

pj E
θ(k+1),...,θ(k+n)

[V (x(k + n+ 1)) | x(k + 1) = Ajx(k)]

(a)
<

N∑

j=1

αnpjV (x(k + 1))
∣
∣
x(k+1)=Ajx(k)

= αn E
θ(k)

[V (x(k + 1)) | x(k)]

(b)
< αn+1V (x(k))
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where inequality (a) is due to the induction assumption, inequality (b) is due to Equa-

tion B.3, and the equalities are simple consequences of conditional probabilities. By induc-

tion, we conclude that Pn holds ∀n ∈ N. Therefore,

E
θ(0),...,θ(N−1)

[
N∑

k=0

V (x(k))
∣
∣
∣ x(0)

]

<
(
1 + α+ . . .+ αN

)
V (x(0)) =

1− αN
1− α V (x(0))

Taking the limit as N tends to infinity gives inequality (b) below:

lim
N→∞

E
θ(0),...,θ(N−1)

[
N∑

k=0

x(k)Tx(k) | x(0)
]

(a)

≤ lim
N→∞

1

λmin(G)
E

θ(0),...,θ(N−1)

[
N∑

k=0

x(k)TGx(k) | x(0)
]

(b)

≤ 1

λmin(G)

1

1− αx(0)
TGx(0)

(c)
=

λmax(G)

ελmin(G)
x(0)TGx(0) <∞

Inequality (a) follows because λmin(G)z
T z ≤ zTGz for any vector z. Equality (c) follows by

definition of α and the final cost is finite because G > 0 implies λmin(G) > 0. We conclude

the system is stochastically stable and hence SMS.

(⇒) Next we prove that Equation B.1 is actually a necessary condition for SMS. We will

show that if the system is stochastically stable then for any symmetric matrix W > 0, there

exists a matrix G > 0 such that:

G−
N∑

j=1

pjA
T
j GAj =W > 0 (B.5)

To begin the proof, let W > 0 be any symmetric matrix. First we will define a sequence

of matrices. Given k ∈ N, it is easy to show that the following function is quadratic and
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positive definite:

f(v) := E
θ(0),...,θ(k−1)

[
k∑

t=0

x(t)TWx(t) | x(0) = v

]

In other words, there exists a sequence of symmetric, positive definite matrices, G(k), such

that for any vector v:

vTG(k)v = E
θ(0),...,θ(k−1)

[
k∑

t=0

x(t)TWx(t) | x(0) = v

]

(B.6)

Given any vector v, W > 0 implies that the sequence {vTG(k)v} is monotonically nonde-

creasing as a function of k. Since the system is SMS, this sequence is bounded from above.

Hence limk→∞ vTG(k)v exists for any vector v. Let ei denote the i
th basis vector and define

gii := limk→∞ eTi G(k)ei. For i 6= j, define gij :=
1
2

[
limk→∞(ei + ej)

TG(k)(ei + ej)− gii − gjj
]
.

By the symmetry of G(k), gij = gji. Using these definitions, we define the limit matrix

G whose entries are given by gij . By definition, this matrix satisfies: G = limk→∞G(k).

Furthermore, G is symmetric because G(k) is symmetric for all k. Moreover, G is positive

definite because G(k) is uniformly positive definite for all k.

Next we show that this limit matrix, G, is indeed a solution to Equation B.5:

vTG(k)v = E
θ(0),...,θ(k−1)

[
k∑

t=0

x(t)TWx(t) | x(0) = v

]

= vTWv + E
θ(0),...,θ(k−1)

[
k∑

t=1

x(t)TWx(t) | x(0) = v

]

= vTWv +
N∑

j=1

pj E
θ(1),...,θ(k−1)

[
k∑

t=1

x(t)TWx(t) | x(1) = Ajv

]

= vTWv +
N∑

j=1

pj E
θ(0),...,θ(k−2)

[
k−1∑

t=0

x(t)TWx(t) | x(0) = Ajv

]

= vTWv +
N∑

j=1

pjv
TATj G(k − 1)Ajv
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The relations above follow from the definition of G(k) and conditional probabilities. The

end-to-end equality implies:

vT



G(k)−
N∑

j=1

pjA
T
j G(k − 1)Aj −W



 v = 0 (B.7)

It is simple to show that if Q = QT and vTQv = 0 for all vectors v, then Q = 0. Thus

Equation B.7 implies:

G(k)−
N∑

j=1

pjA
T
j G(k − 1)Aj =W

Taking limits as k → ∞, the argument above guarantees there exists a symmetric matrix

G > 0 satisfying:

G−
N∑

j=1

pjA
T
j GAj =W > 0

which proves the necessity of Equation B.1. ¥
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Appendix C

Matrix Inequality for H∞

Performance

First we give a brief outline of the proof. Sufficiency of the matrix condition follows

by a stochastic Lyapunov argument similar to that used in the proof of Theorem 5.2. For

necessity, we show that ‖S‖∞ < γ implies that a related Riccati equation has a solution.

The Riccati equality can be turned in to a Riccati inequality by a perturbation argument

which leads to the H∞ matrix condition. This proof uses ideas from [67] which gives a

dynamic game interpretation to the continuous time H∞-control of jump linear systems.

Reference [3] gives further information on generalized Riccati equations related to dynamic

games.

Before proving the theorem, we need to introduce some notation and prove several

lemmas. First define the cost function:

J(w, x0) := E
θ(0),...

[ ∞∑

k=0

zT (k)z(k)− γ2wT (k)w(k)

]

= ‖z‖22E − γ2‖w‖22 (C.1)
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where w(k) and z(k) are related by the jump system, S, defined in Equation 5.1 with the

initial condition x(0) = x0. The expectation is taken over the jump process, {θ(0), . . .}.

If ‖S‖∞ ≤ γ then J(w, 0) ≤ 0 for any w ∈ `2 and J(w, 0) = 0 for w = 0. Conversely, if

‖S‖∞ > γ then there exists w ∈ `2 such that J(w, 0) > 0. By scaling up this disturbance,

we can make the cost arbitrarily large. Explicitly, choose wα = αw for α ∈ R and by the

linearity of the plant, J(wα, 0) = α2J(w, 0). This cost can be made arbitrarily large by

letting α→∞. If we define J∗ := supw∈`2 J(w, 0), then from these arguments we conclude:

J∗ =







0 if ‖S‖∞ ≤ γ

+∞ if ‖S‖∞ > γ

(C.2)

Given T ≥ 0, define GT (k) for 0 ≤ k ≤ T by the following Riccati Difference

Equation with the terminal condition GT (T ) = 0.

GT (k) =
N∑

j=1

pj
(
ATj GT (k + 1)Aj + CTj Cj

)
(C.3)

+





N∑

j=1

pj
(
BT
j GT (k + 1)Aj +DT

j Cj
)





T

V −1
T (k + 1)





N∑

j=1

pj
(
BT
j GT (k + 1)Aj +DT

j Cj
)





where: VT (k + 1) = γ2I −∑N
j=1 pj

(

BT
j GT (k + 1)Bj +DT

j Dj

)

. Note that this recursion is

well defined only if VT (k) is nonsingular for 1 ≤ k ≤ T . In the deterministic LQ problem,

a Riccati Difference Equation is used to generate optimal control inputs. Similarly, we use

Equation 4.20 to generate optimal inputs (disturbances) that maximize J(w, 0).

We now present several lemmas that will be used in the proof of the theorem.

The first is a technical lemma concerning Riccati Difference Equations. The second lemma

constructs a ’bad’ disturbance from the solution of the Riccati Difference Equation. The

remaining lemmas use this ’bad’ disturbance to show that ‖S‖∞ > or ≥ γ under various
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conditions on the Riccati Difference Equation. The results are used to prove the necessity

of matrix inequality. For the remainder of this appendix, assume pij = pj for all i, j ∈ N

and the system, S, given by Equation 5.1 is weakly controllable. The reader is encouraged

to read the proof of Theorem C.1 prior to reading the lemmas.

Lemma C.1 Given T ≥ 0, let Gi(k) (i = 1, 2) be a solution of the following Riccati

Difference Equation for 0 ≤ k ≤ T :

Gi(k) =
N∑

j=1

pj
(
ATj Gi(k + 1)Aj + CTj Cj

)
(C.4)

+





N∑

j=1

pj
(
BT
j Gi(k + 1)Aj +DT

j Cj
)





T

V −1
i (k + 1)





N∑

j=1

pj
(
BT
j Gi(k + 1)Aj +DT

j Cj
)





where Ri is a symmetric matrix and Vi(k + 1) = Ri −
∑N

j=1 pj

(

BT
j Gi(k + 1)Bj +DT

j Dj

)

.

The Riccati Difference Equations have terminal conditions G1(T ) ≥ 0 and G2(T ) ≥ 0.

Define G̃(k) := G2(k)−G1(k) and R̃ := R2 −R1. Then:

G̃(k) =
N∑

j=1

pjĀ
T
j (k + 1)G̃(k + 1)Āj(k + 1)−KT (k + 1)R̃K(k + 1)



−R̃K(k + 1) +
N∑

j=1

pjB
T
j G̃(k + 1)Āj(k + 1)





T

V −1
2 (k + 1) ·



−R̃K(k + 1) +

N∑

j=1

pjB
T
j G̃(k + 1)Āj(k + 1)





where K(k + 1) := V −1
1 (k + 1)

[
∑N

j=1 pj

(

BT
j G1(k + 1)Aj +DT

j Cj

)]

and Āj(k + 1) :=

Aj +BjK(k + 1).

Proof. The proof is a simple, albeit algebraically intensive, extension of a result by C. de

Souza (Lemma 3.1 in [25]). We now provide a sketch of the proof. For notational ease, we
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make the following defintion for i = 1, 2:

Xi(k) :=
N∑

j=1

pj
(
BT
j Gi(k)Aj +DT

j Cj
)

If we use this notation and Equation C.4, then we obtain a recursion for G̃(k):

G̃(k) =
N∑

j=1

pj

(

ATj G̃(k + 1)Aj

)

+XT
2 (k + 1)V −1

2 (k + 1)X2(k + 1)−XT
1 (k + 1)V −1

2 (k + 1)X1(k + 1) (C.5)

+XT
1 (k + 1)V −1

2 (k + 1)X1(k + 1)−XT
1 (k + 1)V −1

1 (k + 1)X1(k + 1)

Note that we have added and subtracted the term XT
1 (k+1)V −1

2 (k+1)X1(k+1) to obtain

this equality. Next we find some useful relations for V −1
2 (k) and V −1

1 (k). First define

Ṽ (k) := V2(k) − V1(k). We can apply the Matrix Inversion Lemma [2] to obtain equality

(a) below:

V −1
2 (k) =

[

V1(k) + Ṽ (k)
]−1 (a)

= V −1
1 (k)− V −1

1 (k)Ṽ (k)
[

I + V −1
1 (k)Ṽ (k)

]−1
V −1

1 (k)

Equation C.6 below follows from this relation and simple algebra. Equation C.7 follows

from Equation C.6 because Vi(k) is symmetric for i = 1, 2.

V −1
2 (k) = V −1

1 (k)
[

I − Ṽ (k)V −1
2 (k)

]

(C.6)

V −1
2 (k) =

[

I − V −1
2 (k)Ṽ (k)

]

V −1
1 (k) (C.7)

Next we use these relations to simplify several terms in Equation C.5. We start with the

terms on the second line of Equation C.5. For notational ease, we supress the functional
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dependence on k + 1:

XT
2 V

−1
2 X2 −XT

1 V
−1
2 X1

(a)
= [X2 −X1]

TV −1
2 [X2 −X1] + [X2 −X1]

TV −1
2 X1 +XT

1 V
−1
2 [X2 −X1] (C.8)

(b)
= [X2 −X1]

TV −1
2 [X2 −X1] + [X2 −X1]

T [I − V −1
2 Ṽ ]K +KT [I − Ṽ V −1

2 ][X2 −X1]

where K(k+1) = V −1
1 (k+1)X1(k+1) as defined in the statement of the lemma. Equality

(a) follows by completing the square. Equality (b) follows from the the definition of K(k+

1). and by applying Equations C.6-C.7. Next we simplify the terms on the third line of

Equation C.5:

XT
1 V

−1
2 X1 −XT

1 V
−1
1 X1

(a)
= −XT

1 V
−1
1 X1 +XT

1 V
−1
1 [I − Ṽ V −1

2 ]X1

= −XT
1 V

−1
1 Ṽ V −1

2 X1 (C.9)

(b)
= −XT

1 V
−1
1 Ṽ [V −1

1 − V −1
2 Ṽ V −1

1 ]X1

(c)
= −KT Ṽ K +KT Ṽ V −1

2 Ṽ K

Equality (a) follows from Equation C.6 while equality (b) follows from Equation C.7. Equal-

ity (c) uses the definition of K(k + 1).

Now we can use Equations C.8 and C.9 to replace the terms in Equation C.5. This

yields:

G̃(k) =
N∑

j=1

pj

(

ATj G̃(k + 1)Aj

)

+ [X2 −X1]
TV −1

2 [X2 −X1]

+ [X2 −X1]
T [I − V −1

2 Ṽ ]K +KT [I − Ṽ V −1
2 ][X2 −X1]−KT Ṽ K +KT Ṽ V −1

2 Ṽ K

Again we have supressed the functional dependence on k + 1 for most terms on the right



172

side of this relation. This can be rewritten as:

G̃(k) =





N∑

j=1

pj

(

ATj G̃(k + 1)Aj

)

−KT Ṽ K + [X2 −X1]
TK +K[X2 −X1]





+ [X2 −X1 − Ṽ K]TV −1
2 [X2 −X1 − Ṽ K] (C.10)

Finally, we note that Ṽ (k+1) = R̃−∑N
j=1 pj

(

BT
j G̃(k + 1)Bj

)

and X2(k+1)−X1(k+1) =

∑N
j=1 pj

(

BT
j G̃(k + 1)Aj

)

. These relations allow us to finally reduce Equation C.10 to the

form stated in the lemma:

G̃(k) =

N∑

j=1

pjĀ
T
j (k + 1)G̃(k + 1)Āj(k + 1)−KT (k + 1)R̃K(k + 1)



−R̃K(k + 1) +
N∑

j=1

pjB
T
j G̃(k + 1)Āj(k + 1)





T

V −1
2 (k + 1) ·



−R̃K(k + 1) +
N∑

j=1

pjB
T
j G̃(k + 1)Āj(k + 1)





¥

Lemma C.2 Let GT (k) be the solution to the Riccati Difference Equation (C.3) with ter-

minal condition GT (T ) = 0. Assume VT (k) > 0 for 1 ≤ k ≤ T and define the following

plant disturbance:

w̄(k) =







VT (k + 1)−1
∑N

j=1 pj

(

BT
j GT (k + 1)Aj +DT

j Cj

)

x(k) 0 ≤ k ≤ T − 1

0 else

(C.11)

Then, J(w̄, x0) ≥ xT0GT (0)x0.

Proof. First we state the trivial relation:

0 = xT0GT (0)x0 + E
θ(0),...,θ(T−1)

[
T−1∑

k=0

xT (k + 1)GT (k + 1)x(k + 1)− xT (k)GT (k)x(k)
]
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Add this net zero quantity to J(w, x0) and use the system dynamics to substitute for z(k)

and x(k + 1):

J(w, x0) = xT0GT (0)x0 + E
θ(0),...

[ ∞∑

k=T

zT (k)z(k)

]

+
T−1∑

k=0

E
θ(0),...,θ(k)

[∗]

≥ xT0GT (0)x0 +
T−1∑

k=0

E
θ(0),...,θ(k)

[∗] (C.12)

where:

∗ = (Cθ(k)x(k) +Dθ(k)w(k))
T (Cθ(k)x(k) +Dθ(k)w(k))− γ2wT (k)w(k)

+ (Aθ(k)x(k) +Bθ(k)w(k))
TGT (k + 1)(Aθ(k)x(k) +Bθ(k)w(k))− xT (k)GT (k)x(k)

Next, we use the assumption that pij = pj . In other words, θ(k) is independent of θ(j) for

j < k. Thus θ(k) is independent of x(k) and w(k) and we obtain:

E
θ(0),...,θ(k)

[∗] (a)
=

N∑

j=1

pj E
θ(0),...,θ(k−1)

[

(Cjx(k) +Djw(k))
T (Cjx(k) +Djw(k))− γ2wT (k)w(k)

+ (Ajx(k) +Bjw(k))
TGT (k + 1)(Ajx(k) +Bjw(k))− xT (k)GT (k)x(k)

]

(b)
= − E

θ(0),...,θ(k−1)








w(k)− V −1
T (k + 1)

N∑

j=1

pj
(
BT
j GT (k + 1)Aj +DT

j Cj
)
x(k)





T

VT (k + 1)



w(k)− V −1
T (k + 1)

N∑

j=1

pj
(
BT
j GT (k + 1)Aj +DT

j Cj
)
x(k)









As discussed above, equality (a) uses the independence of θ(k) and (x(k), w(k)). Equality (b)

uses the Riccati Difference Equation (C.3) to substitute for GT (k) followed by a completion

of the square. The lemma follows from Equation C.12 by noting that the choice of w̄(k) in

Equation C.11 leads to E
θ(0),...,θ(k)

[∗] = 0 for 0 ≤ k ≤ T − 1. ¥
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Lemma C.3 Let GT (k) be a solution of the Riccati Difference Equation (C.3) with terminal

condition GT (T ) = 0. If there exists T ≥ 0 such that VT (k) > 0 for 1 ≤ k ≤ T and VT (0)

has a negative eigenvalue, then ‖S‖∞ > γ.

Proof. Let r be the eigenvector, normalized to ‖r‖ = 1, and λ < 0 be the eigenvalue of

VT (0). Note that VT (0) is symmetric so its eigenvalues are real and writing λ < 0 is sensible.

For α ∈ R, define the disturbance:

wα(k) =







αr k = 0

VT (k + 1)−1
[
∑N

j=1 pj

(

BT
j GT (k + 1)Aj +DT

j Cj

)]

x(k) 1 ≤ k ≤ T − 1

0 else

Applying this disturbance to the system with x0 = 0 gives a lower bound on J∗:

J∗ := sup
w∈`2

J(w, 0) ≥ J(wα, 0)

= E
θ(0),...

[

wTα (0)
(

DT
θ(0)Dθ(0) − γ2I

)

wα(0) +
∞∑

k=1

(
zT (k)z(k)− γ2wTα (k)wα(k)

)

]

(C.13)

= α2
N∑

j=1

pjr
T
(
DT
j Dj − γ2I

)
r +

N∑

j=1

pjJ(wα, αBjr)

The last equality follows from the independence of θ(k) and a slight abuse of notation

concerning J(·, ·). By J(wα, αBjr), we mean the cost function with the system starting

at αBjr and applying wα(k) for k ≥ 1. Apply Lemma C.2 to conclude J(wα, αBjr) ≥

α2rTBT
j GT (1)Bjr. Substituting this result into Equation C.13 gives:

J∗ ≥ −α2rT



γ2I −
N∑

j=1

pj
(
BT
j GT (1)Bj +DT

j Dj

)



 r

= −α2rTVT (0)r = (−λ)α2 > 0
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This holds ∀α ∈ R. Take α → ∞ to show that J∗ = +∞. By Equation C.2, we conclude

‖S‖∞ > γ. ¥

Lemma C.4 Let GT (k) be a solution of the Riccati Difference Equation (C.3) with terminal

condition GT (T ) = 0. If there exists T ≥ 0 such that VT (k) > 0 for 1 ≤ k ≤ T and VT (0)

has an eigenvalue at zero, then ‖S‖∞ ≥ γ.

Proof. Using the notation of Lemma C.1, let G1(k) denote the solution of the Riccati

Difference Equation (C.4) with R1 = γ2I and the terminal condition G1(T ) = 0. By

assumption, V1(k) > 0 for 1 ≤ k ≤ T and V1(0) has an eigenvalue at zero. Given ε > 0,

define G2(k) as the solution with R2 = (γ2 − ε)I and the terminal condition G2(T ) = 0.

Thus G̃(T ) = 0 and R̃ = −εI < 0. If ε > 0 is sufficiently small, then V2(k) > 0 for

1 ≤ k ≤ T . We can then use Lemma C.1 and induction to show that G̃(k) ≥ 0 for

0 ≤ k ≤ T . From R2 < R1 and G2(0) ≥ G1(0) it follows that V2(0) < V1(0) and hence

V2(0) has a negative eigenvalue. By Lemma C.3, ‖S‖∞ > γ − ε. Since this holds for all

ε > 0 which are sufficiently small, we conclude that ‖S‖∞ ≥ γ. ¥

Lemma C.5 Let GT (k) be a solution of the Riccati Difference Equation (C.3) with terminal

condition GT (T ) = 0. Assume that for all T ≥ 0, VT (k) > 0 for 0 ≤ k ≤ T . Also assume

that the matrix sequence GT (0) is unbounded as T → ∞. That is, there exists a sequence

{Tj}∞j=0 such that λmax(GTj (0))→∞ as j →∞. Then ‖S‖∞ > γ.

Proof.

By assumption, there exists a sequence {Tj}∞j=0 such that λmax(GTj (0)) → ∞ as

j → ∞. For each j, let rj be the eigenvector associated with λmax(GTj (0)) normalized to
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‖rj‖ = 1. Then there exists an r∗ ∈ Rnx and a subsequence jl such that limjl→∞ rjl = r∗.

Furthermore, limjl→∞(r∗)TGTjl r
∗ =∞. To ease some of the notation below, we now refer

to this subsequence as (GTl) with (r∗)TGTlr
∗ →∞.

Now apply the assumption of weak controllability: There exists a time, Tc, and

an input, wc(k), defined on 0 ≤ k ≤ Tc − 1 such that Pr[x(Tc) = r∗] > 0 when the system

starts from the origin. We now construct a disturbance which can make the cost function

arbitrarily large:

wl(k) =







wc(k) 0 ≤ k ≤ Tc − 1

VTl(k − Tc + 1)−1
[
∑N

j=1 pj

(

BT
j GTl(k − Tc + 1)Aj +DT

j Cj

)]

x(k)

Tc ≤ k ≤ Tc + Tl − 1

0 else

The first portion of the disturbance attempts to move the state from the origin to r∗.

By construction, x(Tc) = r∗ with some positive probability and the second portion of

the disturbance is able to make the cost function arbitrarily large. Mathematically, this

argument is:

J∗ ≥ J(wl, 0) = E
θ(0),...,θ(Tc−2)

[
Tc−1∑

k=0

zT (k)z(k)− γ2wT (k)w(k)

]

+ E
θ(0),...





∞∑

k=Tc

zT (k)z(k)− γ2wT (k)w(k)





(a)

≥ E
θ(0),...,θ(Tc−2)

[
Tc−1∑

k=0

zT (k)z(k)− γ2wT (k)w(k)

]

+ Pr[x(Tc) = r∗] · (r∗)TGTlr∗

Inequality (a) follows by the construction of wc(k) and by Lemma C.2. The first term on

the second line is a fixed cost for all l. The second term can be made arbitrarily large as

l→∞ by construction and thus J∗ =∞. By Equation C.2, we conclude ‖S‖∞ > γ. ¥
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We are now ready to prove the theorem using these lemmas.

Theorem C.1 Assume pij = pj for all i, j ∈ N and the system, S, given by Equation 5.1 is

weakly controllable. S is SMS and satisfies ‖S‖∞ < γ if and only if there exists a symmetric

matrix G > 0 satisfying the following matrix inequality:







G 0

0 γ2I






−

N∑

j=1

pj







Aj Bj

Cj Dj







T 





G 0

0 I













Aj Bj

Cj Dj






> 0 (C.14)

Proof.

(⇐) First we show sufficiency of Equation C.14. Equation C.14 implies that the upper left

block must also be positive definite. Thus:

G−
N∑

j=1

pjA
T
j GAj >

N∑

j=1

pjC
T
j Cj ≥ 0

By Theorem 5.2, we conclude that the system is SMS. Next define the function V (x) :=

xTGx. Assuming zero initial conditions, V (x(0)) = 0 and hence:

E
θ(0),...,θ(M)

[
M∑

k=0

V (x(k + 1))− V (x(k))

]

= E
θ(0),...,θ(M)

[V (x(M + 1))] ≥ 0 (C.15)

Equation C.15 is used to show inequality (b) below. Definition (a) given below is the norm

of a sequence truncated at time M .

‖z‖2M
(a)
:= E

θ(0),...,θ(M−1)

[
M∑

k=0

z(k)T z(k)

]

(b)

≤ γ2‖w‖2M + E
θ(0),...,θ(M)

[
M∑

k=0

(
z(k)T z(k)− γ2w(k)Tw(k)

)
+

M∑

k=0

V (x(k + 1))− V (x(k))

]

(c)
= γ2‖w‖2M −

M∑

k=0

E
θ(0),...,θ(k)






[x(k)T w(k)T ] Rθ(k)







x(k)

w(k)












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Equality (c) follows by using the system dynamics to replace z(k) and x(k + 1) in terms of

x(k) and w(k). Rθ(k) is defined as:

Rθ(k) :=







G 0

0 γ2I






−







Aθ(k) Bθ(k)

Cθ(k) Dθ(k)







T 





G 0

0 I













Aθ(k) Bθ(k)

Cθ(k) Dθ(k)







Finally, we use the assumption that pij = pj . In other words, θ(k) is independent of θ(j)

for j < k. Thus θ(k) is independent of x(k) and w(k) and we obtain:

‖z‖2M ≤ γ2‖w‖2M −
M∑

k=0

E
θ(0),...,θ(k−1)






[x(k)T w(k)T ]





N∑

j=1

pjRj











x(k)

w(k)













∑N
j=1 pjRj is in fact the left side of Equation C.14. Since this term is positive definite and

w(k) 6= 0 for some k, there exists an ε > 0 such that ‖z‖2
M < γ2‖w‖2M − ε. Taking limits as

M →∞ gives ‖z‖22E ≤ γ2‖w‖22− ε and hence for any w ∈ `2, ‖z‖2E < γ‖w‖2. To conclude,

if there exists G > 0 satisfying Equation C.14, then the system is SMS and ‖S‖∞ < γ.

(⇒) Next we prove that Equation C.14 is actually a necessary condition. First we show

that if ‖S‖∞ < γ then ∃G ≥ 0 satisfing the following Riccati Equation:

G =

N∑

j=1

pj
(
ATj GAj + CTj Cj

)
(C.16)

+





N∑

j=1

pj
(
BT
j GAj +DT

j Cj
)





T

V −1





N∑

j=1

pj
(
BT
j GAj +DT

j Cj
)





where: V = γ2I −∑N
j=1 pj

(

BT
j GBj +DT

j Dj

)

> 0.

Consider solutions, GT (k), to the Riccati Difference Equation (C.3) with terminal

condition GT (T ) = 0. There are three possible cases:

Case 1: ∃T ≥ 0 such that VT (0) is not well defined.
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Case 2: VT (0) is well defined ∀T ≥ 0 and ∃T ≥ 0 such that VT (0) 6> 0.

Case 3: VT (0) is well defined ∀T ≥ 0 and ∀T ≥ 0, VT (0) > 0.

Let us discuss these cases. First, notice that the Riccati Difference Equation solutions satisfy

the following time-shifting property: GT−l(k− l) = GT (k) and VT−l(k− l) = VT (k) for any

integers l, k, T satisfying 0 ≤ l ≤ k ≤ T . Second, we recall that the Riccati Difference

Equation is well defined for 0 ≤ k ≤ T only if VT (k) is nonsingular for 1 ≤ k ≤ T . Consider

Case 1 and let Tmin ≥ 0 be the smallest T such that VT (0) is not well defined. We can apply

the time-shifting property to conclude that VTmin(k) is nonsingular for 1 ≤ k ≤ Tmin and

VTmin(0) has an eigenvalue at 0 (otherwise Tmin would not be the minimum T ). Therefore,

we can rewrite Case 1 as:

Case 1: There exists T ≥ 0 such that VT (k) is nonsingular for 1 ≤ k ≤ T and
VT (0) has an eigenvalue at zero.

Similar applications of the time-shifting property allow us to equivalently rewrite the three

cases given above as follows:

Case 1: There exists T ≥ 0 such that VT (k) > 0 for 1 ≤ k ≤ T and VT (0) has
a negative eigenvalue.

Case 2: There exists T ≥ 0 such that VT (k) > 0 for 1 ≤ k ≤ T and VT (0) has
an eigenvalue at zero.

Case 3(a): For all T ≥ 0, VT (k) > 0 for 0 ≤ k ≤ T . Moreover, the matrix
sequence GT (0) is unbounded.

Case 3(b): For all T ≥ 0, VT (k) > 0 for 0 ≤ k ≤ T . Moreover, the matrix
sequence GT (0) is bounded.

For Case 1, it follows from Lemma C.3 that ‖S‖∞ > γ. For Case 2, it follows from

Lemma C.4 that ‖S‖∞ ≥ γ. For Case 3(a), it follows from Lemma C.5 that ‖S‖∞ > γ. By

the contraposition, ‖S‖∞ < γ implies Case 3(b). We apply Case 3(b) to prove ∃G ≥ 0 that

satisfies the Riccati Equation (C.16).
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First we show that the matrix sequence GT (0) is monotonically nondecreasing

in T . If VT (k + 1) > 0 and GT (k + 1) ≥ 0, then it is clear from the Riccati Difference

Equation (C.3) that GT (k) ≥ 0. It follows from the terminal condition GT (T ) = 0 and

induction that GT (k) ≥ 0 for 0 ≤ k ≤ T . In particular, for any T2 ≤ T , GT (T2) ≥ 0.

Define a second solution to the Riccati Difference Equation, GT2
(k) for 0 ≤ k ≤ T2 with

the terminal condition GT2
(T2) = 0. Define the difference G̃(k) = GT (k) − GT2

(k) for

0 ≤ k ≤ T2 and note that G̃(T2) = GT (T2)−GT2
(T2) ≥ 0. Apply Lemma C.1 and induction

to show G̃(k) ≥ 0 for all 0 ≤ k ≤ T2. In particular, T ≥ T2 implies GT (0) ≥ GT2
(0) ≥ 0.

Thus GT (0) is a bounded, monotonic matrix sequence. Consequently this sequence must

have a limit, G ≥ 0, and this limit matrix satisfies the Riccati Equation (C.16). Since

VT (0) = γ2I −∑N
j=1 pj

(

BT
j GT (0)Bj +DT

j Dj

)

, it also has a well defined limit as T → ∞

which we denote by V . We can show that V ≥ 0 since VT (0) > 0 for all T . Using an

argument similar to the proof of Lemma C.4, we can show this inequality is strict, V > 0.

Define the perturbed plant, Sε:






x(k + 1)

z(k)






=







Aθ(k) Bθ(k)

Cεθ(k) Dε
θ(k)













x(k)

w(k)







(C.17)

where the output equation matrices are given by:

Cεθ(k) :=







Cθ(k)

εInx×nx







Dε
θ(k) :=







Dθ(k)

0nx×nw







If a plant is SMS and has ‖S‖∞ < γ then ∃ε > 0 such that Sε is also SMS and has



181

‖Sε‖∞ < γ. By the argument above, ∃Gε ≥ 0 such that:

Gε =
N∑

j=1

pj
(
ATj GεAj + (Cεj )

TCεj
)
+ (C.18)





N∑

j=1

pj
(
BT
j GεAj + (Dε

j)
TCεj

)





T

V −1
ε





N∑

j=1

pj
(
BT
j GεAj + (Dε

j)
TCεj

)





where: Vε = γ2I − ∑N
j=1 pj

(

BT
j GεBj + (Dε

j)
TDε

j

)

> 0. After multiplying out all the

matrices we obtain:

Gε −
N∑

j=1

pj
(
ATj GεAj + CTj Cj

)
−





N∑

j=1

pj
(
BT
j GεAj + (DT

j Cj
)





T

V −1
ε ·





N∑

j=1

pj
(
BT
j GεAj + (DT

j Cj
)



 = ε2I > 0

where, after multiplication, Vε = γ2I −∑N
j=1 pj

(

BT
j GεBj +DT

j Dj

)

> 0. Using Schur

complements to this inequality:







Gε 0

0 γ2I






−

N∑

j=1

pj







Aj Bj

Cj Dj







T 





Gε 0

0 I













Aj Bj

Cj Dj






> 0 (C.19)

The upper left block of this equation implies that Gε > 0. Thus Gε > 0 is a solution to

Equation C.14. ¥

Remark: The theorem gives a necessary and sufficient linear matrix inequality (LMI) for

‖S‖∞ < γ. To find the H∞ gain of a system, we can minimize γ subject to the LMI

in Equation C.14. If S has state dimension nx, then this requires solving a semi-definite

programming problem with 1+ nx(nx+1)
2 variables. For systems with large state dimension,

this is a time consuming optimization to solve. An alternative technique is to iterate the

Riccati Difference Equation (C.3) with the terminal condition GT (T ) = 0. Consider the

following algorithm:



182

1: Given bounds on ‖S‖∞: γmin, γmax.

2: Choose γ := γmin+γmax
2 .

3: Iterate the following Riccati Difference Equation forward starting from the
initial condition G(0) = 0:

G(k + 1) =

N∑

j=1

pj
(
ATj G(k)Aj + CTj Cj

)

+





N∑

j=1

pj
(
BT
j G(k)Aj +DT

j Cj
)





T

V −1(k)





N∑

j=1

pj
(
BT
j G(k)Aj +DT

j Cj
)





where: V (k) = γ2I −∑N
j=1 pj

(

BT
j G(k)Bj +DT

j Dj

)

. It should be clear

that this is just Equation C.3 with slightly different notation. In other
words, G(k) and V (k) are the same as Gk(0) and Vk(0) in the proof above.

4a: If the matrix sequence G(k) is unbounded or if V (k) has a nonpositive
eigenvalue for some k ≥ 0, then set γmin = γ and then γ := γmin+γmax

2 .

4b: If the matrix sequence converges to a solution of the Riccati Equation
(C.16), then set γmax = γ and then γ := γmin+γmax

2 .

5: Continue until γmax − γmin is less than some desired tolerance. Set γ :=
γmin+γmax

2 .

In the proof, we show that if the matrix sequence G(k) is unbounded or if V (k) has a

nonpositive eigenvalue for some k ≥ 0, then ‖S‖∞ ≥ γ. The only other possibility is

for the matrix sequence to converge to a solution of the Riccati Equation (C.16). We

have not proven that if there exists a solution to the Riccati Equation then ‖S‖∞ ≤ γ.

However, this statement is true for a standard discrete time system (i.e. the single mode

case). If this conjecture is true, then the algorithm above gives ‖S‖∞ within the specified

tolerance. If not, this algorithm still converges to a lower bound on ‖S‖∞. The proof of

this conjecture remains as future work. This algorithm is much faster than solving the

semi-definite program when nx is large. Iterating the Riccati Difference Equation has been

previously employed to solve Generalized Riccati Equations stemming from the Jump Linear

Quadratic Problem [1, 27].


