Prediction uncertainty from models and data

Michael Frenklach, Andrew Packard, Pete Seiler
Mechanical Engineering, University of California, Berkeley 94720

{myf ,pack}@me.berkeley.edu

Abstract

We present an approach to uncertainty propagation in
dynamic systems, exploiting information provided by
related experimental results along with their models.
Our computational procedure draws from ideas and
tools that are now common in robust control theory.
A case study on a well-known database of methane
combustion experiments and models demonstrates the
viability of our proposed method.

1 Introduction

In this paper, we study the problem of accurately pre-
dicting the range of possible outcomes of a modeled
physical process, knowing, to some accuracy, the out-
comes of several related, but different processes. We
are motivated by the current state of model-based and
experimental research in chemical reaction networks.
This field is characterized by several interrelated, rele-
vant facts:
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“raw” experimental and theoretical information — all
inter-related, often in different patterns, through their
common dependence on a single multivariable model.
The essence of the paradigm and its final product was
a “living model”: not the ultimately right one — pos-
sibly an utopic goal of the present science — but the
best possible today, consistent with separate research
results, and quantified against all available data.

Here, we go a step further, to numerical procedures
which address an even broader issue: modeling realistic
uncertainty in the prediction of a diversely-compound
model’s behavior. We reexamine the concept “model”
and then describe numerical procedures we employ, and
finally present some preliminary results. Although the
case study in this paper is in the area of chemical reac-
tion networks, the methods apply equally well to any
scientific field characterized by the bulleted list above.

There are some similarities with the method presented
here and those put forth by robust control theory
(RCT, [16], [6]) over the past 20 years. In particular,

e Processes are complex, though physics-based gov-
erning equations are widely accepted;

e Uncertainty in process behavior exists, but much
is known regarding “where” the uncertainty lies
in the governing equations;

e Semi-isolated aspects of processes are studied ex-
perimentally;

e Numerical simulations of processes, with uncer-
tain parameters “fixed” to certain values, may
be performed reliably.

Each experimental result contains information about
the uncertainty in the process model. Yet, there is no
systematic manner in which to combine this informa-
tion, and no coordination among researchers as to the
form by which information and data should be shared.
Most of the time, the information transfer occurs at a
highly processed level, in the familiar “read my paper”
mode. As a result of individual data processing, the
critical correlations within the data and compound un-
certainty of the overall model are simply lost. To our
knowledge, the first attempt to address this problem
was the GRI-Mech project [10], [17] (a brief descrip-
tion is given in section 4). This project was the first to
systematically collect, combine, process, and retrieve

1. high-order, uncertain differential equation mod-
els;

2. S-procedure to yield “outer bounds” and heuris-
tic searches to get “inner bounds”

3. use of experimental data to refine bounds;

4. evidence of what appears to be good performance
on a real problem.

Nevertheless, the method presented in this paper de-
parts in many ways from the RCT approach. For one
thing, the questions posed here are different, most no-
tably the central role played by (3), and the assump-
tions that lead to its relevance. Other differences are
e systems considered are (at least as modeled)
highly nonlinear, and medium-to-large sized;
e unconventional model transformations that in
RCT, with linear fractional uncertainty in linear
models, and H, criterion are more rigorous.

2 Nature of a Predictive Model

Development of predictive models marks human civi-
lization. Ancient models were philosophical in nature
and relied entirely on logical deduction; one example



of this can be the concept of corpuscular (i.e., atomic)
nature of matter arrived to by the Greeks two millennia
ago. The invention of geometry and algebra in the Mid-
dle East was motivated by and applied to agricultural
problems. Early scientific discoveries were expressed in
terms of simple phenomenological laws, like Fick’s Law
of diffusion and Boyle’s Law of gases. Development of
calculus expressed these laws in terms of differential
equations and formulated solutions to their lineariza-
tions. The advent of computer provided means to solve
these differential equations in their complete nonlin-

uncertainties of the underlying experiment and theory
must somehow be transferred into the final prediction
uncertainty using the uncertainties that were assigned
to the model parameters.

Experience shows that this conventional paradigm does
not lead to a desirable quality of prediction. Each
model parameter has associated with it an interval of
uncertainty. Taken together, the uncertainties of all
parameters form a hypercube in the parameter space.
Each point of this hypercube is consistent with ac-

ear formulation, such as the Navier Stokes equation of

cepted experimental results since each coordinate (pa-

fluid mechanics or Schrodinger equation of quantum
mechanics.

Thus, the concept of a model and the “physical” form
it assumes have changed with time: from conceptual
statements to simple algebraic relationships to differ-
ential equations to numerical algorithms to computer
programs and files. The present problems facing our
society—such as global warming, earthquake prepared-
ness, safety of transport of nuclear waste, and pollutant
emission from automobile engines—call for integration
of a variety of computer programs, each solving nu-
merical problems in a different discipline. The overrid-

rameter) individually belongs to it’s corresponding in-
terval of uncertainty. But, some parts of the hyper-
cube fit the experimental data base better than others.
Typically, the central point of the hypercube, whose
coordinates correspond to the individual best-fit val-
ues of the individual parameters, is not necessarily the
best-fit point for the combined set of parameters. So,
the better-fit parts form a low-dimensional manifold,
which is the result of correlations in our experimental
data and hence our knowledge of the parameter vector.
A methodology that implicitly or explicitly samples
preferentially the manifold and not the entire hyper-
cube volume should provide a more realistic estimate

ing concern for such complex models is their reliability:
predictability, authenticity, uncertainty, etc. In other
words, one has to have a certain degree of confidence
to apply these models for political decisions, economic
forecast, or design and manufacturing of automotive
engines.

The primary difficulty, common to essentially all fields
of science and engineering, is the fact that more au-
thentic models introduce larger numbers of parame-
ters. The general expectation is that advancement in
science should provide means to establish these param-
eters with required accuracy. The experience both sup-
ports and disproves this expectation. Indeed, the un-
precedented advance in scientific instrumentation (e.g.,
laser spectroscopy) and computer technology (the in-
crease in speed and memory and the reduction in cost)
provides powerful means to determine the parameter
values on sound experimental and theoretical grounds.
At the same time, however, this often (if not always) in-
volves another model, either instrumental or/and theo-
retical, which in turn introduces additional parameters.
The end result is that even most accurately determined
model parameters have uncertainties.

The current practice of model development/use is
based on the following paradigm: (a) A model is postu-
lated introducing a set of parameters; (b) A “unique”
set of parameter values are determined from experi-
ment or/and theory, and (ideally) supplied along with
a corresponding set of individual uncertainties; and (c)
the model is then applied to conditions of interest em-
ploying the unique set of parameter values. The natural

of model uncertainty than superposition of individual
parameter errors.

The specific focus of this paper is representation and
propagation of uncertainty of dynamic models. We
suggest that the combination of solution mapping and
polynomial optimization provide a foundation for eval-
uation of realistic prediction uncertainties of large-scale
dynamic models. Our suggested approach lends it-
self naturally towards a more data-centric approach to
model updating.

3 Formulation

Throughout this section, we refer to physical processes,
models, experiments, data, etc. Clarification of mean-
ings and interpretation, and notational choices are nec-
essary. Associated with a physical process P, consider
other entities, listed below.

| Sym | Meaning |

Yp Outcome variable (scalar) of the process P
Mp | Math model of Yp (usually physics-based)
Tp Uncertain parameters in Mp

Sp Surrogate model of Yp

Ep | Experimental realization of P

Dp | Exp. data (ie., measured outcome) from Ep
€p Error tolerance associated with Dp

Together, the set {Yp, Mp,xp,Sp; Ep, Dp,ep} consti-
tutes a model of process P. For a given process, some
of these items may be missing. As an example, for one
such process, we may have a mathematical model, but
no available experimental data. When there are many



processes under consideration, we usually index them
not by name (ie., P, @, etc.) but by an integer index
(process 1,2,...,n).

Our prediction uncertainty concepts involve n + 1 pro-
cesses, (P1, Py, ..., P, and Py) coupled together by the
common dependence that their mathematical models
have on m uncertain parameters {1, 2, ... ,Z; }. Any
of the mathematical models may actually depend only
on a subset of these parameters. The processes {P;}"_,
have experimental data D;, and are usually associated
with specialized laboratory experiments. The surro-
gate models S; are algebraic functions, reduced from
the mathematical model M; (surrogate models, and
the reductions which map differential equations into
algebraic functions are described in Section 3.1). P is
a more complex scenario, without experimental data,
and our goal is to reliably predict its outcome. Py is
referred to as “the predicted process,” and the P; are
“experiment processes.” As with S;, Sy is the reduction
of My into a surrogate, algebraic function.

Each of the uncertain quantities x; are known a pri-
ori to lie in sets X, reflecting prior information about
the uncertainties. In many cases, the prior informa-
tion (compactly written as z € X) is not rich enough
to bound the possible values of Py(z) to a range accu-
rately reflecting the compound uncertainty of the entire
knowledge base. Usually, the experimental results must
be used in addition to this prior information. Through
the surrogate model S;, information about « is obtained
implicitly via the constraint

1Si(x) — Dill <& (1)

Any z € X which is consistent with all of the ex-
periments (ie., satisfying the constraint in (1) for all
1 < i < n) yields a possible outcome of Py, namely
So(z). All such possible outcomes constitute the pre-
dicted outcome set of Fy. Our goal is to understand
the “extremes” of this predicted outcome set:

L* := min Sp(z) (2)
ze X
[Si(2) — Di| < e

H* := max Sp(z) (3)
zeX
[Si(z) — Di| < e

The optimizations posed in (2) and (3) are typically dif-
ficult to solve. A more modest analysis problem is to
compute outer bounds, H and L, and inner bounds H
and L satisfying: L < L* < Land H < H* < H. Com-
putation of these bounds answers the question “What
are the extreme values of the prediction model which
are consistent with results from collections of related
experiments?” There are additional interesting queries:
Will a particular experiment (either new, or the refine-
ment of an existing one) add to the accuracy of the

predictive model?, Which subset of experiments (if re-
done) offer the most potential for improving the predic-
tive model?, How well does an experiment need to be
carried out to improve the accuracy of the predictive
model by a fixed percent? All of these are variants on
the original question, and improvements in computing
bounds for (2) and (3) will facilitate answering them.

Optimization issues that arise in the outer bounds H
and L are outlined in Section 3.2 and require specific
forms of the S;. Transforming the large scale, com-
plex differential equation models M; and M, into the
reduced functions S; and Sy is discussed in section 3.1.

3.1 Building Surrogate Models

The general optimizations posed in Section 3 are
computationally intensive even for well-behaved, well-
parametrized algebraic functions S; and Sy. The sit-
uation is further complicated by the fact these func-
tions are not immediately obtained from the governing
equations M; and My. Consider a dynamic model, M,
described by a set of first-order nonlinear ODEs,

y(t) = f(y(®),t,x),  y(0) =yo (4)

where z € R is a parameter vector. For most func-
tions f, this equation does not possess a closed-form
solution, and expressing some property of the solution,
¢y, called a response (e.g., the steady-state value g,
the peak excursion from yo, max;>¢ ||y(t) — yol|) as a
function of the parameter vector x is only possible in a
tabular /numerical sense.

The essence of the solution mapping technique, [8], [12],
[9], is approximation of responses ¢, by simple alge-
braic expressions, i.e., Sy(z) = ¢,(x) within a sub-
set X of parameter space R™, referred to hereafter as
the active parameter subset. The approximating func-
tions S, are obtained using the methodology of the
response surface technique [3], [4], by means of a rela-
tively small number of computer simulations, referred
to as computer experiments. They are performed at
preselected combinations of the parameter values and
the entire set of these combinations is called a design of
computer experiments. The computer experiments are
performed using the complete dynamic model (4) and
the functions S, obtained in this manner are referred
to as surrogate models.

Once developed, the surrogate model S, replaces ¢,
the solution of the original dynamic model, whenever
evaluation of ¢, at a given z € X is required. In our
work we have used quadratic functions for Sy, with
coefficients determined via computer experiments ar-
ranged in a special order, called factorial design. These
designs originate from analysis of variance, with the ob-
jective of minimizing the number of computer experi-
ments to be performed to gain the information required
[3], [4]. Factorial designs have found extensive use in



experimental and process development work, and have
begun recently being applied to computer experiments
(e.g., [15] and [13]). The use of a polynomial form for
the surrogate model also ties in closely with our opti-
mization formalism put forth next in section 3.2.

3.2 Computing the Outer and Inner Bounds

If all of the surrogate models are affine, then the opti-
mizations in (2) and (3) are linear programs. However,
it is often the case that an affine function is not ade-
quate to represent the dependence. Hence, a natural,
nontrivial, and useful extension is to consider quadratic
surrogate models. These enlarge the applicable domain
of a surrogate model but introduce nonconvexity and
computational complexity into subsequent predictions.

The main computational subproblem is an indefinite
quadratic program: for x € R™, bound

[ 1 ]3/[0 [ i ], subject to [ i ]7.;\/[,[ 1 ] € [as, Bi]
5

T T

for i = 1,2,...,N. Note that N = n + m because
(2) and (3) have n constraints due to our a priori
knowledge of z and an additional m constraints due
to the experimental results. Here, all M; are symmet-
ric (1 4+ m) x (1 + m) real matrices. Upper and lower
bounds to this are the outer bounds H and L defined
following equations (2) and (3). Inner bounds are com-
puted using standard constrained optimization.

The convex relaxation we use for the upper and lower
(outer) bounds is known as the S-procedure, and is
well-known in RCT, with numerous applications sum-
marized in [11], [5].

Given M;, oy, B;, v € R, define Mf = [% 8] - M;
M{ = M; — [06 8], My = [g 8] — My. A specific
convex optimization which yields an upper bound to
the question in (5) is

min subject to Ai 20,7 20
.y J MY =N (\MP + M) =0

An analogous expression is derivable for the lower
bound. Here, A > 0 means A is a symmetric, pos-
itive semidefinite matrix. In this problem, it is easy
to prove that for each i, only one of \; and 7; will be
nonzero. Apriori, it is not known which are active, and
it is easiest just to solve the optimization directly over
these 2N + 1 variables. However, the fact shows that
the S-procedure is unable to take advantage of both
constraints implied by M;. The optimization involves
convex constraints and a convex (linear, actually) ob-
jective, and is easily solved. There is a great deal of
current research (Semi-Definite Programming (SDP) or
Linear Matrix Inequalities (LMI)) in developing and

improving polynomial-time algorithms to find feasible
points, and convergence to optimizers [2], [7], [5].

We recognize that the problem in (5) includes (as a spe-
cial case) maximization of an indefinite quadratic func-
tion subject to indefinite quadratic constraints, and as
such is computationally complex, [19]. We do not ad-
dress or attempt to solve this complexity issue. Rather,
we will simply aim for algorithms which do well bound-
ing the optimizations for problems we encounter. Im-
provements on the S-procedure, most notably the sum-
of-squares (SOS) techniques, may prove useful in gen-
eral, though on the example in section 5 were not signif-
icantly better than the S-procedure. The SOS method-
ology can be traced back to [1], [20] for nonquadratic
Lyapunov function generation, and [14] for feasibility
calculations involving polynomial constraints. In the
case of quadratic polynomials, the SOS procedure has
been shown to often be superior to the simple-minded
S-procedure.

4 GRI-Mech: Model & Data Set

In this section, we describe a high-fidelity methane
combustion chemistry model in widespread use for pre-
diction of pollutant formation in natural gas combus-
tion, ([10], [17] and www.me.berkeley.edu/grimech).
The chemical reaction model, known as GRI-Mech,
consists of 53 species (and hence 53 coupled 1st-order
ODEs) and 300+ reactions. The model entails a total
of 102 uncertain parameters which characterize a large
number of uncertain, temperature-dependent rate con-
stants. We assume that each uncertain parameter is
known to lie in the interval [—1,1]. This hypercube (in
R!92) of uncertain parameters is denoted H.

A collection of 77 experiments, all involving methane
combustion, but under different physical manifesta-
tions, and different conditions (such as temperature,
pressure and reactor configuration) have been carried
out by researchers around the world. The experiments
are well-documented, have relatively simple geometry,
and considered repeatable and modelable. In fact, in
these experiments, the prevailing consensus is that only
the rate-constant uncertainty prevents one from accu-
rate numerical simulation. All other relevant phys-
ical aspects are understood, accounted for, and well
modeled. Typical experiments involve flow-tube reac-
tors, stirred reactors, shock tubes, and laminar pre-
mixed flames, with outcomes such as ignition delay,
flame speed, and various species concentration proper-
ties (time of peak, peak value, relative peaks).

In light of the complete understanding of the experi-
ment, it is possible, apriori, to run computer “experi-
ments,” mapping the modeled relation between the rate
constants in GRI-Mech and the outcome, effectively re-
placing the seemingly complex dynamic model with an
algebraic function. The feasibility of this step requires



that the modeled outcome be dependent on the uncer-
tain parameters in a fairly simple manner. Given this,
one obtains simpler models which capture the behav-
ior of (numerically obtained) solutions to the governing
equations.

A feature of this specific set of experiments, revealed by
numerical simulation, is that each simulated outcome
is well-fit (a few percent error over the relevant range)
with a quadratic function of a small (< 15) subset of
the uncertain parameters. This desirable situation is
probably due to a few different reasons:

Next, we consider how process #1 (and its model and
its reported experimental result) can be used to reduce
the feasible uncertain parameter set, from the apriori
H, to a smaller cube. At 1% (for instance) level of ex-
periment uncertainty, the feasible uncertain parameter
set is

{z € R'? : |z;] < 1,|S1(z) — D1] < 0.01|D4|}

Using simple constrained optimization, it is easy to ver-
ify the smallest cube (aligned with the coordinates),
containing the feasible set is indeed still . So, this
experiment, on its own, is not able to reduce the “cube”

e the experiments were designed with simple geom-
etry and phenomenon to be strongly dependent
on some of the parameters (those which the ex-
perimenters intended to learn about) and hope-
fully nearly unaffected by most.

e the state of knowledge in reaction chemistry is
such that the size of the hypercube H is “small”
relative to the outcome quantities of interest.
(well-founded by physics, theory and consensus
of community).

The GRI-Mech Data Set specifically refers to this col-
lection of 77 experiments, surrogate models, and exper-
imental results. They are linked through the methane
combustion that is common to all.

This wealth of information about several inter-related
complex processes provides an excellent opportunity to
test and validate the bounding techniques described in
section 3.2.

5 Bound quality on GRI-Mech Dataset

The viability of the method is evident from a small, ini-
tial study we have conducted on the natural-gas com-
bustion models which form the GRI-Mech Data Set.
Here we describe a modest, preliminary study we have
carried out in this vein. Qur specific goal is: predict
the possible range of the outcome Yig of process Pig
using only the model Syg, and the information implicit
in the models and experimental results associated with
processes Py, Ps,... ,Py. So, here, Py is playing the
role of Py as described in section 3.

Surrogate models Si, Sa,. .., Sy together involve 17 of
the 102 uncertain parameters (ie., 85 of the uncertain
parameters play no appreciable role in the outcome of
processes 1,2, ... ,9). Surrogate model Sig depends on
11 of these 17 parameters, and none of the other 85.

Using only the unit-interval bound (ie., #) on the un-
certain parameters, the S-procedure bounds the values
of Yio (ie., values taken on by surrogate model Sig) to
lie in [1.03 2.26]. The accepted experimental value is
actually about 1.51, consistent with this simple predic-
tion on the range.

description of the uncertainty. The exact same conclu-
sions are reached when considering processes 2,...,9.

On the other hand, if we use the result of experiment
i (though this time at a much coarser 5% experiment
uncertainty) to bound the range of Sy, using the con-
straints as they are, following the prescription in sec-
tion 3.2, we obtain the figure below:
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The hashed-lines are the bounds on Spg, only us-
ing the original hypercube bound on z. The vertical
“errorbar “-like lines represent the outer bounds. These
are guaranteed to contain the range taken on by Sio,
given that S; is within 5% of the measured value, D;.
The circles are the results from the inner bounds, at-
tempting to solve the constrained optimization directly.
The gaps between the ends of the vertical bars, and the
circles are the ambiguity we have in knowing the actual
possible range of Y.

Finally, we simultaneously use the information in pro-
cesses 1-9, to refine the range of surrogate model Sio.
For simple illustration, we assumed a common percent-
age error tolerance on all experimental results of pro-
cesses 1-9, and used a single S-procedure calculation
to yield the outer bounds on the value that could be
taken on by Sig, consistent with the information re-
garding 1-9. Using the SeDuMi package, [18], running
on a Pentium II, 500 MHz., a upper and lower outer
bound pair take about 1 second to compute. The re-
sults for percentage uncertainty in measured outcome
ranging from 4 to 30% are discussed next. At nearly



50% uncertainty level (not shown), the experimental
data from processes 1-9 offers little additional informa-
tion in bounding the response of S1¢ beyond the apriori
[1.03 2.26]. At 4% though, the possible range of S has
been narrowed to [1.43 1.64].
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Inner bounds are also shown, which are values of Siq
taken on at feasible x. These illustrate the potential
gaps between our outer bound of the range and its ac-
tual spread. At 4%, the constrained optimization is
not able to find any feasible points, so circles are not
shown. At 3% (not shown), the S-procedure detects
an inconsistency between the surrogate models 1-9, ex-
perimental data, and experimental tolerance, meaning
that no parameter in H exists that can simultaneously
explain the data in processes 1-9 at this small level of
measurement uncertainty.

This small example demonstrates the power of the ideas
underlying our approach and the feasibility of its prac-
tical implementation.
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