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NQCQP Problem Statement

We consider the following minimization which has a quadratic cost

and quadratic constraints:

p = min
x

xTM0x + 2bT
0 x + a0

subject to: xTMix + 2bT
i x + ai ≤ 0 i = 1, . . . , N

(1)

where ai ∈ R, bi ∈ R
n, and Mi ∈ R

n×n (i = 0, . . . , N) are given

data.

To ease the notation, we define Zi :=
[

ai bTi
bi Mi

]
∈ R

(n+1)×(n+1) for

i = 0, . . . , N . With this notation, the minimization in Equation 1

can be written as:

p = min
x

[
1

x

]T

Z0

[
1

x

]

subject to:

[
1

x

]T

Zi

[
1

x

]
≤ 0 i = 1, . . . , N

(2)

Remarks:

• If {Mi}N
i=0 are all positive semidefinite, this is known as a

Quadratically Constrained, Quadratic Program (QCQP). It is

a convex optimization that can be easily solved.

• The general case is known as a Nonconvex, Quadratically Con-

strained, Quadratic Program (NQCQP). It is computationally

difficult to solve, so we will instead seek lower and upper bounds

on p.

———————————————————–
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NQCQP Overview of Results

�

Upper Bound:

1) Guess x
2) Constrained optimization → xfeas

3) p̄ =
[

1
xfeas

]T
Z0

[
1

xfeas

]

NQCQP:
p = minx [ 1

x ]T Z0 [ 1
x ]

s.t.
[ 1
x ]T Zi [ 1

x ] ≤ 0

Manipulation

�
�

�
�

�
�

�
�

�
���

Rank Relaxation
(Lower Bound 1):
p

r
= minQ�0 Tr [Z0Q]

s.t.
Tr [ZiQ] ≤ 0, Q11 = 1

Weak Duality /
Lagrange Multipliers

�
�

�
�

�
�

�
�

�
���

S-procedure
(Lower Bound 2):
p

s
= maxλi≥0,γ γ

s.t.
Z0 −

[
γ 0
0 0n

]
+

∑N
i=1 λiZi � 0

� �
Strong

Duality

Reinterpret

�

�

Stochastic:
p

r
= minX E

[[
1
X

]T
Z0

[
1
X

]]
s.t.
E

[[
1
X

]T
Z0

[
1
X

]] ≤ 0

E [X] = x̄, E
[
XXT

]
= Σ

�

The stochastic
interpretation suggests
a randomized algorithm
to pick x for the
upper bound

�

The S-procedure multipliers, λi,
provide the local sensitivity of
the optimal cost with respect to
perturbations of the constraints.
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NQCQP Notation

1. R is the set of real numbers.

2. R
n×m is the set of n × m dimensional matrices with entries in

R. The entry in the i’th row and j’th column of a matrix M is

denoted by Mij or (M)ij.

3. If M ∈ R
n×m then MT is the transpose of M , i.e. (MT )ij =

Mji.

4. The notation f : X → Y means that X and Y are sets, and f

is a function mapping X into Y

5. Set notation:

• x ∈ X is read: “x is an element of X”

• X ⊂ Y is read: “X is a subset of Y ”

• The expression “{A : B}” is read as: “The set of all A such

that B.”

6. Optimizations:

• If p = minx∈X f(x), the minimum value, p, may not be

achieved by any x ∈ X . Although we will not do so in

the following slides, we should write p = infx∈X f(x) in this

case. A similar statement holds with max and sup.

• We define the conventions that if X is the empty set then

minx∈X f(x) = +∞ and maxx∈X f(x) = −∞
7. The expectation of a random variable, X , is defined as:

E [X ] :=

∫
xp(x)dx
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NQCQP Definitions

Definition 1 For a square matrix A ∈ R
n×n, the trace of A is

defined as Tr [A] =
∑n

k=1 akk.

Definition 2 A symmetric matrix, M = MT ∈ R
n×n, is positive

semidefinite if xTMx ≥ 0 ∀x ∈ R
n. M is positive definite if

xTMx > 0 ∀x ∈ R
n\{0}. M positive semidefinite is denoted

M � 0 and M positive definite is denoted M 	 0. Finally,

M is negative (semi)definite if −M is positive (semi)definite.

These are denoted M(
) ≺ 0.

Remark: In the previous definition, we assumed M was symmet-

ric. Any reference to sign definiteness in the following slides will

implicitly mean that the matrix is symmetric.

Definition 3 Given matrices, Fi = FT
i ∈ R

n×n (i = 0, . . . , N),

the following is a Linear Matrix Inequality (LMI) constraint on

x ∈ R
N :

F (x) := F0 + x1F1 + · · · + xNFN � 0

Definition 4 A semidefinite program (SDP) is an optimization

of the following form:

min
x

cTx

subject to:

{
Ax = b

F (x) := F0 + x1F1 + · · · + xNFN � 0

where Fi = FT
i ∈ R

n×n (i = 0, . . . , N), A ∈ R
m×N , b ∈ R

m×1,

and c ∈ R
N are given data. In words, an SDP involves mini-

mizing a linear cost subject to linear and LMI constraints.

5



NQCQP Facts

Fact 1 For any A ∈ R
n×m and B ∈ R

m×n, Tr [AB] = Tr [BA].

Proof: This follows from the definition of Tr [·].
Remark: A common application is:

xTAx = Tr
[
xTAx

]
= Tr

[
AxxT

]
where x ∈ Rn and A ∈ R

n×n.

Fact 2 Define two sets:

S1 := {Q ∈ R
(n+1)×(n+1) : Q � 0, Q11 = 1, rank(Q) = 1}

S2 := {Q ∈ R
(n+1)×(n+1) : ∃x ∈ R

n such that Q = [ 1
x ] [ 1

x ]T}
Then S1 = S2.

Proof: S2 ⊂ S1 follows immediately. We outline the proof for

S1 ⊂ S2. If Q � 0 and rank(Q) = 1, then ∃z ∈ Rn+1 such that

Q = zzT (e.g. construct the eigenvalue decomposition of Q). Then

Q11 = 1 and Q � 0 together imply that z1 = 1.

Fact 3 If A � 0 and B � 0 then Tr [AB] ≥ 0

Proof: The eigenvalue decomposition of B has the form B =

UΛUT with Λ � 0. Define Ã := UTAU . Since A and Ã are related

by a congruence transformation, A � 0 implies Ã � 0. Hence the

diagonal entries of Ã are nonnegative. Equality (a) follows from

Fact 1:

Tr [AB] = Tr
[
A(UΛUT )

] (a)
= Tr

[
ÃΛ

]
=

n∑
k=1

Ãkkλk ≥ 0
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NQCQP Facts

Fact 4 minx [ 1
x ]T M [ 1

x ] ≥ 0 if and only if M � 0.

Proof:

(⇐=) By definition, M � 0 implies [ 1
x ]T M [ 1

x ] ≥ 0 ∀x.

(=⇒) Prove by contradiction. If M �� 0, then there exists a vector,

v, such that vTMv < 0. Block partition v = [ v1
v2 ] where v1 ∈ R is

the first entry of v. First assume v1 �= 0. Given this assumption,

we can factor v1 out:

0 > vTMv = v2
1

[
1

1
v1

v2

]T

M
[

1
1
v1

v2

]
=⇒ min

x
[ 1
x ]T M [ 1

x ] < 0

If v1 = 0, then by continuity [ ε
v2 ]T M [ ε

v2 ] < 0 for ε > 0 sufficiently

small. Apply the argument above to show minx [ 1
x ]T M [ 1

x ] < 0.

Fact 5 Given any A = AT ∈ R
n,

min
Q�0

Tr [AQ] =

{
0 if A � 0

−∞ else

Proof: By Fact 3, Q, A � 0 implies Tr [AQ] ≥ 0. Moreover,

Q = 0n achieves Tr [AQ] = 0.

If A �� 0, then there exists an eigenvalue/eigenvector, (λ, v), such

that Av = λv, vTv = 1, and λ < 0. For α > 0, define Qα :=

αvvT � 0. Using Fact 1, Tr [AQα] = αTr
[
vTAv

]
= αλ < 0. As

α → ∞, Tr [AQα] → −∞.
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NQCQP Facts: Schur Complement Lemma

Fact 6 Given A = AT ∈ R
n×n, B ∈ R

m×n, and C = CT ∈
R

m×m with A 	 0. Then:[
A BT

B C

]
� 0 ⇔ C − BA−1BT � 0

Proof:[
A BT

B C

]
=

[
A1/2 0

BA−1/2 Im

] [
In 0

0 C − BA−1BT

] [
A1/2 0

BA−1/2 Im

]T

The proof is completed by recalling that positive semidefiniteness is

preserved under congruence transformations (i.e. for any matrices

M and L, M � 0 ⇒ LMLT � 0).

Remark: We will apply this result with A = 1:[
1 bT

b C

]
� 0 ⇔ C − bbT � 0
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NQCQP Facts: Lagrange Multipliers

Fact 7 Let {fi}N
i=0 and {gk}M

k=0be given functions from R
n to R.

The following equality holds:

min
x

f0(x) s.t. :

{
fi(x) ≤ 0, i = 1, . . . , N

gk(x) = 0, k = 1, . . . , M

= min
x

max
λi≥0,γ

f0(x) +

N∑
i=1

λifi(x) +

M∑
k=1

γkgk(x)

Proof: Define the Lagrangian:

L(x, λ, γ) := f0(x) +
N∑

i=1

λifi(x) +
M∑

k=1

γkgk(x)

For any x, the Lagrangian satisfies:

max
λi≥0,γ

L(x, λ, γ) =




f0(x) if fi(x) ≤ 0 (i = 1, . . . , N)

and gk(x) = 0 (k = 1, . . . , M)

+∞ else

Remarks:

• Lagrange multipliers turn constrained minimizations into un-

constrained min-max problems.

• Lagrange multipliers can also be used to turn constrained max-

imizations into unconstrained max-min problems.

• Fact 5 allows us to handle matrix constraints in a similar fash-

ion.. For example, if F1 : R
n → R

m×m, then:

max
x

f0(x) = max
x

min
Q�0

f0(x) + Tr [F1(x)Q]

s.t.: F1(x) � 0
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NQCQP Facts: Weak Duality

Fact 8 Given a function f : R
n × R

m → R and sets X ⊂ R
n,

Y ⊂ R
m, the following inequality holds:

max
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

max
y∈Y

f(x, y) (3)

Proof: Assume X and Y are both nonempty. For any (x0, y0) ∈
X × Y , f(x0, y0) ≤ maxy∈Y f(x0, y). Since this inequality holds

∀(x0, y0) ∈ X × Y , it must also hold when we take the minimum

over x on both sides:

min
x∈X

f(x, y0) ≤ min
x∈X

max
y∈Y

f(x, y)

The left side of this inequality is a function of y0 while the right side

is a constant:

h(y0) := min
x∈X

f(x, y0)

c := min
x∈X

max
y∈Y

f(x, y)

Since h(y0) ≤ c ∀y0 ∈ Y , it must hold for the maximum over y:

maxy∈Y h(y) ≤ c. This is the desired result upon substituting back

in for h(y0) and c.

If X and/or Y are empty, the result follows from our previously

specified convention. Specifically, if X is empty then the Equation 3

holds because the right side is equal to +∞. Similarly, if Y is empty

then Equation 3 holds because the left side is equal to −∞.
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NQCQP Facts

Fact 9 Let A = AT, B = BT ∈ R
n×n be given with A � 0, B �

0 and rank(B) = n − r. If Tr [AB] = 0 then there exists Ã22 ∈
R

r×r, U ∈ R
n×n such that UTU = In and A = U

[
0n−r 0

0 Ã22

]
UT .

Proof: Since B � 0 and rank(B) = n − r, the eigenvalue

decomposition of B has the form B = U
[

Λ 0
0 0r

]
UT where U ∈

R
n×n, Λ > 0, and UTU = In. Define Ã := UTAU . Block partition

Ã =
[

Ã11 Ã12
ÃT

12 Ã22

]
compatible with the dimensions of

[
Λ 0
0 0r

]
. Since A

and Ã are related by a congruence transformation, A � 0 implies

Ã � 0 and hence the diagonal entries of Ã11 are nonnegative.

The following equalities hold:

0 = Tr [AB]
(a)
= Tr

[
UTAU

[
Λ 0
0 0r

]] (b)
= Tr

[
Ã11Λ

]
(c)
=

n−r∑
k=1

λk · (Ã11)kk

(d)
=⇒(Ã11)kk = 0 for k = 1, . . . , n − r

(a) follows from Fact 1 while (b) and (c) follow from the definition

of Tr [·]. Implication (d) follows because λk > 0 and (Ã11)kk ≥ 0

for k = 1, . . . , n − r. The proof is completed by noting this result

implies Ã11 = 0 and hence Ã12 = 0.

Remark: If the rank(B) = n − r is large then rank(A) = r is

necessarily small.
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NQCQP Lower Bound 1: Rank Relaxation

The following steps put the NQCQP in an equivalent form:

p := min
x

[ 1
x ]T Z0 [ 1

x ] s.t. : [ 1
x ]T Zi [ 1

x ] ≤ 0 i = 1, . . . , N

(a)
= min

x
Tr

[
Z0 [ 1

x ] [ 1
x ]T

]
s.t. : Tr

[
Zi [ 1

x ] [ 1
x ]T

]
≤ 0 i = 1, . . . , N

(b)
= min

Q�0, Q11=1, rank(Q)=1
Tr [Z0Q] s.t. : Tr [ZiQ] ≤ 0 i = 1, . . . , N

(a) follows from Fact 1 and (b) follows from Fact 2.

If we ’relax’ (i.e. ignore) the rank constraint, we get a semidefinite

program (SDP):

p
r

:= min
Q�0, Q11=1

Tr [Z0Q]

subject to: Tr [ZiQ] ≤ 0 i = 1, . . . , N

Remarks:

• Removing the rank constraint means we are searching over a

larger set of matrices and hence we can achieve a lower cost,

p
r
≤ p.

• p
r

= p if and only if the optimal solution to the SDP is rank 1.
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NQCQP Lower Bound 2: The S-procedure

We can use Lagrange multipliers and weak duality to obtain another

lower bound on p:

p := min
x

[ 1
x ]T Z0 [ 1

x ] s.t. : [ 1
x ]T Zi [ 1

x ] ≤ 0 i = 1, . . . , N

(a)
= min

x
max
λi≥0

[ 1
x ]T Z0 [ 1

x ] +

N∑
i=1

λi [ 1
x ] Zi [ 1

x ]

(b)

≥ max
λi≥0

min
x

[ 1
x ]T

[
Z0 +

N∑
i=1

λiZi

]
[ 1
x ]

(c)
= max

λi≥0,γ
γ s.t. : min

x
[ 1
x ]T

[
Z0 +

N∑
i=1

λiZi

]
[ 1
x ] ≥ γ

(a) is an application of Lagrange multipliers (Fact 7) and (b) follows

from weak duality (Fact 8). Equality (c) just introduces a dummy

variable.

We can now apply Fact 4 to convert the constraint in the final

maximization into an LMI. This yields the following SDP:

p
s

:= max
λi≥0,γ

γ subject to: Z0 −
[

γ 0
0 0n

]
+

N∑
i=1

λiZi � 0

Remarks:

• In control theory, this is known as the S-procedure.

• By the steps given above, p
s
≤ p. If p

s
= p, the S-procedure is

called ’lossless’.

• If N = 1, then step (b) holds with equality, i.e. the S-procedure

is lossless (Boyd, et.al., 1994).
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NQCQP Equivalence of Lower Bounds

Weak duality gives that p
s
≤ p

r
:

p
s

:= max
λi≥0,γ

γ s.t. : F (λ, γ) := Z0 −
[

γ 0
0 0n

]
+

N∑
i=1

λiZi � 0 (4)

(a)
= max

λi≥0,γ
min
Q�0

γ + Tr [F (λ, γ)Q]

(b)

≤ min
Q�0

max
λi≥0,γ

γ + Tr [F (λ, γ)Q]

(c)
= min

Q�0, Q11=1
Tr [Z0Q] s.t. : Tr [ZiQ] ≤ 0 i = 1, . . . , N (5)

:= p
r

(a) and (c) use Lagrange multipliers (Fact 7). (b) follows from weak

duality (Fact 8). If p
s

= p
r
, we say strong duality holds.

Theorem 1 p
s

= p
r

if either of the following holds:

1. Optimization 4 is strictly feasible: ∃(λ, γ) such that λi > 0

and F (λ, γ) 	 0.

2. Optimization 5 is strictly feasible: ∃Q 	 0 such that Q11 = 1

and Tr [ZiQ] < 0, i = 1, . . . , N .

Remarks:

• The proof is technical (Rockafellar, 1970).

• Conditions for strong duality can be weakened (Sturm, 1997).
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NQCQP Stochastic Interpretation of Rank Relaxation

If we define Q :=
[

1 x̄T

x̄ Σ

]
, then the rank relaxation problem can be

written as:

p
r

:= min
Σ,x̄

T r
[
Z0

[
1 x̄T

x̄ Σ

]]
subject to:

{
Tr

[
Zi

[
1 x̄T

x̄ Σ

]] ≤ 0 i = 1, . . . , N[
1 x̄T

x̄ Σ

] � 0

Let X be a random variable (r.v.) of dimension n×1 with E [X ] = x̄

and E
[
XXT

]
= Σ. By Fact 1 and the linearity of Tr [·] and E [·],
E

[
[ 1
X ]

T
Zi [ 1

X ]
]

= Tr
[
Zi

[
1 x̄T

x̄ Σ

]]
Thus rank relaxation is equivalent to:

p
r

:= min
X

E
[
[ 1
X ]

T
Z0 [ 1

X ]
]

s.t. :




E
[
[ 1
X ]

T
Z0 [ 1

X ]
]
≤ 0 i = 1, . . . , N[

1 x̄T

x̄ Σ

] � 0

X is a r.v. with E [X ] = x̄, E
[
XXT

]
= Σ

By Schur Complements (Fact 6), the second constraint is equivalent

to Σ− x̄x̄T � 0. This constraint is trivially satisfied if X a random

variable because E
[
(X − x̄)(X − x̄)T

]
= Σ − x̄x̄T and variance

matrices are always positive semidefinite.

Based on this discussion, rank relaxation is equivalent to a mini-

mization involving the random variable X :

p
r

:= min
X

E
[
[ 1
X ]

T
Z0 [ 1

X ]
]

s.t. :

{
E

[
[ 1
X ]

T
Z0 [ 1

X ]
]
≤ 0 i = 1, . . . , N

X is a r.v. with E [X ] = x̄, E
[
XXT

]
= Σ

(6)
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NQCQP Stochastic Interpretation of Rank Relaxation

The original NQCQP is:

p = min
x

[ 1
x ]T Z0 [ 1

x ]

s.t. : [ 1
x ]T Zi [ 1

x ] ≤ 0 i = 1, . . . , N
(7)

The rank relaxation problem is:

p
r

:= min
Σ,x̄

T r
[
Z0

[
1 x̄T

x̄ Σ

]]
subject to:

{
Tr

[
Zi

[
1 x̄T

x̄ Σ

]] ≤ 0 i = 1, . . . , N[
1 x̄T

x̄ Σ

] � 0

(8)

Rank relaxation is equivalent to the following minimization:

p
r

:= min
X

E
[
[ 1
X ]

T
Z0 [ 1

X ]
]

s.t. :

{
E

[
[ 1
X ]

T
Zi [ 1

X ]
]
≤ 0 i = 1, . . . , N

X is a r.v. with E [X ] = x̄, E
[
XXT

]
= Σ

(9)

Remarks:

• Equation 9 is similar to Equation 7, except that we search for

a random variable rather than a specific vector.

• Let Σ0, x̄0 denote an optimal point for Equation 8. Then,

any distribution with mean, E [X ] = x̄0, and second moment,

E
[
XXT

]
= Σ0 is an optimal distribution for Equation 9.

• Recall that if rank
[

1 x̄T
0

x̄0 Σ0

]
= 1, then p

r
= p. In this case, Σ0 =

x̄0x̄
T
0 and E

[
(X − x̄0)(X − x̄0)

T
]

= 0n. Thus the optimal

distribution for Equation 9 consists of a single point.

16



NQCQP Upper Bounds

Find upper bounds using the following algorithm:

1. Solve the rank relaxation problem. Let Q0 :=
[

1 x̄T
0

x̄0 Σ0

]
denote

an optimal point for the rank relaxation problem.

2. Sample R
n using any distribution with mean, E [X ] = x̄0, and

second moment, E
[
XXT

]
= Σ0.

3. Sampled points may not be feasible, but we can use them as

initial conditions for a local search algorithm.

4. Any feasible point, xfeas, returned by a local search algorithm

gives an upper bound: p ≤ [
1

xfeas

]T
Z0

[
1

xfeas

]
.

Remarks:

• We typically solve the SDP arising from the S-procedure. Given

an optimal solution to this problem, we would like to cheaply

compute a Q0. This is covered on the next slide.

• Sedumi solves both lower bound SDPs simultaneously, so the

first remark is not an issue.

• In many cases, Q0 is low rank, so the optimal distribution has

nonzero variance along a small number of dimensions.
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NQCQP Optimality Conditions

The SDPs from the S-procedure and Rank Relaxation are:

p
s

:= max
λi≥0,γ

γ s.t. : F (λ, γ) := Z0 −
[

γ 0
0 0n

]
+

N∑
i=1

λiZi � 0

p
r

:= min
Q�0, Q11=1

Tr [Z0Q] s.t. : Tr [ZiQ] ≤ 0 i = 1, . . . , N

These SDPs are known as primal and dual forms of each other.

If strong duality holds, then there exists feasible (λ̄, γ̄) and Q̄ such

that γ̄ = Tr
[
Z0Q̄

]
. This implies:

0
(a)

≤ Tr
[
F (λ̄, γ̄)Q̄

] (b)
=

N∑
i=1

λiTr
[
ZiQ̄

] (c)

≤ 0

=⇒ Tr
[
F (λ̄, γ̄)Q̄

]
= 0

Inequality (a) holds since F (λ̄, γ̄), Q̄ � 0 (Fact 3). (b) follows by

substituting for F (λ̄, γ̄) and using γ̄ = Tr
[
Z0Q̄

]
. Inequality (c)

follows by from the feasibility: λi ≥ 0 and Tr [ZiQ] ≤ 0.

To summarize, the optimality conditions are given by:

F (λ̄, γ̄) � 0, λ̄i ≥ 0 Primal Feasibility

Q̄ � 0, Q̄11 = 1, T r
[
ZiQ̄

] ≤ 0 Dual Feasibility

Tr
[
F (λ̄, γ̄)Q̄

]
= 0 Complementary Slackness

These are known as the Karush-Kuhn-Tucker (KKT) conditions.

Remark: Given (λ̄, γ̄), we can compute a Q̄ from the KKT con-

ditions. It typically happens that F (λ̄, γ̄) has large rank. We can

apply the complementary slackness condition and Fact 9 to conclude

that Q̄ must have low rank.

18



NQCQP Sensitivity Analysis

The original NQCQP is:

p = min
x

[ 1
x ]T Z0 [ 1

x ]

s.t. : [ 1
x ]T Zi [ 1

x ] ≤ 0 i = 1, . . . , N

Consider the following perturbed version of the original NQCQP:

p(u) = min
x

[ 1
x ]T Z0 [ 1

x ]

s.t. : [ 1
x ]T Zi [ 1

x ] ≤ ui i = 1, . . . , N

When u = 0, p(0) is the optimal cost for the original, unperturbed

NQCQP. The theorems on the next two slides show that the S-

procedure gives local sensitivity information. The proofs and inter-

pretations are minor modifications of results in [Boyd and Vanden-

berghe].

First we introduce some notation. The SDP from the S-procedure

can be written as:

p
s

:= max
λi≥0

g(λ)

where g(λ) := minx [ 1
x ]T

[
Z0 +

∑N
i=1 λiZi

]
[ 1
x ]. g(λ) is known as

the dual function. Let λ∗ be the optimal vector of S-procedure

multipliers, i.e p
s

= g(λ∗).
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Theorem 2

p(u) ≥ p
s
− λ∗Tu = p(0) − λ∗Tu −

[
p(0) − p

s

]
Proof: For any x0 that is feasible for the perturbed problem:

g(λ∗)
(a)

≤ [ 1
x0 ]

T

[
Z0 +

N∑
i=1

λ∗
i Zi

]
[ 1
x0 ]

(b)

≤ [ 1
x0 ]

T
Z0 [ 1

x0 ] + λ∗Tu

Inequality (a) follows from the definition of the dual function and

(b) follows since x0 satisfies the perturbed constraints. Minimizing

the right side over x0 subject to the constraints of the perturbed

problem yields g(λ∗) ≤ p(u) + λ∗Tu. This is the desired inequality

since p
s

= g(λ∗).

Remarks:

• The bracketed term is bounded by the gap between upper and

lower bounds: p(0) − p
s
≤ p̄ − p

s
. This gap is typically small.

• Suppose λ∗
i is large and the gap is negligble. If the ith constraint

is tightened (i.e. ui < 0), then the optimal value p(u) will

increase greatly.

• Suppose λ∗
i is small and the gap is negligble. If the ith constraint

is relaxed (i.e. ui > 0), then the optimal value p(u) will not

decrease too much.

• Note that the inequality in Theorem 2 is only a lower bound.

Since it is not an upper bound, the interpretations in the pre-

vious two bullets are not symmetric.
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Theorem 3 If p(u) is differentiable at u = 0, then the gradient

of p(u) satisfies:∣∣∣[∇up(0)]T u + λ∗Tu
∣∣∣ ≤ [

p(0) − p
s

]
+ o(u)

Proof: Since p(u) is differentiable at u = 0, the definition of a

gradient gives:

p(u) = p(0) + [∇up(0)]T u + o(u)

From Theorem 2, the following two inequalities hold:

p(u) ≥ p(0) − λ∗Tu −
[
p(0) − p

s

]
p(−u) ≥ p(0) + λ∗Tu −

[
p(0) − p

s

]
Substituting the Taylor series into these inequalities gives:

[∇up(0)]T u + o(u) ≥ −λ∗Tu −
[
p(0) − p

s

]
− [∇up(0)]T u + o(u) ≥ λ∗Tu −

[
p(0) − p

s

]
The theorem follows from these inequalities.

Remarks:

• If the gap is negligible, then the inequality implies ∇up(0) =

−λ∗. In this case, the multipliers are exactly the local sensitiv-

ity of the optimal cost with respect to constraint perturbations:

∂p(u)

∂ui

∣∣∣∣
u=0

= −λi

• If the gap is neglible, the interpretations are: Tightening con-

straint i by a small amount (ui < 0) approximately increases

p(0) by −λ∗
i ui. Similarly, relaxing this constraint a small amount

(ui > 0) approximately decreases p(0) by −λ∗
i ui.
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