NQCQP Outline

—_

S e L AT L -

Problem Statement

Overview of Results

Notation and Definitions

Facts

Lower Bounds: Rank Relaxation and the S-procedure
Stochastic Interpretation of Rank Relaxation

Upper Bounds: Intelligent Sampling and Local Search
Sensitivities: Use the S-procedure multipliers

References



NQCQP Problem Statement

We consider the following minimization which has a quadratic cost
and quadratic constraints:

p= mxin QIZ’TM()QE + ngl’ + ag

(1)

subject to: ! Mz + Qb;‘-rx +a, <0 ¢=1,...,N

where a; € R, b; € R", and M; € R™" (i = 0,...,N) are given
data.

To ease the notation, we define Z; := [ZZ ﬁ;} € ROHDx(n+1) for
1 =0,...,N. With this notation, the minimization in Equation 1

can be written as:
T

ol

T
subject to: [1 Zi [1] <0¢:=1,....N
x x

Remarks:

o If {M;}Y, are all positive semidefinite, this is known as a
Quadratically Constrained, Quadratic Program (QCQP). It is
a convex optimization that can be easily solved.

e The general case is known as a Nonconvex, Quadratically Con-
strained, Quadratic Program (NQCQP). It is computationally
difficult to solve, so we will instead seek lower and upper bounds
on p.




NQCQP

Overview of Results

Upper Bound:

~1) Guess x

2) Constrained optimization —  feqs

The stochastic
Interpretation suggests

a randomized algorithm

to pick x for the

upper bound NQCQP:

s.t.

T

p=ming [;]" Zo[;]

(11" Zi[3] <0

Manipulation

Rank Relaxation
(Lower Bound 1):

Weak Duality /
Lagrange Multipliers

S-procedure
(Lower Bound 2):

p, = mingyo 17 [ZoQ)]
s.t.
Tr(ZiQ] <0,Qun =1

A

Reinterpret

Y

Stochastic:

P, = maxy; >0y Y
s.t.
Zo — [go(ﬂ +Z£\;1 AiZi = 0

The S-procedure multipliers, A;,
provide the local sensitivity of

the optimal cost with respect to
perturbations of the constraints.



NQCQP Notation

L.
2.

7.

R is the set of real numbers.

R™ ™ is the set of n X m dimensional matrices with entries in
R. The entry in the ¢’th row and j7’th column of a matrix M is
denoted by M;; or (M);;.

CIf M e R™™ then M7 is the transpose of M, i.e. (MT)U =

Mﬂ.

The notation f : X — Y means that X and Y are sets, and f
is a function mapping X into Y

. Set notation:

o r € X isread: “x is an element of X7
e X C Yisread: “X is a subset of Y”

e The expression “{A : B} is read as: “The set of all A such
that B.”

. Optimizations:

o If p = mingey f(x), the minimum value, p, may not be
achieved by any x € X. Although we will not do so in
the following slides, we should write p = inf,cxy f(x) in this
case. A similar statement holds with max and sup.

e We define the conventions that if X is the empty set then
mingey f(r) = +00 and max,ey f(r) = —o0

The expectation of a random variable, X, is defined as:

E[X] = / wp(z)dz



NQCQP Definitions

Definition 1 For a square matriz A € R"™", the trace of A is
defined as Tr[A] = > 1_, agk.

Definition 2 A symmetric matriz, M = M* € R™", is positive
semidefinite if ' Mx > 0 Vo € R". M is positive definite if
eI Mz > 0 Vo € R"\{0}. M positive semidefinite is denoted
M > 0 and M positive definite is denoted M > 0. Finally,
M is negative (semi)definite if —M is positive (semi)definite.
These are denoted M (=) < 0.

Remark: In the previous definition, we assumed M was symmet-
ric. Any reference to sign definiteness in the following slides will
implicitly mean that the matrix is symmetric.

Definition 3 Given matrices, F; = F1 € R"™" (1=0,...,N),
the following is a Linear Matriz Inequality (LMI) constraint on
rcRY:

F(CL’) Z:F0—|—£IZ’1F1—|—"'—|—£I3NFNEO

Definition 4 A semidefinite program (SDP) is an optimization
of the following form:

min ¢l

T

Ax =b

subject to:
J {F(ﬂ?)—Fo—FCL’lFl—F—FCL’NFNEO

where F; = F' € RV (1 =0,...,N), A € RN p e R
and ¢ € RY are given data. In words, an SDP involves mini-
mizing a linear cost subject to linear and LMI constraints.



NQCQP Facts

Fact 1 For any A € R"™™ and B € R"™*", Tr[AB] = Tr |BA|.

Proof:  This follows from the definition of T [-]. .

Remark: A common application is:
el Az = Tr [xTAx] =Tr [AZCCCT]
where x € R" and A € R™".

Fact 2 Define two sets:

S :={Q e ROVIXHD -0 -0, Qi =1, rank(Q) =1}
Sy = {Q € R X+ 30 € R™ such that Q = [1][1]"}

Then S; = S,.

Proof: Sy C 57 follows immediately. We outline the proof for
Sy C Sy. If Q = 0 and rank(Q) = 1, then 3z € R™"! such that
Q = 22! (e.g. construct the eigenvalue decomposition of Q). Then
11 = 1 and Q > 0 together imply that z; = 1. .

Fact 3 If A>=0 and B = 0 then Tr [AB] > 0

Proof: ~ The eigenvalue decomposition of B has the form B =
UAUT with A = 0. Define A := UT AU. Since A and A are related
by a congruence transformation, A > 0 implies A = 0. Hence the
diagonal entries of A are nonnegative. Equality (a) follows from
Fact 1:

Tr[AB) = Tr [AUAUT)] < Tr [AA] = zn: A > 0

k=1



NQCQP Facts

Fact 4 min, [1]" M [1] > 0 if and only if M = 0.

Proof:
(«<=) By definition, M > 0 implies [}C]TM [1] >0 V.

(=) Prove by contradiction. If M ¥ 0, then there exists a vector,
v, such that vI Mv < 0. Block partition v = [{}] where v; € R is
the first entry of v. First assume v; # 0. Given this assumption,
we can factor vy out:

T
0> fUTMv:v% [Llw} M [LW}

1
— min[1]" M[L] <0

If v; = 0, then by continuity []" M [5] < 0 for € > 0 sufficiently
small. Apply the argument above to show min, [1]" M [1] < 0.

Fact 5 Given any A = A € R",

minTT[AQ]—{O i A=0

Q=0 —00 else

Proof: By Fact 3, @, A > 0 implies Tr [AQ] > 0. Moreover,
() = 0, achieves Tr [AQ] = 0.

If A % 0, then there exists an eigenvalue/eigenvector, (A, v), such
that Av = M, v'v = 1, and A < 0. For a > 0, define Q, =
avv? = 0. Using Fact 1, Tr[AQ.] = oT'r [v7 Av] = aX < 0. As
a— 00, Tr[AQ.| — —oc. .



NQCQP Facts: Schur Complement Lemma

Fact 6 Given A = AT € R™", B € R™" and C = CT €
R™ ™ awith A > 0. Then:

[A BT

- — BA'BT
5 O]_J)¢>C7 BA”B" =0

Proof:

A BT [ AV o] [ 0 AYE 0
B C| |BA Y2 |l0 C—BA'BT||BA Y2 I,

The proof is completed by recalling that positive semidefiniteness is

T

preserved under congruence transformations (i.e. for any matrices
Mand L, M = 0= LML" = 0). =

Remark: We will apply this result with A = 1:

[1 bl

> () — bt =0
bO]_ e ¢ -



NQCQP Facts: Lagrange Multipliers

Fact 7 Let {f;}, and {gr}1,be given functions from R" to R.
The following equality holds:

. ) fl(CL')SO, ’i:1,...,N
mj}nfo(x) st {gk(aj)—o, k=1....M

N M
= min max fo(z)+ Z Aifilz) + Z%gk(fﬁ)
i=1 k=1

x N>0y

Proof:  Define the Lagrangian:

M
L(z, A7) )+ Z Mifilx) + ) wgrl)
k=1

For any «, the Lagrangian satlsﬁesz

folz) if fi(x) <0 (i=1,...,N)

)\rgaoxL(a:,)\,’y): and gp(x) =0 (k=1,..., M)
= +oo else
Remarks:

e Lagrange multipliers turn constrained minimizations into un-
constrained min-max problems.

e Lagrange multipliers can also be used to turn constrained max-
imizations into unconstrained max-min problems.

e Fact 5 allows us to handle matrix constraints in a similar fash-
ion.. For example, if F; : R” — R"™*"™ then:
max fo(z) = max gli%l folz) + Tr [Fi(2)Q)]
st Fi(x) =0



NQCQP Facts: Weak Duality

Fact 8 Giwen a function f: R" x R™ — R and sets X C R",
Y C R™, the following inequality holds:
' < mi 3
D g S y) < iy wax (@) 3
Proof:  Assume X and Y are both nonempty. For any (¢, y9) €
X xY, f(xo,y0) < maxyey f(zo,y). Since this inequality holds
V(xo,50) € X x Y, it must also hold when we take the minimum
over x on both sides:

| o
min f(z, yo) < min I;lgf(fﬁ,y)

The left side of this inequality is a function of yg while the right side
Is a constant:
h(yo) :=min f(z,yo)
reX

¢ := mipmax f(x,y)

Since h(yy) < ¢ Yy € Y, it must hold for the maximum over y:
maxyey h(y) < c. This is the desired result upon substituting back
in for h(yg) and c.

If X and/or Y are empty, the result follows from our previously
specified convention. Specifically, if X is empty then the Equation 3
holds because the right side is equal to +o00. Similarly, if Y is empty
then Equation 3 holds because the left side is equal to —oo. .

10



NQCQP Facts

Fact 9 Let A= A", B = B" € R™" be given with A > 0, B >
0 and rank(B) =n —r. If Tr[AB] = 0 then there exists Ay €
R, U € R such that UTU = I, and A=U | " 0 | UT.

Proof: ~ Since B > 0 and rank(B) = n — r, the eigenvalue
decomposition of B has the form B = U [ ] U' where U €
R™" A > 0, and UTU = I,,. Define A := UTAU Block partition

A= [{111 412} compatible with the dimensions of |4 (. |. Since A

Ay Az
and A are related by a congruence transformation, A > 0 implies
A > 0 and hence the diagonal entries of A7 are nonnegative.

The following equalities hold:

Tr[AB) Y Tr [UTAU [4 011 2 Tr [ A]

= Zxk (A

g(An)kk:Oforkzl,...,n—r

(a) follows from Fact 1 while (b) and (c¢) follow from the definition
of Tr[-]. Tmplication (d) follows because A, > 0 and (A1), > 0
for Kk =1,...,n —r. The proof is completed by noting this result
implies Ay = 0 and hence Ay, = 0. -

Remark: If the rank(B) = n — r is large then rank(A) = r is
necessarily small.

11



NQCQP Lower Bound 1: Rank Relaxation

The following steps put the NQCQP in an equivalent form:
p=min[l]" Zy[L] st.: [L]" Z[L]<0 i=1,...,N

@ 117117 : 117117 -

= minTr | Zo[LI[L] | st Tr|Z; [L][L] | <0 i=1,...,N

B min Tr(ZQ) st.: Tr(ZQ| <0 i=1,...,N
Q>0, Q11=1, rank(Q)=1

(a) follows from Fact 1 and (b) follows from Fact 2.

If we relax’ (i.e. ignore) the rank constraint, we get a semidefinite

program (SDP):

B g T A0

subject to: Tr[Z,Q] <0 i=1,...,N

Remarks:

e Removing the rank constraint means we are searching over a
larger set of matrices and hence we can achieve a lower cost,

p, <D
ep =p if and only if the optimal solution to the SDP is rank 1.

12



NQCQP Lower Bound 2: The S-procedure

We can use Lagrange multipliers and weak duality to obtain another

lower bound on p:

p=min[1]" Zy[1] st : [1]" Z[1]<0i=1,...,N

x )\ZZO 1
1=
Q 1 al 1
> maxmin}] Zo+z;A¢Zz 1]
1=

= max v s.t.: min[L]"

(a) is an application of Lagrange multipliers (Fact 7) and (b) follows
from weak duality (Fact 8). Equality (c) just introduces a dummy

variable.

We can now apply Fact 4 to convert the constraint in the final
maximization into an LMI. This yields the following SDP:

N

._ : . _[20 7.

p, .—Alfinzaozj(7 ~v subject to: Zj [0 On] + Z;)\ZZZ > 0
1=

Remarks:

e [n control theory, this is known as the S-procedure.

e By the steps given above, p, <D If p, =D, the S-procedure is
called ’lossless’.

e I[f N = 1, then step (b) holds with equality, i.e. the S-procedure
is lossless (Boyd, et.al., 1994).

13



NQCQP Equivalence of Lower Bounds

Weak duality gives that p,<p:

= max 7y s.t.: F(\ ) =2y — [gofl] +Z)\¢ZZ- =0 (4)

p
— >0,y

a

= max min v+ Tr [F(\,7)Q]

—~
~—

Ai>0,7 Q=0

(b)

< mi Tr|F

< min max 7y + r[F(\,7)Q)]

(c) : .

= min Tr|Z st. :Ir|ZQ <0 :1=1,....N (b
i TrZQ 7)< 5)

=D,

(a) and (c) use Lagrange multipliers (Fact 7). (b) follows from weak
duality (Fact 8). If p. = p , we say strong duality holds.

Theorem 1 p =p if either of the following holds:

1. Optimization 4 is strictly feasible: (N, ) such that \; > 0
and F(A\,7) = 0.

2. Optimization 5 is strictly feasible: 3Q) >~ 0 such that ()11 =1
and Tr[Z;Q] <0,i=1,...,N.

Remarks:

e The proof is technical (Rockafellar, 1970).

e Conditions for strong duality can be weakened (Sturm, 1997).

14



NQCQP Stochastic Interpretation of Rank Relaxation

If we define @) := [% fz } then the rank relaxation problem can be

written as:
p,=winTr (2[4 ]
Tr |Z; 1zh <0 1=1, , N
subject to: { [;xg] [txoz H (

Let X be arandom variable (r.v.) of dimension nx1 with F [X] = &
and £ [XX'| = X. By Fact 1 and the linearity of Tr || and E[],

T
B 23| =Tr (2 [14]]
Thus rank relaxation is equivalent to:

p, =min B [[4]" Z [}]

ST R [%ﬂ] =0
a

By Schur Complements (Fact 6), the second constraint is equivalent
to ¥ — zz! > 0. This constraint is trivially satisfied if X a random
variable because E [(X — z)(X — )" = ¥ — 2z and variance
matrices are always positive semidefinite.

Based on this discussion, rank relaxation is equivalent to a mini-
mization involving the random variable X:

p. —m)}nE[[ " Zy [ L ]}

R A 0= N (6)
| Xisarw. with E[X] =z, E | XXT]| =%

15



NQCQP Stochastic Interpretation of Rank Relaxation

The original NQCQP is:
p=min[L]" Z[}]
st.: [ Zi[L]<04i=1,...,N

The rank relaxation problem is:

]—)7“ %ITT [Zo[ E}}
. 71 o 8
subject to: TT_[TZZ 18]l <0di=1,...,N (8)
5] =0

Rank relaxation is equivalent to the following minimization:

BT:H}}HE_HTZOM]
s.t.:IE[[ I Zi[ ]]<OZ—1 N (9)

| X isarv. with F[X] =z, E[XXT] =

Remarks:

e Fquation 9 is similar to Equation 7, except that we search for
a random variable rather than a specific vector.

o Let Xy, Ty denote an optimal point for Equation 8. Then,
any distribution with mean, F [X] = Zy, and second moment,
E [X X T} = Yo is an optimal distribution for Equation 9.

e Recall that if rank [;0 ggg] = 1, then p, =p In this case, X9 =

Toz} and E [(X — Zo)(X — Z9)"] = 0,. Thus the optimal
distribution for Equation 9 consists of a single point.

16



NQCQP Upper Bounds

Find upper bounds using the following algorithm:

1.

Solve the rank relaxation problem. Let @)y := [;O ‘ggz;] denote

an optimal point for the rank relaxation problem.

. Sample R" using any distribution with mean, F [X] = Z, and

second moment, £ [X X T} = 2.

. Sampled points may not be feasible, but we can use them as

initial conditions for a local search algorithm.

Any feasible point, @ f.qs, returned by a local search algorithm

gives an upper bound: p < [xfleaS]T Zy [wfleas]

Remarks:

e We typically solve the SDP arising from the S-procedure. Given

an optimal solution to this problem, we would like to cheaply
compute a ()y. This is covered on the next slide.

e Sedumi solves both lower bound SDPs simultaneously, so the

first remark is not an issue.

e In many cases, (Jy is low rank, so the optimal distribution has

nonzero variance along a small number of dimensions.

17



NQCQP Optimality Conditions

The SDPs from the S-procedure and Rank Relaxation are:
._ : ._ 0
p, = Az-mz%fiy v st F(Ay) =2y — [gon} +Z;)\Z-ZZ- =0

= min Tr|Z st. :TrZ,Q <0 ¢1=1,...,N
L, Q=0, Q11=1 Z0) 20 <

These SDPs are known as primal and dual forms of each other.
If strong duality holds, then there exists feasible (X, ) and @ such
that ¥y =T'r [ZOQ] This implies:

(a)
0<Tr|F ZATr

— Tr |[F(\,9)Q] = 0

Inequality (a) holds since F(A, %), Q = 0 (Fact 3). (b) follows by
substituting for F(),%) and using ¥ = Tr [ZOQ]. Inequality (c)
follows by from the feasibility: A; > 0 and Tr [Z,Q] < 0.

To summarize, the optimality conditions are given by:

F(\7) =0, ;>0 Primal Feasibility
Q>0 Qu=1 Tr [ZZQ] < 0 Dual Feasibility
Tr [F (A, ’7)@} =0 Complementary Slackness

These are known as the Karush-Kuhn-Tucker (KKT) conditions.

Remark: Given (),%), we can compute a @ from the KKT con-
ditions. It typically happens that F(),#) has large rank. We can
apply the complementary slackness condition and Fact 9 to conclude
that @ must have low rank.

18



NQCQP Sensitivity Analysis

The original NQCQP is:
p=min[L]" Z[}]
st.: [ Zi[L]<04i=1,...,N

Consider the following perturbed version of the original NQCQP:

p(u) =min [1]" Zy [}

X

st.: [ Zi [ <w i=1,...,N

When u = 0, p(0) is the optimal cost for the original, unperturbed
NQCQP. The theorems on the next two slides show that the S-
procedure gives local sensitivity information. The proofs and inter-
pretations are minor modifications of results in [Boyd and Vanden-

berghe].

First we introduce some notation. The SDP from the S-procedure
can be written as:

p:%%ﬂﬂ

where g(\) := min, [1]" [Zo +3 )\ZZZ} (L] g()) is known as
the dual function. Let A* be the optimal vector of S-procedure
multipliers, Le p = g(A").

19



NQCQP Sensitivity Analysis

Theorem 2
plu) > p, — Ny = p(0) = Xy — [p(O) — ]_98}

Proof: For any z that is feasible for the perturbed problem:

Zo + Z )\*

Inequality (a) follows from the definition of the dual function and

TSI Zo[h]+ AT

—~
—~
~—

a

g\) < [z

~—

(b) follows since xy satisfies the perturbed constraints. Minimizing
the right side over x( subject to the constraints of the perturbed
problem yields g(A*) < p(u) + X u. This is the desired inequality
since p_ = g(A"). .

Remarks:

e The bracketed term is bounded by the gap between upper and
lower bounds: p(0) —p_ < p—p_. This gap is typically small.

e Suppose \! is large and the gap is negligble. If the i constraint
is tightened (i.e. u; < 0), then the optimal value p(u) will
increase greatly.

e Suppose A is small and the gap is neglighle. If the i constraint
is relaxed (i.e. w; > 0), then the optimal value p(u) will not
decrease too much.

e Note that the inequality in Theorem 2 is only a lower bound.
Since it is not an upper bound, the interpretations in the pre-
vious two bullets are not symmetric.

20



NQCQP Sensitivity Analysis

Theorem 3 If p(u) is differentiable at uw = 0, then the gradient
of p(u) satisfies:
Vup (O] X Tul < |p(0) = p | +o(w
Proof:  Since p(u) is differentiable at u = 0, the definition of a
gradient gives:
p(u) = p(0) + [Vup(0)]" u + o(u)
From Theorem 2, the following two inequalities hold:

pu) = p(0) = A"u — [p(o) - BS]

T
p(—u) = p(0) + X"u = [p(0) ~ p,|
Substituting the Taylor series into these inequalities gives:

V. (0)]" w+ o(w) > =3Tu ~ |p(0) ~ p,|
_ [Vup(O)]T u+ o(u) > Ny — [p(O) — ]_DJ
The theorem follows from these inequalities. .

Remarks:

e If the gap is negligible, then the inequality implies V,p(0) =
—A*. In this case, the multipliers are exactly the local sensitiv-
ity of the optimal cost with respect to constraint perturbations:

Op(u)
aui

e If the gap is neglible, the interpretations are: Tightening con-

— )\

u=0

straint ¢ by a small amount (u; < 0) approximately increases
p(0) by —Afu;. Similarly, relaxing this constraint a small amount
(u; > 0) approximately decreases p(0) by —Afu;.

21
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