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A Bounded Real Lemma for Markovian Jump
Linear Systems

Pete Seiler Raja Sengupta

Abstract

This paper presents a bounded real lemma for discrete-time Markovian jump linear
systems (MJLS). We show that, given a class of stochastic inputs, the matrix inequality in
the bounded real lemma is both a necessary and sufficient condition. For the case of one

plant mode, this condition reduces to the standard necessary and sufficient condition for

discrete-time systems. We envision this lemma being used to build necessary and sufficient

LMI analysis and synthesis conditions for MJLS.
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I. INTRODUCTION

HIS paper presents a bounded real lemma for discrete-time Markovian jump linear
T systems (MJLS). As we discuss below, these systems have previously received signif-
icant attention and many theoretical results are available. One motivation for the continued
research on these systems is the recent interest in networked control. Specifically, several
authors have modeled the packet delivery characteristics of a network by a discrete-time
jump system [5], [15], [20], [21], [22]. Experimental testing suggests that a jump system is a
reasonable model for the packet delivery characteristics of a wireless link [16].

Before proceeding, we briefly review some of the work on discrete-time jump systems that
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is most relevant to the results in this paper. We will refer to the definitions of controllability
and observability for MJLS given by Ji and Chizeck [12]. We mention in passing that
these ideas were used to solve the Jump Linear Quadratic Gaussian control problem [7], [6],
[13]. We will also apply stability results by Ji, et.al. [14] and Costa and Fragoso [9]. We
discuss these stability results in greater detail in Section III. Finally, we note that several
authors have developed bounded real lemmas for MJLS [2], [11], [4]. These results show that
satisfying a matrix inequality condition is sufficient for the MJLS to have H., norm less than
some specified level. However, a proof of the necessity is lacking in the literature.

In this paper, we show that the matrix inequality in the bounded real lemma is both a
necessary and sufficient condition for a given class of stochastic inputs into the plant. The
proof uses ideas from [18] which gives a dynamic game interpretation to the continuous time
H.-control of jump linear systems. Reference [1] gives relevant information on generalized
Riccati equations related to dynamic games.

The remainder of the paper has the following structure: In the next section, we give
the notation that will be used throughout the paper. In Section III we review several useful
results related to the stability of MJLS. Section IV contains the main result: the statement
and proof of the bounded real lemma. The proof uses several auxiliary results which are

contained in the appendix. Conclusions are then given in the final section.
II. MARKOV JUMP LINEAR SYSTEMS (MJLS)

Consider the following stochastic system, denoted P:

Z(Z(k‘+1) _ Ag(k) Bg(k) x(k) (1)
e(k) Cg(k) Dg(k) d(k)

where x(k) € R is the state, d(k) € R™ is the disturbance vector and e(k) € R™ is the error

vector. The state matrices are functions of a discrete-time Markov chain taking values in a
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finite set N'={1,...,N}. The Markov chain has transition probabilities p;; = Pr(6(k+1) =
J | 8(k) = i) which are subject to the restrictions p;; > 0 and Z;‘vﬂpz‘j =1 for any i € N. The
plant initial conditions are given by specifying #(0) and xz(0). When the plant is in mode
i €N (ie. §(k) =1), we will use the following notation: A; := Ag), B := By, Ci = Coi),
and D; := Dyy. Plants of this form are called discrete-time Markovian jump linear systems.

We will work with sequences, x := {z(k)}2,, that depend on the sequence of Markov
parameters, © = {0(k)}22,. For notation, define © := {0(1),...,0(k)}. We define ¢, as the

space of square summable (stochastic) sequences:

= {{x(k)},;“;o : Vk z(k) € R" is a random variable depending on © and ||z||2 < oo}

(2)

where the fo-norm is defined by:

[e.e]

lol3 == 3 B [le(h)?] 3)

k=0 B

|| - || is the standard Euclidean norm defined on R". Note that ©) does not contain 6(0)
because this is assumed to be given as part of the plant initial conditions.

Finally we introduce some notation concerning collections of matrices, { M; }ienr. {M;} >
0 means M; > 0 Vi € N'. We will use similar notation whenever all matrices in the set satisfy
a given condition. We will also define M; := Z;.V:lpiij. This shorthand will be used

frequently in the following sections.

ITII. StABILITY OF A MJLS

In this section, we review several useful results related to the stability of discrete-time

jump linear systems. First we define several forms of stability for such systems [14].

Definition 1: For the system given by (1) with d =0, the equilibrium point at the origin

1S:
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1. Mean-square stable if for every initial state (xg,6p), limy_ @E: [lz(k)||* | xo,0] = 0.

2. Stochastically stable if for every initial state (zg,60), > e @ICE_1 [[|lz(k)]]? | 20,60 < oc.
In other words, ||z||s < oo for every initial state.

3. Exponentially mean square stable if for every initial state (x¢,6y), there exists con-
stants 0 < @ < 1 and f > 0 such that Vk > 0, @kE_1 [z (k)| | wo,60] < Bak|zoll?.

4. Almost surely stable if for every initial state (x¢,6p), Pr[limy_ ||z (k)| = 0] = 1.

Ji, et.al. showed that the first three definitions of stability are actually equivalent for a

MJLS [14]. They refer to the equivalent notions of mean-square, stochastic, and exponential

mean square stability as second-moment stability (SMS). Moreover, SMS is sufficient but

not necessary for almost sure stability. In the remainder of the paper, references to stability

will be in the sense of second-moment stability. The major motivation for this choice is
that straightforward necessary and sufficient conditions exist to check for SMS but not for
almost-sure stability. Below we present a necessary and sufficient condition for SMS of the

jump linear system.

Theorem 1: System (1) is SMS if and only if there exist matrices {G;} > 0 that satisfy:

where G, := Z;.VzlpijGj.

Proofs of Theorem 1 can be found in [13] and [9]. The theorem states that SMS is
equivalent to finding NV positive definite matrices which satisfy N coupled, discrete Lyapunov
equations. It is interesting to note that stability of each mode is neither necessary nor

sufficient for the system to be SMS. See [13] for several examples of this and other properties

of MJLS.
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IV. BOUNDED REAL LEMMA

First we give the definition of the H,, norm for discrete-time MJLS. We consider distur-
bances, d € (57, to the jump system given by Equation 1. The H,, norm [8] of the system is

defined below.

Definition 2: Assume the system, P, is an SMS system. Let 2(0) = 0 and define the H,

norm, denoted || P||, as:

€ll2
[Pl = s sup 1] ()
00)eN ozaeert |1d]]2
Below we state the bounded real lemma for a class of jump systems. To derive this

condition, we need a definition of controllability for a MJLS.

Definition 3: The system, P, is weakly controllable if for every initial state/mode, (xg,6p),
and any final state/mode, (zy,0;), there exists a finite time 7, and an input d.(k) such that
Pr[z(T.) = x; and 0(T.) = 6] > 0.

This definition of weak controllability is motivated by, but different from the definition
given by Ji and Chizeck [12]. Suppose the Markov Chain is irreducible and the plant is
controllable, in a deterministic sense, along a sequence of modes ending in 6. If such a se-
quence occurs with some positive probability for every §; € N, then P is weakly controllable
as defined above. The statement of the bounded real lemma assumes the system is weakly
controllable. This assumption ensures that the disturbance can affect the system state. If
the system is not weakly controllable, the matrix condition is still sufficient, but it may not
be necessary.

Theorem 2 (Bounded Real Lemma) Assume the system, P, is weakly controllable. P is
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SMS and satisfies ||P||o < v if and only if there exist matrices {G;} > 0 that satisfy:

T ~
0

C; D,

- <0 i=1,...,N (5

0
Ri =

where G’l = Z;\rzl pijGj‘

Proof:
(<) Assume there exist {G;} > 0 satisfying the matrix inequalities in Equation 5. These

inequalities imply that the upper left blocks must also be negative definite:
ATGiA, -G <CTC; <0 i=1,...,N

By Theorem 1, we conclude that the system is SMS.

Next, define the function V(z,i) := 27 G;x. Also, let e); denote the sequence e truncated

at time M:

Given z(0) =0, V(2(0),0(0)) = 0 for any initial mode #(0) € N and hence:

D E Wk +1),00k+1) = V(a(k).0(k)] = E [V(@(M+1),0M+1)]>0 (6)

Inequality (a) below follows from Equation 6:

<30 (el =AW+ Vel +1),006+ 1) =V (k) 001))]

IN

llearl3 — 7*lldal|

M
ON~ g | [«®]" R, [0
= Z 6 | Ldtk) 0(k) | d(k)

Equality (b) follows by using the system dynamics to replace e(k) and z(k + 1) in terms of

x(k) and d(k). By taking the expectation over 0(k +1) we obtain equality (c) where Ry,

M
(b) z(k) T Agky Bo(r) T a 07 [ Aek) Bor) Gopry O z(k)
o Z L [[d(k)] Cory Dor) [ 9(S+1) I} Coay Doy | — | 0 421 d(k)

|
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is defined in Equation 5. By assumption Ryyy <0 VO(k) € N. Since d(k) # 0 for some
k, there exists (for sufficiently large M) an € > 0 such that |ley||? < v?||das]|3 — €. Taking
limits as M — oo gives ||e||3 < 7?||d||3 — € and hence for any 6(0) € N and any d € £y,
llell2 < v||d]|2- To conclude, if there exist G; > 0 satisfying Equation 5, then the system is

SMS and || Pl|s < 7.

(=) Next we prove that the necessity of the matrix inequalities. First we show that if
|IP||oo < 7y then there exist matrices, {G;} > 0, that satisfy the following Generalized Riccati

Equations:

G; =ATG;A; + CFCi+ [BF G A; + DI C))" V7! [BI'G;A; + DI'Cy) i

I
—_

where V; :=~*I — BI'G;B; — DI D;.
Consider the solution, {G;(k)}, to the following Generalized Riccati Difference Equations

(GRDE) with initial condition {G;(0)} = 0:

Gi(k+1) = ATG,(k)A; + CFC; + [BY Gi(k) A; + DI C)" Vi(k) ™ [BEGi(k)A; + DI Ci]

where G;(k) := Y2, p;G;(k) and V;(k) := 721 — B G;(k)B; — DI D;. Note that the GRDE
will not be defined for k > k, if V;(k,) is singular for some i € /. We show below that
|P||c <y implies that this cannot occur and the solution exists for all k. There are two
possible cases:

Case 1: There exists a > 0 such that {V;(k)} > ol Vk.

Case 2: There does not exist o > 0 such that {V;(k)} > ol Vk.
Consider Case 2. There are several ways that such a a may fail to exist. Suppose there exists

T > 0 such that {V;(k)} >0 for 0 <k <T —1 and Vj,(T) has an eigenvalue A <0 for some
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6p € N. By Lemmas 3 and 4 in the Appendix, this implies that ||P||o > 7. Alternatively,
suppose that {V;(k)} > 0 Vk, but there does not exist a > 0 such that {V;(k)} > al Vk. In
other words, for some 6y € N, one eigenvalue of Vj, (k) tends to zero as k — co. The proof
of Lemma 4 can also be used to show that || P||s > 7 for this case.

By contraposition, ||P||, < 7 implies Case 1. Also by contraposition, ||P||s < v implies
that {G;(k)} are uniformly bounded (Lemma 5). In summary, the GRDE is well-defined V£,
it solutions {G;(k)} are uniformly bounded, and there exists a > 0 such that {V;(k)} > af
Vk. We now prove 3G; > 0 that satisfy the Generalized Riccati Equation (Equation 7).

We show that the matrix sequences {G;(k)} are monotonically nondecreasing in k
and thus boundedness of these sequences implies convergence. Since {G;(0)} = 0 implies
{G:(0)} =0, it is clear from the GRDE that {V;(0)} > 0 implies {G;(1)} > {G;(0)} = 0.
Now make the induction assumption that G;(ko) > Gi(ko — 1) > 0 Vi € N. Define another
solution to the GRDE, {GY(k)}, on k > ko with initial condition {G?(k¢)} = {Gi(ko —1)}.
Define the difference AG;(k) = G;(k) — GY(k) for i € N and k > kq. Note that, by the in-
duction assumption, {AG;(ko)} > 0 and hence {AG;(ko)} > 0. Apply Lemma 1 to show
{AG;(ky+1)} > 0 which implies G;(ko + 1) > G;(ko) Vi € N. Thus {G;(k)} are monotonic
matrix sequences and, as stated above, they are uniformly bounded. Consequently these se-
quences must have a limit, {G;} > 0, and this limit matrix satisfies the Generalized Riccati
Equation. Since Vj(k) := ~2I — BT G,(k)B; — DT D;, it also has a well defined limit as k — oo
which we denote by V;. Finally, {V;(k)} > al >0 Vk implies {V;} > al > 0.

Define the perturbed plant, P.:

w(k+1) | | Aowy Bow | | (k)
e(k) Comy Doy d(k)
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where the output equation matrices are given by:

Cor) Dy

Cowy = Doy =

EIM XNz Ne XNy

If a plant is SMS and has || P||o < 7y then Je > 0 such that P, is also SMS and has || P,||c < 7.
By the argument above, there exist matrices, {GS} > 0, that satisfy the following Generalized

Riccati Equations:

G =AT G A+ ()T (C)) + (Bl G A, + (D)™ (Vi)™ [BI Gi A+ (D§)TCf] i=1,...,N
(10)

where V¢ := ~2I — B'G¢B; — (D))" D¢ > 0. After multiplying out all the matrices we obtain:
GS=ATG A + CLCy+ [BTGSA; + DY C)T (Vi)' [BFGSA; + DICy) =€’ T >0 i=1,...,N

where after multiplication, V;¢ := I — BY G¢B; — DT D; > 0. Tt follows from these inequalities
that {G¢} > 0. Apply Schur complements ! to show that {G¢} is a solution of Equation 5.
|

We make several remarks concerning this H,, condition. First, the condition given by
Equation 5 reduces to the standard necessary and sufficient condition [17] for the case of one
mode (N =1). Second, the ’worst-case’ disturbances constructed to prove necessity (Lem-
mas 2 - 5) depend on the plant state and mode, (x(k),0(k)). As noted in the introduction,
this result has interesting game theory interpretations. Finally, we envision this lemma be-
ing used to derive necessary and sufficient LMI conditions for MJLS analysis and controller

synthesis.

V. CONCLUSIONS

This paper presented a bounded real lemma for discrete-time Markovian jump linear

systems. We showed that, given a class of stochastic inputs, the matrix inequality in the

! See [3]: R>0and Q — SR™'ST > 0 if and only if [SQT ;] >0
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bounded real lemma is both a necessary and sufficient condition. A stochastic Lyapunov

function was used to prove sufficiency while stochastic disturbances were constructed to

prove the necessity of the lemma. Finally, we envision this lemma being used to derive

necessary and sufficient LMI conditions for MJLS analysis and controller synthesis.

1]

7]
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APPENDIX

A. AUXILIARY RESULTS

Prior to stating and proving the required lemmas, we need to introduce some notation.

First define the cost function:

J(d, 20, 00) = lells —*[ldl5 =) L [e(k)"e(k) = 7*d(k)"d(F)] (11)

where d(k) and e(k) are related by the jump system, P, defined in Equation 1 with the
initial conditions z(0) = x¢ and 0(0) = 6. It follows from the definition of the H,, norm
that || P||e > 7y if and only if there exists d € {5 and an initial mode 6, such that .J(d,0,60y) > 0.

In the deterministic L(Q problem, a Riccati Difference Equation is used to generate
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optimal control inputs. Similarly, we use the GRDE (Equation 8) to generate optimal inputs
(disturbances) that maximize J(d,0) over a finite horizon. We now present several lemmas
that will be used in the proof of the Bounded Real Lemma. The first is a technical lemma
concerning GRDE. The second lemma constructs a 'bad’ disturbance from the solution of
the GRDE. The remaining lemmas use this ’bad’ disturbance to show that [|S]|| > 7 or
IS|loc > v under various conditions on the GRDE. The results are used to prove the necessity

of matrix inequality.

Lemma 1: Let {G]'(k)} and {G]?(k)} be solutions of the GRDE with initial conditions
{G7*(0)} and {G]*(0)}, respectively. The superscript denotes the value of v used in the

iteration. Define AG,(k) := G)*(k) — G}' (k). Then fori=1,...,N:

AG;(k+1) = A;(k)"AG; (k) Ai(k) + (v — ) K; (k)T K, (k)+

[0 =) k) + BEAGR ()] (V7)™ [ = 22 k) + BY AGA () ()]

where K;(k) := (V" (k)" [BfAézl (k) Ai (k) + D;.-FCi] and A;(k) := A; + B;Ki(k).
Proof: The proof is a simple, albeit algebraically intensive, extension of a result by C. de
Souza (Lemma 3.1 in [10]). A proof under the assumption that p;; = p; Vi,j € N is given in

[19]. The proof of this lemma follows similarly. ]

Lemma 2: Let {G;(k)} be the solution to the GRDE with initial condition {G;(0)} = 0.

Fix T and assume {V;(k)} >0 for 0 <k <T — 1. Define the following plant disturbance:

) Voo (T — k— 1)~ (Bg(,f)ég(,ﬁ) (T =k — 1) Agp) + D;Qk)cg(k)) o) 0<k<T—1
0 else

(12)
Then, J(d,z9,00) > 2% Gy, (T)xy.
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Proof: The lemma is proved by the following string of equalities / inequalities:

J(doxo.00) 2 — (k)T d(k)]
© T G (T) 0 + Z m 2k + 1) Gopyry(T — k — V)a(k 4+ 1) — x(k) Goy (T — k)x(k)
+e(k) e(k) — y*d(k)"d(k)]
9 T Gyo (T)wo + { (k +1)7 Go (T — k — Da(k + 1) — (k) G (T — k)a(k)
o OF
+e(k) e(k) = d(k)" d(k)]
- xO Gao( )

Inequality (a) follows because d(k) =0 for k > T — 1. Since {G;(0)} = 0, the extra terms
appearing after equality (b) are a net zero quantity. Equality (c) is obtained after taking
the expectation over (k +1). Next, substitute for e(k), z(k + 1) using the system dynamics
and for Gy (T — k) using the GRDE. Then complete the square with the resulting terms.
Equality (d) follows by noting that the choice of d(k) in Equation 12 makes the summation

on line 3 equal to zero. |

Lemma 3: Let {G;(k)} be the solution to the GRDE with initial condition {G;(0)} = 0.
Assume there exists 7' > 0 such that {V;(k)} >0 for 0 <k <T —1 and Vj,(7) has a negative
eigenvalue for some 6, € N. Then || P||o > 7.

Proof: By assumption, there exists 7, A\ such that A < 0 and Vjp,(T')r = Ar. Define the

disturbance:

.
d(k) = Vo (T —k)~! (BgT(k)ée(k:)(T — k) Apgry + DeT(k)Ca(k)) (k)
0
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Applying this disturbance to the system with 2(0) =0 and 6(0) = 6:

o0

J(d.0,00) < " (Df Dy —*Ir + 3 I [ek)"e(k) = d(k)" d(k)]

| _
(D Day =D+ (410D 1)

—
~

c

> r"(Dy, Do, —v*I)r + E [r" By Go1)(T)Bo,r]

—

D TV (T)r = =Ml > 0

Equality (a) follows from the choice of d(0). Equality (b) follows from a slight abuse of
notation concerning J(-,-,-). By J(d, Bg,r,0(1)),we mean the cost function with the system
starting at Byg,r and applying d(k) for k > 1. Inequality (c) then follows from Lemma 2.
Equality (d) follows from the definition of Vp,(T") after taking the expectation over 6(1). It

follows that J(d,0,0y) > 0 and we conclude that || P||o > 7. |

Lemma /: Let {G;(k)} be the solution to the GRDE with initial condition {G;(0)} = 0.
Assume there exists 7' > 0 such that {V;(k)} >0 for 0 <k <T —1 and Vp,(T) has an
eigenvalue at zero for some 6y € N. Then ||P||« > 7.

Proof: Using the notation of Lemma 1, let {G](k)} denote a solution of the GRDE with
initial conditions {G(0)} = 0. By assumption, {V;”(k)} > 0for 0 <%k <T—1 and V] (T) has
an eigenvalue at zero for some 6y € N'. Given € > 0, let {G] (k)} denote a second solution
of the GRDE with initial conditions {G] “(0)} = 0. Thus {AG;(0)} = 0 which implies
{AG;(0)} = 0. If € > 0 is sufficiently small, then {V"“(k)} >0 for 1 <k <T. We can
then use Lemma 1 and induction to show that {AG;(0)} >0 for 0 < k <T. It follows that
Vam(T) < V,)(T) and hence V,]~(T') has a negative eigenvalue. By Lemma 3, || P[[oc > v —e¢.

Since this holds Ve > 0 which are sufficiently small, we conclude that || P||o > 7. ]

Lemma 5: Assume the plant is weakly controllable. Let {G;(k)} be the solution to the
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GRDE with initial condition {G;(0)} =0 and assume that Vi >0, {Vi(k)} > 0. If, for some

0r € N, the sequence Apax(Gy,(k)) is unbounded, then || P||s > 7.

Proof: By assumption, there exists a 0y € A" and a sequence {T}}2 such that Ayax(Gy, (T})) —
oo as j — oo. For each j, let r; be the eigenvector associated with Anax (G, (T})) normalized
to ||rj|]| = 1. Then there exists an r* € R™ and a subsequence j; such that lim;,_,,rj =r*.
Furthermore, lim;, o (r*)" Gy, (T}, )r* = 0o. To ease some of the notation below, we now refer
to this subsequence as Gy, (T;) with ()" Gy, (T))r* — oo.
Now apply the assumption of weak controllability: Given x(0) =0 and any initial mode,
6(0), there exists a time, T, and an input, d.(k), such that p.:= Pr[z(T,) =r* and 0(T.) =

;] > 0. Define a second input on T, < k <T.+71; - 1:

di(k) = Vo) (T = Te =k —1)7" (Bg&k)@e(k) (Ti = To — k — 1) Agqay + Dg&k)Ce(k)) (k)

We now construct a disturbance which can make the cost function arbitrarily large:
do(k) 0<k<T,—1
di(k) = di(k) if (z(1.),0(T.)) = (r*,0f) and T, < k<T,+T;—1
0 else

The first portion of the disturbance attempts to move the system from (0,6,) to (r*,6;). Note
that d;(k) is only applied if d.(k) successfully moves the system to the desired state and mode.
By construction of d.(k), this occurs with some positive probability. When applied, d;(k) is

able to make the cost function arbitrarily large. Mathematically, this argument is:

Td0.0) = B S (k) e(k) 17 (K di(h) | + E Y (k) e(k) —ydi(k)"di(k)
e e
(g) @E_l ]:Z:_Oe(k)Te(k) _,YQd_l(k)TJl(k) + D - (T*)TG()f(TZ)T*

Inequality (a) follows by the construction of d;(k) and by Lemma 2. The first term on the
second line is a fixed cost for all [. By construction, the second term can be made arbitrarily

large as [ — oo and thus 3! such that J(d;,0,6y) > 0. Hence || P|lo > 7. |



