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Abstract

In this paper, we investigate the State-Dependent Ric-
cati Equation method to control nonlinear systems.
This method stabilizes the closed loop system around
the origin. However, global asymptotic stability is not
ensured. Moreover, stability analysis is complicated be-
cause the closed loop system is typically not known in
a closed form. We present a theorem that turns stabil-
ity region estimation into a functional search problem.
Results on sum of squares polynomials are used to turn
this search into a semidefinite programming problem.
A simple example demonstrating this method is given.

1 Introduction

In this paper, we investigate the State-Dependent Ric-
cati Equation (SDRE) method to control nonlinear sys-
tems [4]. The method is motivated by the standard
Linear Quadratic Regulation problem. The name of
the method comes from the construction of the control
law. This construction uses the solution of an algebraic
Riccati equation that depends on the state. The control
law is, in general, a suboptimal solution to an infinite
horizon, nonlinear regulation problem.

Numerous applications (see references in [5]) provide
some testament to the ease of SDRE design. However,
few stability results exist for this method. It is known
that the control law makes the origin a locally asymp-
totically stable equilibrium point of the closed loop [4].
However, the SDRE controller provides no guarantees
for global asymptotic stability. A global stability anal-
ysis for second order systems under SDRE control was
done by Erdem and Alleyne [7]. For systems with state
dimension greater than 2, the stability analysis is com-
plicated by the difficulty of explicitly solving the state-
dependent Riccati equation. Thus the closed-loop sys-
tem is not known in a closed form. Consequently, lo-
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cal stability is occasionally demonstrated via simula-
tion with many initial conditions [10]. More rigorous
methods involve upper bounding the state trajectory
to obtain an estimate of the region of attraction [12, 8].
These methods appear to give conservative results.

In this paper, we propose a method to estimate the re-
gion of attraction for SDRE controlled systems. The
basic idea of the proposed method is given in a recent
thesis by Parrilo [14, 15]. Consider £ = f(z) and sup-
pose we have a Lyapunov function, V(x), that proves
the origin is locally asymptotically stable. Thus we
know that V(z) < 0 for nonzero x in some neighbor-
hood of the origin. If we can find a function h(x) such
that

ov

V(@) =)@ > h(z) 5

(x)f(z) Vo eR" (1)

then V() = 0 implies Z = 0 or V(z) > ~. This follows
by evaluating Equation 1 at Z. h(z) is a “multiplier”
which proves V(z) # 0 for Vo € R, := {z € R" :
V(z) < v}. Figure 1 depicts the situation. Under some
continuity assumptions, we conclude V(z) < 0 Vz € R,
and R, is an estimate of the region of attraction.
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Figure 1: Stability Region Estimation

Notice that we have turned the stability region estima-
tion problem into a search for a function, h(z), which



satisfies an inequality constraint. If we restrict f, h,
and V to be polynomials, then there is a computation-
ally tractable method to perform this search [14, 15].
This computational method uses ties between positive
semidefinite matrices and sum of squares polynomials,
i.e. polynomials that can be expressed as > i, f2(z)
for some polynomials { f;}7 . Given this tie, it not sur-
prising that the search is converted into a semi-definite
programming (SDP) problem. Moreover, a MATLAB
toolbox is available to solve optimization problems in-
volving sum of squares polynomials [16].

In the remainder of this paper, we seek to generalize
this idea with application to SDRE controlled systems.
Similar work can be found in [13]. In the next sec-
tion, we briefly describe the SDRE method to control
nonlinear systems. In Section 3, we generalize the idea
described above for stability region estimation of SDRE
controlled systems. Theorem 1 turns the stability re-
gion estimation problem into a search for several func-
tions that satisfy inequality constraints. In Section 4,
we introduce the required results on sum of squares op-
timization. Then we use this machinery to obtain an
SDP problem that can be used to estimate the region of
attraction. We present an example demonstrating the
proposed method in Section 5. Conclusions are given
in Section 6.

2 The SDRE Method

In this section, we give a brief description of the SDRE
method to control nonlinear systems. This method can
be viewed as a suboptimal solution to an infinite hori-
zon nonlinear regulation problem. We consider input-
affine systems:

&= f(@) + gla)u
_ (2)

z(0) = xo
where x € R, u € R™, and f(0) = 0. The regulation
problem is to find the control, u(¢) defined on [0, c0),
that solves the following minimization:

o0
V(zo) = rrhin / 2T Q(x)x + u" R(z)u dt  (3)
0
where Q(z) > 0 and R(zx) > 0 Vx. We assume that
the functions f, g, @, and R are continuously differ-
entiable. The Hamilton-Jacobi equation (HJE) can be
used to solve this regulation problem [1]. Specifically,
a solution of the HJE yields the optimal performance
index, V(x¢). The optimal control can then be con-
structed from the solution of the HJE. Unfortunately,
the HJE is a partial differential equation that is typi-
cally difficult to solve.

The SDRE method is motivated by the standard Lin-
ear Quadratic Regulator problem. It yields a control
law that is, in general, suboptimal. First, the nonlin-
ear system is represented in state-dependent coefficient
form:

& = A(x)x + B(x)u (4)

where f(z) = A(x)z, B(z) = g(z), and A(x) is con-
tinuously differentiable. We note that f continuously
differentiable and f(0) = 0 ensures the existence of
a representation in state-dependent coefficient form.
We assume that (A(z), B(z)) is stabilizable Vz and
(A(z),Q"/?(x)) is detectable V.

Imitating the standard Linear Quadratic Regulator, the
following state feedback law is used:

u(z) = —R~'(z)B” (z) Pz (5)

P is the positive semidefinite solution of the State-
Dependent Riccati Equation (SDRE):

AT(z)P + PA(z) — PB(x)R ' (2)BT ()P + Q(x) =0
(6)

Let 8™*™ denote the set of symmetric, n X n matrices.
The SDRE is compactly written as H(z, P) = 0 where
H(z,P):R"™x ™™ — §"*™ ig defined as:

H(x,P) :=A"(2)P + PA(z) — PB(z)R™"(2)B" (x)P
+ Q)

The SDRE has a unique, positive semidefinite solu-
tion Vz (Corollary 13.8 in [17]). In fact, there ex-
ists a continuously differentiable function, P(x), such
that for all z € R, H(z,P(z)) = 0 and P(z) >
0 [6]. Moreover, P(z) has the following property:
A(z) — B(z)R~Y(2) BT (z) P(x) is Hurwitz Vz.

Finally, we note that the state-dependent coefficient
representation is not unique. In fact, there are an in-
finite number of ways to represent the system in this
form [4] and a parameterization of all such representa-
tions is given in [9]. Huang and Lu [9] proved that if
the gradient of V' (z¢) has a particular form, then there
exists a representation such that the SDRE method re-
covers the optimal control. However, choosing A(z) to
recover the optimal controller is difficult and particu-
lar choices of A(x) may lead to a cost that is far from
the optimal. On the other hand, there are heuristics
to obtain a good representation [5]. In the following
section, we assume that A(z) has been chosen and the
goal is to analyze the stability properties of the closed
loop system.



3 Estimation of Stability Regions

Using the SDRE control law (Equation 5), leads to the
following closed loop system:

i = [A(z) — B(z)R™ ' (2)B" (z)P(z)] z := Au(z)z
(7)

As stated above, A, (z) is Hurwitz Vz so the SDRE

let V(x) be a continuously differentiable function satis-
fying:

V(0) =0 and V(z) > 0 Yz € R™"\{0} 10
V(x) <0 Vz € D\{0} (10)

where V (z) is evaluated along trajectories of the closed
loop system (Equation 9). In the next section, we turn
Theorem 1 into a simple computational algorithm for

control law (Equation 5) is pointwise stabilizing. In
particular, A;(0) is Hurwitz and the origin of the closed

stability region estimation.

loop is locally asymptotically stable [4]. A brief outline
of the proof is given. The continuous differentiability
of A, B, R™!, and P implies that A is continuously
differentiable. Hence the linearization of the closed loop
system around the origin is given by & = A, (0)z. By
Lyapunov’s indirect method (Theorem 3.7 in [11]), the
origin is locally asymptotically stable.

Unfortunately, the SDRE controller provides no guar-
antees for global asymptotic stability. Define the region
of attraction:

R:={z0€R” : z(t) > 0ast — oo if z(0) =0}

®)

This is the set of initial conditions whose state tra-
jectory converges asymptotically to the origin. Global
asymptotic stability is equivalent to R = R™. On the
other hand, if R is a ’small’ set, then we should not
be too confident that the SDRE controller will stabi-
lize the system when actually implemented. Thus the
region of attraction provides some measure of the sta-
bilizing properties of the SDRE controller. In principle,
Zubov’s theorem [11] provides a method to find R, but
there are two drawbacks. First, Zubov’s method re-
quires a partial differential equation to be solved. Sec-
ond, the SDRE typically cannot be solved in closed
form. Hence P(z) is usually not available as an explicit
function of x and the closed loop takes the implicit
form:

&= Aq(z, P)x
H(z,P)=0 (9)
P>0

where we dropped P’s dependence on x and explicitly
noted A’s dependence on P. Equation 9 emphasizes
that P is not known explicitly as a function of .

Given these difficulties, we will instead seek an estimate
the region of attraction. Theorem 1, stated below, pro-
vides a construction for an estimate, R C R. This the-
orem requires a Lyapunov function, V(z), which proves
the local asymptotic stability of the origin. Mathemat-
ically, let D C R™ be a neighborhood of the origin and

Before proceeding, we need to introduce some notation.
Tr[M] := > p_, mgy is the trace of the matrix M €
S™*™  We also define the leading principle minors of
P e S

P11 - Pik
Ak(P) :zdet[ : : ], k=1,...,n

Pr1 .- Pkk

Finally, we use V() to define two sets. Given vy € R,
define the set R := {x € R" : V(z) < v}. Also define

the closure of this set: cl(R) := {x € R" : V(z) < ~}.
We are now prepared to state the main technical result.

Theorem 1 If there exists v € R, functions
71,81,...,8, : R" X 8™" — R and a function Ry :
R™ x 8™*"™ — S™*" such that Equations 11 and 12
hold ¥Y(x, P) € R® x S™*" then R, C R.

sp(z,P) >0 fork=1,...,n (11)
(V(z) —y)aTz + r(x, P)g—‘;(q:)/ld(m, Pz

+Tr Ry(x, P)H(x,P)] = Y _ si(z, P)Ar(P) >0
k=1

(12)

Proof:  Take any Z such that V(z) = 0. First we
show that either Z =0 or V(Z) > . At Z, there exists
a unique, positive semidefinite matrix, P, that satisfies
the SDRE: H(z, P) = 0. Thus T'r [Ro(z, P)H (z, P)| =
0 and hence Equation 12 evaluated at (Z, P) is:

V(@) -y 2"z > sp(@, P)A(P)  (13)
k=1

For k =1,...,n, Equation 11 implies s;(Z, P) > 0 and
P >0 implies Ag(P) > 0. It follows from Equation 13
that (V(Z) —v)ZTZ > 0. Therefore, V(&) = 0 implies
that either Z =0 or V(Z) > .

This result can be restated as: V(z) # 0 Yz € R,\{0}.
By assumption, V(x) < 0 Vz in a neighborhood of the



origin and V(z) is continuously differentiable. We con-
clude that V(z) < 0 Vo € R,\{0}.

The proof is completed by a standard Lyapunov ar-

gument. Take any z¢ € 7@7. Then for some ¢ > 0,
2o € cl(Ry_o). Since cl(Ry_) C Ry, V(z) < 0
V& € cl(R_c). Tt follows from the proof of Theorem
3.1 in [11] that if £(0) = xo then z(t) — 0 as t — oo.

Hence o € R and thus R, C R. n

4 Sum of Squares Optimization

of degree < 2'is z(z) = [1 z1 22 23 z122 23]7. For any
A € R, p(x) can be decomposed as:

03 |
1 0 —A
p(z) = z(z)" 0 24920 o |#@)
—-A 0 3

For some values of A, ) is sign indefinite (e.g. A = 10)
while for other values @ > 0 (e.g. A =0). Theorem 2,
stated below, clarifies these ideas. The theorem, intro-
duced as a “Gram matrix” method by Choi, Lam, and
Reznick [3], is enlightening and it is included for com-
pleteness. Note that a polynomial of odd degree cannot

In the first subsection, we review the required results
on sum of squares (SOS) optimization. Most of this
material can be found in [14] and [15]. In the second
subsection, we apply these results to obtain an SDP
which can be used to estimate the region of attraction.

4.1 Sum of Squares Polynomials

First we introduce notation pertaining to polynomials
of many variables. N denotes the set of nonnegative
integers, {0,1,...}, and N” is the set of n-dimensional
vectors with entries in N. For o € N", a monomial
in variables {z;}, is given by z® := x{"x5? - - z%".
Thus, a monomial is simply the product of powers
of variables. The degree of a monomial is defined as
degz® := """, ;. A polynomial in {z;}?_, is a finite
linear combination of monomials:

p(z) = Z Cox® = Z Caxr TSP T (14)

acA acA

where ¢, € R and A is a finite set of vectors in N™.
Using the definition of deg for a monomial, the degree
of p(x) is defined as degp(x) := maxsca [degz®]. In
words, the degree of a polynomial is the largest degree
of its monomials.

Given a polynomial, p(x), consider the following ques-
tion: Is p(z) > 0 Vo € R™? Checking the global non-
negativity of a general polynomial is computationally
difficult !. A simple sufficient condition for a polyno-
mial, p(z), to be globally nonnegative is the existence
of polynomials { f;}; such that p(z) = >_i~, f2(z). If
such a decomposition exists, then we say that p(z) is a
sum of squares (SOS).

Surprisingly, the set of SOS polynomials is easy to char-
acterize due to the close ties with positive semidefinite
matrices. For example, consider the SOS polynomial
p(z) = 2% + 22323 + 323. The vector of all monomials

LA discussion of the computational complexity of checking
global nonnegativity is given in [14]. For a general function this
task is undecidable and for a general polynomial it is NP hard.

be globally nonnegative, hence the theorem restricts the
polynomial degree to be even.

Theorem 2 Let p(x) be a polynomial of degree 2d in
n variables. Let z(x) be a vector of all monomials of
degree < d in n variables. The length of z(x) is I, :=

("3
p(z) is a SOS if and only if there exists Q € R=*l=
Q > 0 such that p(z) = z(z)TQz(x).

Proof: (=) If p(x) is a SOS, then there exist polyno-
mials {f;}7, such that p(z) = Y., f(x). Since each
fi(x) is a finite linear combination of monomials, there
exists a vector, a; € Rl*, such that fi(z) = z(x)"a;.
Form the matrix, A € R**™_ whose columns are a;
and define Q = AAT > 0. Then p(z) = z(2)TQz ().

(<) Assume there exists QQ € R=*!=_ @ > 0 such that
p(r) = 2(2)TQz(x). If rank(Q) = m, then there exists
a matrix A € R#=>™ such that Q = AA”. Let a; denote
the it" column of A and define the polynomial f; =

z(z)"a;. Then p(x) = 312, f7(@). n

The key point is that checking if p(z) is a SOS can be
done with a SDP feasibility problem:

Does 3Q > 0 such that p(z) = z(z)" Qz(x)?

Given a basis for polynomials of degree d, the polyno-
mial equality constraint is nothing more than equality
constraints on the entries of ). SOSTOOLS [16] han-
dles the conversion of this problem into an SDP feasibil-
ity problem. Used in conjunction with the MATLAB’s
symbolic toolbox, this allows the user to easily specify
SOS constraints. More importantly, if p(z, A) is affine
in A then the following can be solved as a SDP problem:

minc’' A s.t. p(z, ) is a SOS
5 (15)
F(\) >0



where F'(A) > 0 is a linear matrix inequality constraint
on A. Equation 15 is an example of an SOS optimiza-
tion. As a very simple example, we can find the mini-
mum \ such that z? + A\z?x3 + 323 is a SOS.

We make two remarks concerning SOS polynomials.
First, not all globally nonnegative polynomials are SOS.
The ’size’ of the set of globally nonnegative polynomi-
als that are not SOS is unknown. Second, a common
relaxation used in control theory is the S-procedure [2].
Many problems leading to an SOS optimization can be
viewed as generalizations of the S-procedure.

is a polynomial matrix. If R(z) is not unimodular,
then H(z,P) is, in general, a rational function of
xz. However, R(x) > 0 implies that det(R(x)) > 0
Vz. Thus we can multiply both sides of Equation 12
by det(R(x)) without affecting the constraint. Since
det(R(z)) - R~!(z) is a matrix polynomial function of
x, this turns the second constraint in the SOS optimiza-
tion above into a polynomial constraint.

5 Example

4.2 Application to Stability Region Estimation
To apply the results of the previous subsection, we
need to make additional assumptions on the nonlin-
ear regulation problem. Specifically, we assume that
A(x), B(z), R(x) and Q(x) are polynomial functions
of x. We temporarily assume that R(z) is unimodular:
det(R(x)) = ¢, where ¢ is a nonzero constant indepen-
dent of x. This assumption will be removed below.

We can use the linearization of the closed loop sys-
tem, A.(0), to find the Lyapunov function required by
Theorem 1. Given any ) > 0, the Lyapunov equa-
tion (AL (0)M + M A (0) = —Q) has a positive defi-
nite solution M € R™ ™, It follows from the proof of
Lyapunov indirect method (Theorem 3.7 in [11]) that
V(z) = 27 Mz satisfies the conditions in Equation 10.

Consider the following optimization:

maxy s.t. sg(x,P)isaSOSfork=1,...,n (16)

(V(z) =) zlz +ri(z, P) ?)—Z (x)Ag(z, P)x

+ Tr[Re(x, P)H (z, P)]

n
— > s(x, P)Ag(P) is a SOS
k=1

where we restrict our search to rq,s1,...,8, that are
polynomials in  and P with degree < d. Moreover, we
constrain Ro to be a matrix of polynomials in z and
P with each entry having degree < d. By Theorem 1,
any point (z, P,7) that satisfies the constraints gives a
stability region estimate 7@7. By maximizing v, we ob-
tain the largest possible stability region estimate. This
has the form of Equation 15 but with multiple SOS
constraints. v and the coefficients of ry, Ro, s1,...,8p
are free to be chosen. These variables are the “\” in
Equation 15. Thus we can use SOSTOOLS to solve this
optimization. In the following section, we demonstrate
this method on a simple example.

Before proceeding, we note that the unimodular as-
sumption on R(z) was used to ensure that R~!(z)

The following example is from [8]. The system is given
in state-dependent coefficient form:

[ el

The regulation cost is given with matrices @ = I> and
R = 1. For this system, A,(0) = [_01 \95] and solving

AT(0)M + M Ag(0) = —I yields M = [Ogo ¢§/4]. We

use the Lyapunov function V(z) = 27 Mz in the SOS
optimization (Equation 16).

For this example, we have the following polynomial
functions (bulleted entry can be inferred from matrix
symmetry):

Aq(z, P)x = [

—1:1—1—2*:5%*12 i|

—p12*x1+(—1—p22)*x2

H(SL' P) _ |:—2*p11+1—p$2 —2*p12+2*90f*p11—p12*p22:|
’ . 4T xp12—2#paz+1—pay

Ay(P) =p11, Ag(P) =det [p; b ]

Note that we don’t have to solve the Riccati equation,
we only need to express the equality constraints. This
can be easily done with symbolic software.

Restricting the functions s, so, r1 and Ry to have
degree < 2 and solving this optimization with SOS-
TOOLS [16] gives the optimal value of o, = 0.88.
This optimization took 15 seconds on a 1.4 GHz pro-
cessor. The shaded ellipse in Figure 2 is the estimated
stability region, 7@707”. The union of the white rect-
angle and diamond is the stability region estimate ob-
tained using vector norms [8]. The figure also shows
the state trajectories (solid lines). The two solid dots
are points where V(z) = 0: (1, 22) = (1.19,0.69) and
(x1,22) = (—1.19,—0.69). The state trajectories are
tangent to the level set V(x) = 7opt at these points. It
is interesting that V(z) = 0.88 = 7, at these points.
Hence the optimization has found the largest possible
level set satisfying V' # 0 over its interior.
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Figure 2: Stability Region Estimation: Solid lines are
state trajectories. Shaded ellipse is the estimate
from the SOS optimization. Union of white
rectangle and diamond is the estimate from [8].
Black dots are points where V(x) = 0.

6 Conclusions

In this paper, we investigated the closed loop stabil-
ity of SDRE controlled systems. The stability analy-
sis of such systems is typically complicated because the
closed loop is not known in a closed form. We presented
a theorem that turned stability region estimation into a
functional search problem. We then turned this search
into a SDP problem using results on sum of squares
polynomials.

We comment on two aspects which make this method
conservative: First, the stability region estimate relies
on the choice of the Lyapunov function. We could solve
the SOS optimization for many Lyapunov functions and
take the union of the estimates. It would preferable
to modify the algorithm to search simultaneously for
the Lyapunov function and the multiplier functions.
This is not possible in the current formulation because
the term involving rq % would be bilinear. Second, if
V(x) = 0 then this formulation prevents  from being
in the stability region estimate. However, V(z) = 0
does not necessarily imply that © ¢ R. Perhaps it is
possible to reduce the conservativeness of the current
algorithm by applying LaSalle’s invariance principle.
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