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Abstract

In most contexts in which agents possess long-lived private information about a firm’s value, they will also
have repeated access to new information over time. We develop a method for analyzing informed trade
in such environments. We exploit the stationary structure of the economy to map informed agents’
optimization problems in the time domain—maximize discounted expected trading profits—into the
frequency domain. We then use control-theoretic arguments to solve for equilibrium trading strategies,
pricing, profits and the information content of prices. We derive explicit characterizations of equilibrium
outcomes—trading strategies, pricing, profits and information transmission—when informed agents see
distinct AR(1) innovations to the asset value each period. We characterize analytically how equilibrium
outcomes are affected by the amounts of private information or noise trade. Finally, we provide a
practical method to approximate equilibrium trading strategies. We prove that the approximation
converges to the true equilibrium, and then use it to characterize the equilibrium quantitatively to
derive the impact of persistence in firm value and the degree of competition among informed agents on
equilibrium outcomes.

∗ We thank Ken Kasa, Lars Hansen, Kerry Back, Burton Hollifield, Roger Germundsson and Conrad
Wolfram for helpful comments and suggestions. We also thank seminar participants at the University
of Chicago, the University of Illinois, and the 2003 Western Finance Association meetings. All errors
are ours.
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1. INTRODUCTION

This paper develops a method for solving for equilibrium outcomes in stationary strategic settings in
which agents are informationally large and understand how their actions affect the information content
of prices. We use the method to characterize speculative trade and stock price dynamics when agents
acquire private, long-lived information on a recurring basis, and trade strategically.

In most contexts, few speculative traders will have private information about any given stock. The
private information they possess will be long-lived and they will have repeated access to new information
over time. For example, corporate insiders have information about current and past earnings, and, in
the future, they will again be privy to news about earnings. So, too, investors often focus on a small
number of stocks on which to do detailed research. Their accumulated expertise leaves them better
situated to evaluate information both immediately after they learn it, and when it arrives in the future.

Such speculators will trade strategically, recognizing that their trades will affect prices and, hence,
convey information to other speculators; and that prices will contain information about the signals of
other speculators that they, themselves, can use. Agents understand that over time, information about
past signals will leak out through equilibrium prices, reducing their value somewhat, but not to zero.
Hence, speculators can continue to trade profitably on information acquired in the past. To solve for
equilibrium outcomes, one must first determine how speculative traders combine current and past signals
together with the information in current and past prices, then determine how much they trade at each
date, and finally put this all together and solve for the associated equilibrium pricing.

Currently, there is no known method even to solve such a model. We develop precisely such a
method. We then use it to answer questions such as: How does competition among such speculators
affects trading and equilibrium price dynamics? Does increased competition lead prices to reveal more
information? Information about recent innovations? Past innovations? How do the characteristics of
private information—its quantity and persistence over time—affect trading strategies, pricing, profit
and information transmission?

We analyze an environment in which the asset value evolves according to an AR stochastic process,
and investors privately observe innovations to the asset’s value. We develop an iterative best-response
mapping of speculators to conjectured trading strategies of other agents. We then use a novel con-
traction mapping argument to prove that there exists a unique linear equilibrium, and to derive the
form of equilibrium trading strategies. In particular, we prove that equilibrium trading strategies are
given by infinite sums of AR(1) functions of the private information and public-information net order
flow processes. We then provide tight analytical characterizations of how strategic trading behavior,
market prices, volume and profits are affected by the amounts of private information and noise trade
in the economy. Finally, we use the iterative best-response algorithm to characterize numerically how
equilibrium outcomes—trading strategies, pricing, volume, information revealed, profits—vary with the
primitives that describe the environment.

It is useful to highlight what makes the analysis so difficult when multiple informed agents have
continuing access to private information. First, traders should use all of their private information—the
entire history of private signals—to process the information in the history of equilibrium prices. This
immediately implies that we must resolve “forecasting the forecasts” issues that arise when strategic
heterogeneously-informed agents process the information in prices. Prices reflect the trades of other
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speculators, and hence their forecasts of other speculators, generating an infinite hierarchy of forecasts.
In particular, because private signals are not perfectly correlated, individual trader’s forecasts will differ
given the public information prices (see Townsend (1985) and Pearlman and Sargent (2002), where
these issues do not arise). Once we have resolved these issues, we must determine how intensively agents
should trade on each private signal, and on the information contained in each price. Trading more
aggressively on information raises current expected period profits, but reveals more information through
price, reducing future profits. Finally, we must put this all together and solve for the equilibrium of
the game: competitive market makers face a similar inference problem, and set prices to break even in
expectation at each date given the equilibrium implications of their pricing for informed trade.

This problem is so formidable that researchers have turned to simpler settings. The seminal paper,
Kyle (1985), considers a monopolist speculator who learns the asset’s terminal value at the beginning
of the trading game. Back and Pederson (1998) extend this analysis with a monopolist speculator to
allow for information arrival over time, but, again, strategic interactions between agents remain ab-
sent. Subsequently, Back, Cao and Willard (2000), Holden and Subrahmanyam (1992), and Foster and
Viswanathan (1994, 1996) extend Kyle’s analysis to allow multiple agents to receive symmetrically dis-
tributed signals, but these papers still assume that information arrives only at date zero. Bernhardt
and Miao (2004) extend these analyses to characterize equilibrium in arbitrary finite horizon environ-
ments in which agents can acquire distinct signals at different dates of varying quality and correlations.
However, while Bernhardt and Miao prove that trading strategies are linear functions of unrevealed
private information, they cannot provide more specific analytical characterizations. For example, they
cannot derive how equilibrium outcomes are affected by the amounts of private information or noise
trade. Also, their numerical characterizations are largely limited to three-period settings. Finally, their
theoretical approach simply does not extend to stationary settings. They conjecture the form of trading
strategies and value functions, and solve for the equilibrium recursively beginning at the terminal date.
In an infinite horizon setting, there is no last period, information sets “blow up”, and an infinite number
of parameters characterize equilibrium strategies and value functions.

A second approach has been to assume that private information is short-lived: as new private
information becomes available, old information is revealed to the market (Admati and Pfleiderer (1988)).
Then agents when deciding how much to trade do not have to consider how to trade off current for future
profit, dramatically simplifying characterizations.

A third approach has been to build noisy REE models of stock price dynamics with asymmetrically-
informed traders (e.g. Wang (1994), He and Wang (1995), Malinova and Smith (2003)). These papers
characterize how the underlying asset value processes affect volume and price dynamics in environments
where there is no strategic behavior. That is, informed agents are individually small price takers who
ignore the price impact of their trades. Assuming that agents are informationally small circumvents
individual strategic behavior, as agents do not have to trade off profit-taking against information release.
But, allowing for strategic informed trade is important—in practice, informed agents for a given stock
are few in number, and these speculators understand that significant trading has price impacts that
they should anticipate and internalize.

It is worth noting that all of these models of strategic speculator behavior share the competitive
dealership market structure of Kyle (1985). There is, however, no real world analog to this market
design. In sharp contrast, Kyle (1989) develops a model in which agents submit demand schedules that
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detail how much they want to trade at each price, and the equilibrium price clears the market, equating
supply to demand. This institutional structure is used to determine opening prices on most exchanges,
including the NYSE, NASDAQ, Paris Bourse and Toronto Stock Exchange. Bernhardt and Taub (2004)
show that if there are large numbers of uninformed, but strategic liquidity providers in this demand
submission market, then equilibrium outcomes correspond to those in a competitive dealership market
in which speculators see both their private signals and the market-clearing price, and then determine
how much to trade. This current paper exploits this insight to provide the first dynamic analysis of a
Kyle (1989) demand-submission market design.

Our approach is first to recognize that if the underlying asset values are stationary, then equilibrium
strategies, although quite complicated, will be stationary, linear, functions of the history of private
information signals and public information prices. We then use the methods of Whiteman (1985) to
convert an informed agent’s optimization problem in the time domain—maximize expected discounted
lifetime trading profits—into an optimization problem in the frequency domain.

We next use variational methods to find the optimal policy function. This optimization method
exploits certainty equivalence: trading strategies and pricing are linear functions of states, so that we
can convert the original problem, which is to optimize using conditional information, to an uncondi-
tional optimization problem. Essentially one solves an infinite-horizon model in which the constraints
associated with each state are stated implicitly, generating an Euler equation. The Euler equation takes
the form of a Wiener-Hopf equation, which we solve to obtain optimal trading strategies.

We use the frequency domain setting to construct a proof that there exists a unique stationary
linear equilibrium. We construct an iterative-best response mapping, and show that it converges. More
specifically, we first conjecture (falsely) that speculators adopt linear trading strategies on private in-
formation that match the valuation process. Given this conjecture we solve for the implied pricing and
trading on the information in prices. We then assume that each speculator believes that other specula-
tors will trade according to these implied first round outcomes, and solve for the optimal best response.
We then iterate on this best response mapping, using a contraction mapping argument to prove that
there is a unique fixed point. Our proof method should generalize to settings such as oligopoly games
with random demand and technology shocks where firms are informationally large and take into account
how output choices affect the information content of prices.

We then characterize equilibrium outcomes. We prove that in equilibrium, an agent’s net total order
is equal to his forecast of the error in the market maker’s forecast of his trade on private information.
That is, from an agent’s trade on private information, he subtracts off its projection onto the history of
net order flows—he subtracts off the market maker’s forecast of his trade on private information. This
interpretation of equilibrium trading strategies is very general. We then derive the form of equilibrium
trading strategies—we prove that both the private and public information trading strategy components
are infinite sums of AR(1) terms, and that there is no simpler representation of strategies. However,
the market maker’s pricing function remains an AR(1), as he undoes the complicated autoregressive
structure of the order flow generated by the trading strategies and converts it back to a process with
the same AR(1) structure as the asset value process.

We then derive how the amounts of private information and noise trade affect equilibrium outcomes.
We prove that the weights on the private information component of trading strategies are proportional
to the square root of the noise trade variance to informed signal innovation variance ratio, σu

σe
. In turn,
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this implies that the market maker’s pricing function is inversely proportional to σu

σe
, and that informed

profits are proportional to σuσe. Thus, we prove that properties of simpler models of informed trade
such as Kyle (1985) hold very generally.

Finally, we exploit the iterative-best response algorithm to characterize equilibrium outcomes quan-
titatively. We derive the quantitative impact of (1) the degree of competition among informed agents,
(2) the persistence in asset valuations, and (3) the correlation of private information, on the equilibrium
levels of (a) informed trading intensity on current and past information, (b) informed profit, (c) market
maker pricing, and (d) the amount of information that is revealed through price about current and past
innovations. To ease presentation, our theoretical analysis presumes that the private signals speculators
receive are uncorrelated. However, our numerical analysis sheds light on how correlation in information
across traders affects equilibrium outcomes.

Section 2 presents the economic environment. Section 3 analyzes trading strategies and pricing.
Section 4 develops the contraction mapping argument used to prove existence of the stationary linear
equilibrium. Section 5 analyzes properties of equilibrium strategies. Section 6 quantitatively charac-
terizes equilibrium outcomes. We conclude by discussing how our approach can be extended to other
settings. Appendix A presents our frequency-domain methods. Appendix B provides proofs of theorems.

2. ASSET VALUATIONS AND TRADER OPTIMIZATION IN A STATIONARY SETTING

We now develop a stationary model of strategic informed trade by agents who have recurring access to
distinct long-lived private information about a firm’s value. N risk neutral informed traders and exoge-
nous noise traders trade claims to the firm in a market made by risk neutral competitive, uninformed
market makers. Agents share a common discount factor β̃ ∈ [0, 1). At each date t there is a constant
probability π ≥ 0 that the firm will be liquidated at the end of the period, so that with probability 1−π

the firm continues on to another period. We assume that β̃(1 − π) < 1, so that expected discounted
informed trading profits are bounded. A firm that is liquidated at date T pays

ṽT = ṽ0 + δ1 + δ2 + . . . + δT ,

where ṽ0 is public information, and δt is the period-t innovation to earnings. We assume that δt evolves
stochastically over time according to the sum of N AR(1) processes:

δt = δ̄ +
N∑

j=1

[ẽjt + ρẽjt−1 + ρ2ẽjt−2 + . . .] ≡ δ̄ + φ(L)
N∑

j=1

ẽjt,

where ẽjt ∼ N(0, σ̃2

N ), j = 1, . . . , N , is independently and identically distributed across the N processes
and time, and ρ ∈ (0, 1]. The normalization of the mean to zero is without loss of generality. The AR(1)
formulation allows for a rich class of earnings processes. In particular, the innovation eτ ≡ ∑N

j=1 ẽjt

can contribute not only to period-τ revenues, but also to future revenues. The greater is ρ, the more
persistent is the contribution. For example, ẽτ may reflect earnings due to a new product, and consumers
will want to buy the product in future periods, albeit in decreasing numbers.

Information: We introduce heterogeneous privately-informed agents into this economy by assuming
that each AR(1) process is observed by a single agent. That is, informed agent i has private information
about the ẽi process. Thus, there are N informed agents who are symmetrically-situated, but have
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heterogeneous information: at date t, informed agent i knows the time-t history of those innovations
that he has observed, (ẽit, ẽit−1, ẽit−2, . . . , ẽi0).

In addition, each informed agent knows the time t history of prices, including the period t price at
which his order will be executed. Bernhardt and Taub (2004) show that the equilibrium when speculators
see both their signals and the current price corresponds to that in Kyle’s (1989) demand submission
market design when there are many uninformed, but strategic, liquidity providers. In demand submission
markets, agents submit demand schedules, which are aggregated to determine the equilibrium, market-
clearing price. This market design closely mirrors that used on most exchanges to determine prices at
open. Our paper is the first to solve for equilibrium outcomes in a dynamic demand submission market.

Often, researchers assume that agents observe prices with a lag as in Kyle (1985), so that agent i’s
date t information is (ẽit,Ωt−1): agents do not know the price they will get when submitting orders. This
approach may ease analysis, but at a cost—there is no close real world analog to this market design.

Pricing: Let xit be informed trader i’s order, i = 1, . . . , N , at date t. In addition to trade from informed
agents, there is exogenous liquidity trade of ut. Liquidity trade is independently and identically normally
distributed each period according to N(0, σ2

u). Let Xt =
∑N

j=1 xjt be the total informed trade at date
t. Thus, Xt + ut is the total net order flow at date t and Ωt−1 ≡ (Xt−1 + ut−1, . . .X1 + u1, ṽ0) is the
date-t history of net order flows and the date 0 expected value of the firm. Market makers see this net
order flow history. Competition between market makers leads them to set price equal to the expected
value of the asset given this date-t public information, so that

pt = E[
∞∑

T=t

π(1 − π)T−tβ̃T−tṽT | Xt + ut,Ωt−1],

where π(1−π)T−t is the probability the firm is liquidated at the end of date T ≥ t after date T trading
given that it has not been liquidated prior to date t.

We focus on equilibria in which market makers set prices that are linear functions of the order flow
history. As a result, knowing the history of prices is equivalent to knowing the history of order flows.
Thus, public information evolves according to Ωt = {Xt + ut,Ωt−1}, where Ω0 = ṽ0. It follows that in
period t, trader i knows the earnings innovation history that he has observed, ẽit ≡ (ẽit, ẽit−1, . . . ẽi1), his
past orders, xit ≡ (xit, xit−1, . . . xi1), and the history of prices, which is informationally equivalent to Ωt.

Trader Optimization: Consider trader i’s perspective at some date t given that the firm has not yet
been liquidated. If the firm is liquidated at some future date T , then trader i’s net signed position
at liquidation would be

∑
s≤T xis. If the realized value of the firm was ṽT , then the date t value of

such a position would be β̃T−tṽT

∑
s≤T xis. The date t cost of this position would be

∑
s≤T β̃t−spsxis,

because the signed order by trader i at date s, namely xis, was executed at price ps, and from a date t

perspective is discounted by β̃s−t. Thus, if the firm is liquidated at date T , informed agent i’s trading
profits just equal the difference between the value of his position and its cost,∑

s≤T

(β̃T−tṽT − β̃s−tps)xis.

Integrating over future possible liquidation dates, we see that at date t, informed agent i trades to
maximize expected discounted lifetime trading profits:

max
{xiT }T≥t

Et

[ ∞∑
T=t

π(1 − π)T−t

[∑
τ≤T

(β̃T−tṽT − β̃τ−tpτ )xiτ

]
| ẽit,Ωt,xit−1

]
. (1)
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Note that we can decompose informed agent i’s expected discounted lifetime trading profits into a
component due to past trading that he no longer controls, and a component reflecting current and
future trading that he seeks to maximize. As a result, agent i’s optimization problem is identical in
structure each period.

3. ANALYSIS

Our equilibrium analysis mirrors that of Back et al. (2000) in that we solve a control problem and
restrict attention to equilibrium path outcomes. We also focus on stationary linear equilibria. As we
later discuss, our equilibrium corresponds to the unique linear Markov equilibrium of the limiting finite
horizon economy. When agents adopt stationary strategies, the private- and public-information histories
ẽit and Ωt fully determine xit. Hence, conditioning on xit−1 is redundant.

We next rewrite agent i’s optimization problem in an analytically more way in which the dating on
prices, orders and expected contributions to the value process all correspond.

LEMMA 3.1: Agent i’s objective can be written as:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

[β̃(1 − π)]τ−t

(
π

1 − ρβ̃(1 − π)
ṽτ − pτ

)
xiτ | ẽit,Ωt

]
. (2)

PROOF: The proof to this lemma and all succeeding results are presented in Appendix B.

Here, π
1−ρβ̃(1−π)

ṽτ is essentially a one-period security that pays off in period τ , corresponding to the
firm’s expected liquidation value given date τ information, integrating over possible liquidation dates.

Letting β = β̃(1 − π), and m = π
1−ρβ̃(1−π)

, we compactly rewrite informed agent i’s objective as

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

βτ−t

(
mṽτ − pτ

)
xiτ | ẽit,Ωt

]
.

Define the adjusted innovations

eiτ ≡ mẽiτ .

The sequel will treat these as the innovations, so that informed agent i’s restated objective becomes

max
{xit}

Et

[ ∞∑
τ=t

βτ−t

(
vτ − pτ

)
xiτ | eit,Ωt

]
,

where v ≡ mṽ.

Linear Trading Strategies and Pricing: We next develop the consequences of linear trading strate-
gies and pricing for the objectives of the informed agents and the market maker. We can write the
market maker’s linear pricing function as

pt =
∞∑

s=0

[
λs(Xt−s + ut−s)

] ≡ λ(L)(Xt + ut),
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where we use the lag operator notation to simplify presentation. Thus, the market maker constructs
price by linearly weighting current and past net order flow, where λs is the weight on net order flow
from period t− s. We further conjecture that the informed traders adopt period trading strategies that
are linear functions of both the history of their private signals and the history of public information net
order flows. Specifically, we conjecture that trader i’s order in period t is given by:

xit =
∞∑

s=0

[
bs
ieeit−s + bs

iΩ(Xt−s + ut−s)
]
≡ bie(L)eit + biΩ(L)(Xt + ut). (3)

We call bie the private-information trading intensity filter and call biΩ the public-information trading
intensity filter. In equilibrium, the sum of order flows from each informed agent induced by these
strategies together with liquidity trade must generate the total net order flow, so that

Xt + ut =
N∑

i=1

xit + ut =
N∑

i=1

[
bie(L)eit + biΩ(L)

( N∑
j=1

xjt + ut

)]
+ ut.

Solving for the net period order flow yields

N∑
i=1

xit + ut =
N∑

i=1

[
bie(L)[

1 − ∑N
j=1 bjΩ(L)

]eit

]
+

1[
1 − ∑N

j=1 bjΩ(L)
]ut.

Trader i controls how he trades on his private signals, bie, and the public information order flow, biΩ,
to maximize expected lifetime trading profits. Rather than solve this problem directly, we reformulate
trader i’s optimization problem so that he consciously controls the market quantities influenced by his
trade. Define the adjusted public-information filter

γi(L) ≡ biΩ(L)

1 − ∑N
j=1 bjΩ(L)

.

In equilibrium, agent i controls his public-information filter biΩ(L), taking as given the strategies b̃j\iΩ(L)
of other traders. To emphasize that trader i controls γi in the same sense as he controls biΩ, write γi as

γi(L) ≡ biΩ(L)

1 − ∑N
j=1 b̃j\iΩ(L) − biΩ(L)

.

Trader i’s objective, equation (2), can be stated in terms of the γi and {bie}. Expressing the objective
in matrix form and suppressing the lag operator notation yields

max
bie,γi

E

[ ∞∑
t=0

βt
i


(

φ − λ(b1e +
∑N

j=1 γjb1e) . . . φ − λ(bNe +
∑N

j=1 γjbNe) −λ(
∑N

j=1 γj + 1)
)



e1,t

...
eN,t

ut







×


( γib1e . . . (bie + γibie) . . . γibNe γi )




e1,t

...
eN,t

ut







]
.

(4)
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The product in the first line of trader’s i’s objective is the difference between the firm’s value, represented
by φ(L)

∑N
k=1 ekt, and the market-maker’s forecast of the firm’s value, λ(L)(1+

∑N
j=1 γj(L))(

∑N
k=1 bje(L)ekt+

ut): it is the market maker’s forecast error of the firm’s value. The second line is agent i’s trade, which,
when we multiply out and re-arrange, we see is the sum of his filtering of the trades of other agents and
liquidity trade, γi(L)(

∑
j bje(L)ej,t + ut), plus his trade on his own private information, bie(L)ei,t.

Note that we have reposed the speculator’s conditional optimization problem (2) as an unconditional
optimization problem. We can do this because equlibrium trading strategies and pricing are both linear.
That is, the same linear trading rule (i.e., the coefficients of the linear function) maximizes expected
profit given any equilibrium path of private information and price realizations. Integrating over all such
histories yields the unconditional expected profit using this “conditional” trading rule. But the same
trading strategy must also maximize unconditional expected profits, i.e., objective (4). To see this, note
that a speculator maximizing objective (4) could employ the conditional trading rule that maximizes
(2), so that the trading rule maximizing (4) must do at least as well as the conditional trading rule.
Conversely, in the conditional problem, the trader could choose the unconditional trading rule. But,
if he ever finds that unconditional rule suboptimal, then integrating over all realized histories yields
an unconditional expected profit that exceeds the unconditional profit attained using the unconditional
trading rule. But this contradicts the optimality of the unconditional trading rule. Hence, the conditional
and unconditional trading rules must correspond.

Having set the speculator’s optimization problem up as a stationary, unconditional optimization
problem, we can now exploit certainty equivalance and transform the problem to the frequency domain
and solve the transformed problem. Because these techniques are unfamiliar to many economists,
Appendix A motivates this transformation and details the algorithm’s mechanics. Re-stating informed
trader i’s objective (4) in frequency domain form yields

max
bie(·),γi(·)

1
2πi

∮
tr

{



φ − λ(1 +
∑N

j=1 γj)b1e

...
φ − λ(1 +

∑N
j=1 γj)bie

...
φ − λ(1 +

∑N
j=1 γj)bNe

−λ(1 +
∑N

j=1 γj)




( γ∗
i b∗1e . . . (1 + γ∗

i )b∗ie . . . γ∗
i b∗Ne γ∗

i )

×




σ2
1e 0 . . . 0 0
...

...
0 0 . . . σ2

Ne 0
0 0 . . . 0 σ2

u




}
dz

z
,

(5)

where the integration is counterclockwise around the unit circle. The objective takes a vector form
because there are N + 1 fundamental processes: the N innovation processes {ejt}, and the noise trade
process ut. Since these processes are mutually independent, the covariance matrix is diagonal. The
column vector in i’s objective again corresponds to the market maker’s forecast error of the firm’s value.
The row vector (γ∗

i b∗1e . . . (1 + γ∗
i )b∗ie . . . γ∗

i b∗Neγ
∗
i ) expresses his order,

γi(L)
(
b1e(L)e1t + . . . + bie(L)eit + . . . + bNe(L)eNt + ut

)
+ bie(L)eit.

The first term in trader i’s order is his trade on the public information net order flow. We will show
that it is equal to (minus) the projection of bie onto the public information history of net order flows.
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Trader i’s total order flow is then equal to the difference between his trade on private information, and
the projection of this trade on the net order flow—it is equal to his forecast of the error in the market
maker’s forecast of his trade on private information. Finally, the variance-covariance matrix captures
the fact that we have already passed the expectation operator through, so that the ejt do not appear in
the row and column vectors as processes.

The market-maker’s problem. The market-maker acts competitively, setting the price that yields him
zero expected profits given the public information history of net order flows. This implies that the price
is equal to the expected value of the firm given the history of net order flows. Since period net order
flow is normally distributed, conditional forecasts are linear. Consequently, the market maker’s pricing
function solves the following linear-least-squares prediction problem:

min
λ

E

[ ∞∑
t=0

βt(vt − λ(L)(
N∑

i=1

xit + ut))2
]

.

That is, the price is equal to the projection of the firm’s value onto the net order flow history. We next
substitute for the linear trading strategies and express the prediction problem in frequency-domain form:

min
λ(·)

1
2πi

∮
tr

{



φ − λb1e(1 +
∑N

j=1 γj)
...

φ − λbie(1 +
∑N

j=1 γj)
...

φ − λbNe(1 +
∑N

j=1 γj)
−λ(1 +

∑N
j=1 γj)




× (
φ∗ − λ∗b∗1e(1 +

∑N
j=1 γ∗

j ) . . . φ∗ − λ∗b∗ie(1 +
∑N

j=1 γ∗
j ) . . . φ∗ − λ∗b∗Ne(1 +

∑N
j=1 γ∗

j ) − λ∗(1 +
∑N

j=1 γ∗
j )

)

×




σ2
1e 0 . . . 0 0
...

...
0 0 . . . σ2

Ne 0
0 0 . . . 0 σ2

u




}
dz

z
.

We next define our stationary equilibrium. In an equilibrium, (i) all agents optimize and (ii) aggregated
information is consistent with that optimization:

DEFINITION 1: A stationary linear equilibrium is a collection {bie}, {γi}, λ such that:

(i) The trading intensity filters {bie} and public-information filters {γi} solve the optimization

problem of each trader i, i = 1, . . . , N .

(ii) The price filter λ solves the competitive market maker’s prediction problem.

(iii) Public information is equivalent to the history of net order flows arising from the optimization

by the informed traders and the competitive market maker.

To construct the equilibrium we develop the first-order conditions to the optimization problems for
the informed traders and the market maker.

First-order conditions. The solution process follows the steps outlined in Appendix A. Each trader takes
as given the trading intensity filters bje, γj of the other traders. Trader i solves his frequency-domain
objective by constructing a variation bie +αζ and γi +αζ. Taking the variational derivatives for bie and

9
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γi, the first-order conditions for trader i are the following Wiener-Hopf equations:

(bie) [(φ − λbie(1 +
N∑

j=1

γj))(1 + γ∗
i ) − λ∗bie(1 +

N∑
j=1

γ∗
j )(1 + γi)]σ2

ie =
−1∑
−∞

.

(γi)

[(φ − λb1e(1 +
N∑

j=1

γj))b∗1e − λ∗b∗1eb1eγi]σ2
1e + . . . + [(φ − λbie(1 +

N∑
j=1

γj))b∗ie − λ∗b∗iebie(1 + γi)]σ2
ie + . . .

+[(φ − λbNe(1 +
N∑

j=1

γj))b∗Ne − λ∗b∗NebNeγi]σ2
Ne + [−λ(1 +

N∑
j=1

γj) − λ∗γi]σ2
u =

−1∑
−∞

.

We follow standard convention and use
∑−1

−∞ as shorthand for an arbitrary function that has only
negative powers of z, and hence cannot be part of the solution to an agent’s optimization problem; and
we abbreviate notation, writing f instead of f(z), and f∗ instead of f(βz−1).

Because the covariance matrix is diagonal, these equations simplify to a one-dimensional form. The
market-maker’s first-order condition is

(λ)
N∑

k=1

(φ − λbke(1 +
N∑

j=1

γj))b∗ke(1 +
N∑

j=1

γ∗
j )σ2

je − λ(1 +
N∑

j=1

γj)(1 +
N∑

j=1

γ∗
j )σ2

u =
−1∑
−∞

.

We first develop the solution for bie. Re-arranging the first-order condition for bie yields

bie[λ(1 +
N∑

j=1

γj)(1 + γ∗
i ) + λ∗(1 +

N∑
j=1

γ∗
j )(1 + γi)]σ2

ie = φ(1 + γ∗
i )σ2

ie +
−1∑
−∞

.

The coefficient of σ2
ie on the left-hand side is the sum of complex conjugates. Because of this symmetry,

by the theorem of Rozanov (1967), it can be factored into the product of an analytic, invertible function
gi(z) and its conjugate,

gig
∗
i ≡ λ(1 +

N∑
j=1

γj)(1 + γ∗
i ) + λ∗(1 +

N∑
j=1

γ∗
j )(1 + γi). (6)

Then the first-order condition becomes

bie(gig
∗
i ) = φ(1 + γ∗

i ) +
−1∑
−∞

,

with solution
bie = g−1

i [g∗i
−1φ(1 + γ∗

i )]+, (7)

where [·]+ is the annihilator operator that sets the coeffificients of negative powers of z in the Laurent
expansion to zero, while preserving all coefficients on the non-negative powers of z to obtain a feasible
solution to an agent’s optimization problem.

Turning to the first order condition for γi, rearrange it to obtain

[λ
N∑

j=1

γj + λ∗γi][
N∑

j=1

bjeb
∗
jeσ

2
je + σ2

u] =
N∑

j=1

(φ − λbje)b∗jeσ
2
je − λ∗bieb

∗
ieσ

2
ie − λσ2

u +
−1∑
−∞

. (8)

10
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To solve for γi two factorization steps are required. In the first step, we define the process J(L)wt:

J(L)wt =
N∑

j=1

bje(L)ejt + ut.

Rozanov’s factorization theorem again implies that we can choose J(z) and wt such that

JJ∗ =
N∑

j=1

bjeb
∗
jeσ

2
je + σ2

u, (9)

where J(z) is both analytic and invertible, and σ2
w is normalized to 1. As a result, the inverse, J(z)−1,

is analytic. Net order flow is (1 +
∑N

k=1 γk(L))(
∑N

j=1 bje(L)ejt + ut), so that J(L)wt is essentially the
direct informationally-based order flow, or the order flow gross of the trade based on the informed agents’
filtering of net order flow. The function J(z) thus represents this direct order flow process.

We now use the solution for λ to simplify the solution for γi.

LEMMA 3.1: γi = −J−1[J∗−1bieb
∗
ieσ

2
ie]+.

Lemma 3.1 reveals that γi is, indeed, the projection of trader i’s private information trading intensity
process onto the public information net order flow process. The negative sign in the formula for γi

emphasizes that this projected information is subtracted from i’s gross order flow—trader i trades less
aggressively to the degree that his private information can be inferred from the net order flow history.

The following result facilitates a further simplification.

LEMMA 3.2: 1 +
∑N

j=1 γj is invertible.

Exploiting this result, the solution for λ simplifies to

λ = (1 +
N∑

k=1

γk)−1J−1[J∗−1φ(
N∑

k=1

b∗keσ
2
ke)]+. (10)

Note that λ is invertible: This is because (1 +
∑N

k=1 γk)−1 and J−1 are invertible by construction, and
by an application of Proposition A.1, [J∗−1φ(

∑N
k=1 b∗keσ

2
ke)]+ is proportional to φ, which is invertible.

In the market-maker’s objective, λ appears only in the product λ(1 +
∑N

j=1 γj), which, in turn,
operates on the net order flow process. Because of this it is convenient to define µ ≡ λ(1 +

∑N
j=1 γj) to

be the market maker’s filter of the direct order flow process, J(L)wt, where

µ ≡ λ(1 +
N∑

j=1

γj) = J−1[J∗−1φ(
N∑

k=1

b∗keσ
2
ke)]+. (11)

One can think of the price process as being captured by µ(L)J(L)wt, where wt is the fundamental
innovation process for net order flow constructed by the factorization J in (9). Hence, µJ yields the
structure of the price process. Recall that the value process is such that φ(L)eit is AR(1). From
Proposition A.1 in appendix A, the annihilate of the product of non-analytic functions f∗ = f(βz−1)
with φ(z) is equal to a constant times φ(z). Applying Proposition A.1, the price process is given by

µ(L)J(L)wt = Cφ(L)wt, (12)

11
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where C is the appropriate constant. Equation (12) reveals that the market-maker’s price filter undoes
the complicated autoregressive structure of the order flow and converts it back to a process with the
same AR(1) structure as the value process. That is, λ inverts informed agents’ trades on net order flow
1 +

∑
γj in order to filter the direct, informationally-based portion of the order flow process, J(L)wt.

Of course, the fundamental innovation of the price process wt differs from the innovation underlying the
value process because it is influenced directly by the noise trade process ut and indirectly by traders’
attempts to trade strategically through the structure of the bie functions.

4. EQUILIBRIUM

In this section we establish the existence of equilibrium. The formulas for {bie}, {γi}, and λ are
the outcomes of the optimization problems that we have presented. The solutions of the optimization
problems express the best responses of each trader to the actions of the other traders. The equations are
nonlinear so that a closed-form solution cannot be found directly. This leads us to consider a sequence of
iterative best responses by an informed agent, taking the kth iteration round as describing the behavior
of the other agents, and then solving for the informed agent’s best response to obtain the (k + 1)th

iteration. We show that this best-response approximation converges. This implies that an equilibrium
exists and is given by the limit of the best-response approximation.

We begin the iteration by assuming that trading intensities on private information match the
valuation process, b1

ie(L)eit = 1
1−ρLejt, where the superscript indexes the iteration. We then solve for

pricing, λ1(L)(Xt + ut) = �11
1−ρL (Xt + ut), and trading intensities on net order flow, γ1

j (L)(Xt + ut) =
g1

1−h1L (Xt + ut). We then iterate. We establish inductively that on the kth interation, trading intensity
on private information is given by a k-order sum of AR(1) terms,

bk
ie = ck

0

( ck
1

1 − ρz
+

k∑
�=2

ck
�

1 − ak
� z

)
, (13)

where
∑k

�=1 ck
� = 1 and ak

1 = ρ > ak
2 > ak

3 > ... > ak
k > 0. Thus, weights on AR(1) terms in successive

iterations are interspersed and the first autoregressive coefficient is ρ, the autoregressive parameter of
the valuation process. Pricing continues to evolve according to an AR(1),

λk(L)(Xt + ut) =
�k
1

1 − ρL
(Xt + ut),

as the market maker unravels the strategic trading to match the valuation process. Finally, trading on
the public information net order flows is the k-order sum of AR(1) terms,

γk(L)(Xt + ut) =
k∑

i=1

gk
i

1 − hk
i L

(Xt + ut).

The limit of this mapping generates a fixed point in which the sum in (13) is infinite; this expresses the
infinite iteration of the best responses of each trader to the strategies of the other traders. Our main
propositions establish that this solution is consistent with the optimization of the informed traders and
the market maker and the imposition of the definition of informational equilibrium.

Iteration k + 1 first uses the internal structure of the private information trading intensity filters
{bk

ie} and maps them into a list of iterated functions ({γk
i }, {gk

i }, Jk, µk). Specifically, given bk
ie, we

12
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compute Jk from the definition of J in equation (9). Then Jk and bk
ie determine γk

i using Lemma 3.1.
Finally, bk

ie and Jk are used to calculate µk using equation (11). We then use ({γk
i }, {gk

i }, Jk, µk) to
calculate the next value of the trading intensity filter bk+1

ie using equation (7). We express these steps
notationally by the mapping T , with T : {bk

ie} �→ {bk+1
ie }.

DEFINITION 2: Let φ be AR(1) with φ = (1 − ρz)−1. Define H(β) to be the space of analytic

functions on ∆(β) ≡ {z : |z| < β1/2}. Define C to be the space of all functions on a domain in the

complex plane. Define T : H(β) → C(∆(β)) to be the mapping generated by the equations defining the

functions {bie}, i = 1, . . . , N , and the corresponding {γi}, {gi}, J and µ functions.

DEFINITION 3: Define T̃ : �∞ × �∞ → �∞ × �∞ to be the mapping T in terms of the coefficients

ck
� and ak

� of the analytic functions in bie.

An iterative formula for ak
i . Start with k = 1. Set a1

1 = ρ with a1
j = 0 for j > 1, and set c1

0 = c1
1 = 1

with c1
j = 0 for j > 1. Calculating T̃ [(1, 1, 0, . . .), (ρ, 0, . . .)] yields (c2

0, c
2
1, c

2
2, 0, . . .) and (ρ, a2

2, 0, . . .),
and on the third round, (c3

0, c
3
1, c

3
2, c

3
3, 0, . . .) and (ρ, a3

2, a
3
3, 0, . . .). Iteratively applying the mapping T̃

generates bk
ie = ck

0

(
ck
1

1−ρz +
∑k

�=2
ck

�

1−ak
�
z

)
, k = 2, 3, . . . with associated sequences

({a1
1}, {a2

1, a
2
2}, . . . , {ak

1 , a
k
2 , . . . , ak

k−1, a
k
k}, . . .), and ({c1

0, c
1
1}, {c2

0, c
2
1, c

2
2}, . . . , {ck

0 , c
k
1 , ck

2 , . . . , c
k
k−1, c

k
k}, . . .).

We now show that iterating on T̃ preserves the first autoregressive term of an intermediate bie but
changes its relative weight; subsequent terms are autoregressive with shrinking numerator coefficients
(the ck

� ) and shrinking autoregressive coefficients (the ak
� ). We establish inductively the key properties

that (i) the new coefficients ak
� lie in a bounded interval (0, ρ), and (ii)

∑k
�=1 ck

� = 1:

LEMMA 4.1: Take any sequence pair (ck
0 , ck

1 , ck
2 , . . . , ck

k, 0, . . .) and (ρ, ak
2 , . . . , ak

k, 0, . . .) such that∑k
�=1 ck

� = 1, with |ck
0 | < ∞, and such that ρ = ak

1 > ak
2 > . . . ak

k > 0. Then

T̃ [(ck
0 , ck

1 , ck
2 , . . . , ck

k, 0, . . .), (ρ, ak
2 , . . . , ak

k, 0, . . .)] = ((ck+1
0 , ck+1

1 , ck+1
2 , . . . , ck+1

k+1, 0, . . .), (ρ, ak+1
2 , . . . , ak+1

k+1, 0, . . .))

where (i)
∑k+1

�=1 ck+1
� = 1, and (ii) ρ = ak+1

1 = ak
1 > ak+1

2 > . . . > ak+1
k > ak+1

k+1 ≥ 0.

Note that the characterization in Lemma 4.1 holds even for sequence pairs not generated by the
T̃ mapping. Of course, it also holds for the sequence generated by the T̃ mapping that commences
with the “naive” value of the private information trading-intensity filter, b1

ie(z) = 1
1−ρz , that mimics the

autoregressive structure of the value process:

We now prove that there is a unique stationary linear equilibrium.

LEMMA 4.2: Let

bk
ie = ck

0

( ck
1

1 − ρz
+

k∑
�=2

ck
�

1 − ak
� z

)

with |ak
� | < β−1/2,

∑k
�=1 ck

� = 1, and ρ = ak
1 > ak

2 > . . . > ak
k. Then T [bk

ie] → H(β).

PROPOSITION 4.3: T has a fixed point b̃ in H(β).

PROPOSITION 4.4: There is a unique stationary linear equilibrium.

13
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The proof uses a contraction mapping argument on the space of functions of a complex variable on
the unit disk, which has a tractable structure—the frequency-domain methods prove extremely useful
here. More specifically, we prove that a contraction argument applies to iterations of the J function,
where we recall J(L)wt =

∑N
j=1 bje(L)ejt + ut is the information-based portion of order flow left after

subtracting out the portion based on the filtering of public information.

The contraction argument is easier to establish indirectly via J rather than bje because the non-
linearity of the spectral factorizations of J and g prevent a direct recursive formula for bje. In a symmetric
setting, substituting for bje from (7) into JJ∗ results in the term (gg∗)−1, which can be translated into
a term of J and φ, and in particular is not a function of bje. We therefore have a recursive expression
for J , and we show that the modulus of this recursion is a fraction, implying a contraction mapping.

Once we have the fixed point of this contraction mapping, we can solve for the primitive functions,
b, γ, and µ. The equilibrium private trading intensity filter is characterized by an infinite sequence
of numerator coefficients {c̄�} and autoregressive coefficients {ā�} with the same characteristics as the
iterated versions {ck

�} and {ak
�}.

PROPOSITION 4.5: Let ((c̄0, c̄1, c̄2, . . .), (ā1, ā2, . . .)) = limk→∞ T̃ k[(1, 1, 0, . . .), (ρ, 0, . . .)]. Then

ρ = ā1 > ā2 > . . . > 0, and

∞∑
�=1

c̄� = 1.

Proposition 4.5 shows that private information is used directly in that the first bie term matches the
autoregressive structure of the value process, φ. Subsequent terms in the private-information trading
intensity filter feature smaller autoregressive parameters, a�. Ultimately, c� > 0, and this means that
informed agents trade relatively less aggressively on older information—that is, their order flow on a
piece of information decays faster than ρ. This is because agents’ private information conditional on
public information becomes increasingly negatively correlated with age.

With the basic properties of the trading intensity filter established, we now derive the functional
forms of the ancillary functions. We first show that the autoregressive structure of the public information
process J(L)wt is driven by the structure of the private-information trading intensity filters bie.

PROPOSITION 4.6: The direct, informationally-based order flow process has the same autoregres-

sive basis as the private trading intensity filter bie(z):

J(z) =
j1

1 − ρz
+

∞∑
�=2

j�

1 − a�z
.

The next result details that there is a common basis for the functions µ and γi.

PROPOSITION 4.7: A trader’s filter on the public information net order flow process

γi(z) =
∞∑

�=1

p�

1 − f�z

has the same basis elements as the market-maker’s filter on net order flow,

µ(z) =
∞∑

�=1

d�

1 − f�z
.

14
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To understand why µ and γi have the same autoregressive basis note that µ is the market-maker’s
pricing function is a projection of the unobservable value process onto the net order flow history. So,
too, informed trader i’s γi function is a projection of his own private information onto the net order
flow history. However, while µ and γi have the same basis elements, the two functions have different
coefficients on those elements because informed agents have more information than the market maker.

Discussion. In the finite horizon settings of Bernhardt and Miao (2004) and Foster and Viswanathan
(1996) there is a unique linear Markov equilibrium. The key feature underlying this uniqueness is that
every possible order flow path can arise in equilibrium. Consequently, even if, off the equilibrium path,
some trader i erred when submitting his order, the other agents continue to believe that the economy is
on the equilibrium path with probability one. Trader i recognizes that he made a sub-optimal trade in
some period t, and in subsequent periods it is equivalent to agent i observing a piece of liquidity trade
in period t—trading one hundred shares more than was optimal is equivalent to knowing that there was
a liquidity trade of one hundred shares—and i trades linearly on this “information” in the future. The
other agents continue to believe that they are on the equilibrium path, and trade accordingly.

We have proved that in our infinite horizon setting there is a unique stationary linear Nash equi-
librium. Further, this equilibrium should correspond to the equilibrium path of the unique stationary
linear Markov equilibrium. Again this is because any possible order-flow path can arise in equilibrium
so that if an agent has never erred then in that subgame, he believes that with probability one that
other agents are following their equilibrium strategies. Our infinite horizon setting is also likely to have
other non-stationary (e.g., more collusive) equilibria. However, our methodology does not extend to
characterize non-stationary or non-linear equilibria.

5. TRADING INTENSITY PROPERTIES

We now characterize the properties of equilibrium trading strategies, pricing and the dynamics of
information. We first derive how the amounts of noise trade and private information about the asset
affect trading strategies, pricing and profits. Clearly, increasing the variance of noise trade, σ2

u, will lead
informed agents to increase their trading intensities—the informed agents can glean additional profits as
they can “hide” their greater trading behind the higher noise trade that complicates the market maker’s
inference problem. We provide a much tighter characterization than just demonstrating this. What we
prove is that the variance of noise trade and the variance of the innovations to the asset value affect
equilibrium strategies in a particularly simple way: they scale the trading intensity with which informed
agents trade on private information.

Fixing all other parameters, let bie(σ2
e , σ2

u) be the equilibrium private trading intensity function as
a function of the variance of innovations to the asset value, and the variance of noise trade. Define the
equilibrium pricing function, λ(σ2

e , σ2
u) and informed profit function, πi(σ2

e , σ2
u) analogously. Finally, let

bie(1, 1) = c0

(
c1

1 − ρz
+

∞∑
�=2

c�

1 − a�z

)

be the equilibrium private trading intensity function when σ2
e = σ2

u = 1. Then,

PROPOSITION 5.1: The equilibrium private trading intensity function is proportional to σu

σe
:

bie(σ2
e , σ2

u) =
σu

σe
bie(1, 1) and γi(σ2

e , σ2
u) =

σu

σe
γi(1, 1).
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Proposition 5.1 details that the variances of noise trade and asset innovations do not affect the
autoregressive structure of the equilibrium trading strategies. In turn, this means that the impacts of
these variances on pricing and informed profits also take simple forms:

PROPOSITION 5.2: The equilibrium pricing function is proportional to σe

σu
:

λ(σ2
e , σ2

u) =
σe

σu
λ(1, 1).

The equilibrium profit function is proportional to σeσu:

πi(σ2
e , σ2

u) = σeσuπi(1, 1).

Propositions 5.1 and 5.2 demonstrate that the qualitative impact of the variances of noise trade and
asset innovations found in simpler settings by other researchers—static trading environments by Kyle
(1985) and Admati and Pfleiderer (1989), and by Kyle (1985) and Back (1992) for a single informed
agent who has a single piece of private information and can trade arbitrarily frequently—is actually a
very general property that holds in rich dynamic environments.

6. NUMERICAL CHARACTERIZATIONS

In this section we provide quantitative characterizations of equilibrium outcomes. Specifically, we
characterize how (1) competition amongst informed agents, (2) the persistence in asset valuations, and
(3) the relative amount of noise trade affect equilibrium levels of (a) informed trading intensity on
current and past information, (b) informed profit, (c) market maker pricing, and (d) the amount of
information revealed through price about current and past innovations.

The algorithm is complicated by two factors. The first factor is that by the nature of the algorithm,
which repeatedly finds common denominators, cancellation of numerator and denominator terms of
the form (1 − a1z)/(1 − a2z), in which a1 and a2 are theoretically equal but numerically unequal,
must be performed. In the control and systems-engineering literature, this cancellation is appropriately
performed using so-called state-space methods, and in particular a minimal-realization algorithm.

The second complicating factor is a consequence of the best-response behavior of the traders. The
iteration calculates the best response of a trader, fixing the strategies of the other traders. In practical
terms, this means that the polynomial order of the other traders’ trading-intensity filter is held fixed,
while the active trader’s trading-intensity filter is optimized. This, in turn, raises the polynomial order
k of the active trader’s trading-intensity filter. In practice, this results in an over-reaction by the active
trader, which destabilizes the iterative algorithm. The way we circumvent this over-reaction is to limit
the polynomial order of the best response until convergence has occured for that k, and only then allow
an increment of k. In practical terms, the algorithm produces k + 1 pole terms and we use state-space
methods, in particular a balanced-realization algorithm, to choose the pole to discard.

Numerical results. We now illustrate the numerical algorithm. In our base-case parameterization (i)
there are two informed traders with discount factor β = 0.95, (ii) each ejt is independently, normally
distributed with zero mean and variance 1

2 , (iii) the autoregressive parameter of the asset value process
is ρ = 0.97, so that innovations have a persistent impact on the asset’s value, and (iv) the variance of
noise trade each period is one, which matches the total variance of the innovation to the asset’s value.
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In the first iteration informed trading strategies on private information match the valuation process:

b1
je(L)ejt =

∞∑
τ=0

ρτejt−τ ≡ 1
1 − 0.97L

ejt.

The first few terms of the moving-average representation of this trading strategy are:

b1
je(L)ejt = 1.00ejt + 0.970ejt−1 + 0.941ejt−2 + 0.913ejt−3 + 0.885ejt−4 + 0.859ejt−5 + 0.833ejt−6 + . . . .

Then given the posited b1
je, we use equation (9) to solve for

J1(L)wt = (.627 +
.967

1 − .097L
)wt.

We next use b1
je and J1 to solve for the trading intensity on net order flow using lemma 3.1,

γ1
j (L)xt = − .303

1 − .382L
xt.

Finally, we use equation (11) to solve for

µ1 =
0.606

1 − .382L
xt.

In turn, using µ1 = λ1(1 +
∑

j γ1
j ), we solve for

λ1(L)xt =
1.542

1 − 0.97L
xt ↔ p1

t = 0.97p1
t−1 + 1.542xt.

We then iterate, solving for how j should trade on his private information, using the first round
iterations for pricing and filtering of public information as inputs:

b2
je(L)ejt = .609

(
.874

1 − 0.97L
ejt +

.136
1 − 0.297L

ejt

)
.

It is more helpful to compare the moving-average representation of this trading strategy,

b2
je(L)ejt = 0.609ejt+0.539ejt−1+0.508ejt−2+0.487ejt−3+0.457ejt−4+0.444ejt−5+0.430ejt−6+ . . .+ .

with that for the initial iteration, b1
jω(L)ejt. This reveals that in the second iteration, agent j reduces

his trading intensity on all of his private information, curtailing especially sharply his trading intensity
on older private information. Intuitively, the initial conjecture failed to incorporate the fact that private
information was being revealed to the market through the price; the second iteration internalizes this,
and, in particular, the more negative conditional correlations in the market maker’s forecast errors
of each informed agent’s net private information at longer lags. Because of this negative conditional
correlation j trades more aggressively on more recent private information relative to older information
in the second iteration. Continuing, on successive iterations, the lag coefficients decline monotonically,
with greater percentage reductions at longer lags. It takes six iterations for the algorithm to converge.

The market maker’s equilibrium pricing function evolves according to an AR(1) with an autoregres-
sive parameter that matches the valuation process,

λ7(L)xt =
0.895

1 − 0.97L
xt ↔ p7

t = 0.97p7
t−1 + .895xt.
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Finally, the moving average representation of an informed agent’s equilibrium trading intensity on the
public information net order flow is given by

Lag 0 1 2 3 4 5 6 7 8 9 10
γ7(L)xt -0.101 -0.064 -0.043 -0.030 -0.021 -0.016 -0.012 -0.010 -0.008 -0.007 -0.006
b7
je(L)ejt 0.355 0.271 0.215 0.177 0.149 0.128 0.112 0.100 0.090 0.081 0.074

Contrasting the equilibrium trading intensities on private and public information reveals that trading
intensities on the public information net order flow drop off more quickly at distant lags than do trading
intensities on private information; the 10th lag of the private information trading intensity filter is 21%
of the 0th lag, while the the 10th lag of the net order flow trading intensity filter is only 6% of the 0th

lag. This reflects that accounting for j’s trade on private information in the net order flow ceases to
convey much information to j after only a few lags.

These findings lead to several questions: Why does j’s trading intensity on older information
drop off? how much private information remains at distant lags? and by how much does old private
information contribute to agent j’s period profit?

To address these questions, we decompose expected total informed agent period profit of 0.760 due
to the first 10 lags of information by lag

Lag 0 1 2 3 4 5 6 7 8 9 10∑
j πjt−τ 0.359 0.172 0.090 0.051 0.031 0.020 0.013 0.010 0.007 0.005 0.004

Thus, relatively recent information contributes significantly to informed profits, but the contribution
drops off sharply at distant lags. The most recent innovation contributes about 47% of the informed
agent’s profits; the three most recent innovations contribute 82% of the informed agent’s expected profits;
and his six most recent pieces of information contribute about 95% of his profit.

Two factors underlie j’s decreasing ability to profit on older information: (i) some of j’s private
information is revealed over time through trade, so there is “less of it”, and (ii) j’s remaining net private
information—the market maker’s forecast error of the asset’s valuation given j’s information—becomes
increasingly negatively correlated at distant lags with that of other traders.

To illustrate how j’s private information declines at distant lags, we decompose by lag the contri-
bution of past information to the variance of the market maker’s forecast error of the asset’s value. The
total forecast error variance from the first 10 lags is σ2

FE = 3.47, and the decomposition by lag is

Lag 0 1 2 3 4 5 6 7 8 9 10
σ2FE

m 1.095 0.674 0.451 0.323 0.243 0.189 0.152 0.125 0.104 0.088 0.075

The forecast error variance associated with the 10th lag is about 7% of that associated with current
period innovations. Thus, distant lags still contribute to the market maker’s forecast error.

We now compute the correlation in agents’ order flows, and thus of net private information, by lag.

Lag 0 1 2 3 4 5 6 7 8 9 10
Correlation -0.020 -0.233 -0.425 -0.580 -0.694 -0.775 -0.831 -0.871 -0.898 -0.918 -0.933

Because agents see the current period price, the conditional correlations between informed agents’ private
information are negative at all lags, even the 0th. Further, agents’s private information quickly becomes
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very negatively correlated at distant lags. It is this high negative correlation that underlies both j’s
inability to profit on forecast errors on ejt−τ , and the reduced trading intensity by agent j on older
information, as a positive forecast error on one agent’s net private information is associated with a
largely offsetting negative forecast error on other agents’ net private information.

Competition. We now explore how increased competition affects equilibrium outcomes when signals are
independently distributed across agents. Table 2 presents equilibrium outcomes for N = 2, 4, and 32
agents. In each period t, informed agent j sees ejt, an independently, normally distributed innovation
with zero mean and variance 1

N , so that the variance of total private information is fixed at one. The first
panel reveals that aggregate variables—pricing, total informed profit and market maker forecast error—
are remarkably insensitive to how information is divided among agents. In a static environment, when
information is independently distributed across agents, aggregate equilibrium outcomes are completely
unaffected by the division of information. In a dynamic framework, the division of information across
agents matters, but not by very much. What underlies this result is that the division of information
among informed agents affects informed trading strategies according to N−1

N . Going from two informed
agents to 32, total informed profits fall by about 2%; and there is a similar percentage decline in the
price impact of order flow. The market maker’s forecast error—a measure of the information revealed
through trade—rises by a little bit more with increased competition—about 5%—reflecting that greater
competition causes agents to trade less aggressively on their information.

The second panel decomposes equilibrium variables by lag for different numbers of informed agents.
This decomposition reveals that the impact of increased competition is more subtle than the first panel
might suggest. The MA decomposition of bN

je reveals that the increased competition causes agents to
trade 7% more aggressively on current private information, but to reduce their trading intensity on older
private information (so that when N = 32, agents trade more than 10% less aggressively on their private
information at lags exceeding 2 than when N = 2). Underlying this result is that increased competition
causes net private information to become far more negatively correlated at all lags. In turn, this higher
negative correlation causes informed agents to trade less aggressively on older information. Anticipating
this increased negative correlation at lags when information is divided among more agents, the agents
choose to trade more aggressively on current information.

Similarly, increased competition alters the source of informed profits: informed profits from the
current innovation are higher, but these profits come at the expense of reduced future trading profits.
So, too, a decomposition of the variance of the market maker’s forecast error reveals that as competition
rises, trade reveals more information about the current innovation, but less about past innovations.
Consequently, increased competition leads to more residual unrevealed private information at long lags.

Persistence in valuation process. Table 3 contrasts equilibrium outcomes for ρ = 0.97, 0.75, 0.5 in our
base-case parameterization with two traders. As ρ falls, the contribution of the lagged innovations ejt−τ

to the asset’s period t value, ρτejt−τ falls. Reducing ρ effectively reduces the total private information
in the economy, as the variance of the valuation process is Nσ2

e

1−βρ2 . Panel 1 illustrates that as the
persistence in the valuation process is reduced, price becomes far more sensitive to current period order
flow. Indeed, the price impact of order flow quickly approaches what it would be in a static environment
(pt = Xt + ut when ρ = 0). As ρ declines, informed profits fall, but by far less than proportionately
to the reduction in the amount of information. This is because informed agents increase their trading
intensity on newer private information (see the lag decomposition of bje), while reducing their trading
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intensity on older information (both because older information has a smaller impact on asset values and
because information is conditionally more negatively correlated due to the greater trading intensity on
the information when it was newer). In turn, this increased trading intensity due to a decline in ρ causes
the market maker’s forecast error to fall even more rapidly than informed profits.

1. The lag decomposition of γj reveals that as ρ is reduced, agents use their larger own current period
own order flow to extract more information about current innovations from net order flow, while
the projection of distantly-lagged private information onto net order flow is almost zero.

2. The lag decomposition of profits reveals that as ρ is reduced, agents extract increasing amounts of
profits from current information (both in absolute and relative terms).

3. The lag decomposition of the market maker’s forecast error variance reveals that reducing ρ raises
informed trading intensities on newer information, reducing the contribution of current information
to the forecast error variance. At lags this is reinforced by the reduced contribution of lagged
innovations to the asset’s value.

4. Agents’ net private information becomes almost perfectly negatively correlated by the third lag.

Noise trade. Our analytical results imply that increasing σ2
u by a factor of four doubles informed trading

intensities, halves the price sensitivity to net order flow and quadruples informed profits.

Correlated information. If traders’ information is correlated, then the same frequency-domain methods
can be used to solve the model, but the vector version of the methods set out at the end of Appendix
A must be employed. Bernhardt, Seiler and Taub (2003) develop the vector methods in a multi-asset
contexts. The vector methods demand a modification of the numerical analysis, and, in general, it is far
more difficult to solve the pole-zero cancellation and spectral factorization problems. The demands of
the numerical methods require that we consider parameterizations in which the persistence of the value
process ρ, the degree of correlation of information, and the number of traders are limited.

We set ρ = 0.5, and consider the interaction between correlation and competition. Fixing N = 2
traders, increasing the correlation parameter modestly from θ = 0 to θ = 0.025, causes trading intensities
on current information rise by about 6.5 percent, but trading intensities at other lags are only marginally
affected, and informed profits only fall by about 1.5 percent. Increasing correlation to a high level,
θ = 0.5, causes trading intensities on recent information to rise sharply. In particular, relative to the
uncorrelated case, trading intensities on current, first and second lags are 50, 40 and 33 percent higher,
respectively. Intuituively, it is the race to trade on common information ahead of the other agent leads
to far higher trading intensities. Still, relative to when signals are uncorrelated, total informed profits
profits fall by only about 7 percent.

However, when we then maintain the high correlation, θ = 0.5, and double the number of agents
to N = 4, we see dramatic impacts. When signals were uncorrelated, increasing the number of agents
had minimal effects. However, when signals are correlated, doubling the number of agents dramatically
raises trading intensity on recent information by 40 percent, with far smaller trading intensity increases
at longer lags. What drives this result is that each speculator has an incentive to trade on common
information before the other speculators. Because trading intensities on recent information are so much
higher, the conditional correlation in their information is reduced sharply at longer lags, so their incentive
to trade on that information is far less. The increased trading intensity on recent information sharply
reduces total informed profit by about 14 percent. Thus, we see that in dynamic contexts, what reduces
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informed profits is the combination of signal correlation and high numbers of informed agents.

7. CONCLUSION

How information is dispersed through prices has long been a central question in economics. We provide
the foundation to explore this question. Our model of speculative informed trade in stock markets re-
sides in an infinite horizon setting, so that our findings are unimpeded by finite horizon boundaries. We
characterize precisely how information in one time period interacts with information from other periods.
We show that the use of private information and its revelation through price never ends: each new real-
ization of private information leads agents to re-interpret the history of private and public information.

We characterize analytically how the primitives of the model affect equilibrium outcomes—trading
strategies, pricing, profit and information transmission. We prove that noise trade and private informa-
tion proportionately scale trading strategies, pricing, profit and information transmission. We also show
that competition slows the transmission of information, but that the quantitative impacts of competition
are slight unless the signals that speculators receive are correlated, so that agents compete over trading
on common information. The methods developed here extend to multi-asset settings. In ongoing work,
Bernhardt, Seiler and Taub (2003) are deriving how speculators allocate their trades across assets, and
how information in the price of one asset affects the prices and dynamics of order flows in other assets.

More generally, standard linear-quadratic models do not feature any interaction between private and
public information filters. The methods we develop enable us to handle this interaction. Our iterative
best-response algorithm is also new and provides a practical method for characterizing equilibrium out-
comes. We anticipate the wide applicability of these techniques to economic models in which information
is embodied in prices and agents strategically consider how their actions affect information flows.
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APPENDIX A: z-Transform Methods

Consider a serially-correlated stochastic process at that can be expressed as a weighted sum of i.i.d.
innovations:

at =
∞∑

k=0

Aket−k.

While the innovations change through time, the weights Ak remain fixed. The stochastic process can
therefore be written succinctly as a function of the lag operator, L: at = A(L)et. The list of weights
{Ak} can be viewed as a sequence, and by a fundamental theorem of analysis (Riesz-Fischer theorem,
see Rudin (1974), pp. 86-90), are equivalent to functions of a complex variable z. The function of the
lag operator A(L) is then mathematically equivalent to a function A(z) of a complex variable z. The
function A(z) can be analyzed with the rules of complex analysis, and this, in turn, fully characterizes
the stochastic process at.

An important feature of complex analysis is that the properties of a function are characterized by
the domain over which they are specified—the unit disk, or sets that are topologically equivalent to
the unit disk, are often the domains of interest. If a complex function on the disk can be expressed
as a Taylor expansion—an infinite series where the powers of the independent variable, z, range from
zero to infinity—then the function is said to be analytic on the disk. However, some functions, termed
nonanalytic functions, when expressed as a generalized Taylor expansion—a Laurent expansion—have
both positive and negative powers of z. This implies that they correspond to functions containing
negative powers of the lag operator, which means that they operate on future values of a variable.
If a variable is stochastic, this is not permissible, as it would mean that the future is predictable,
contradicting its stochastic aspect. In particular, solutions to an agent’s optimization problem cannot
be forward-looking.

To eliminate negative powers of z in a posited solution to an agent’s optimization problem, we use
the annihilator operator, [·]+. The annihilator operator sets the coefficients of negative powers of z in
the Laurent expansion to zero, while preserving all coefficients on the non-negative powers of z. This
leaves a permissible, backward-looking solution to an agent’s optimization problem.

A second property of a function concerns its invertibility. If a serially-correlated stochastic process
can be represented by an invertible operator, the innovations of the process can be completely and
exactly recovered by observing the history of the process. That is, the inverse of the operator applied
to the vector of realizations of the process yields the vector of innovations, exactly as it would if a
finite vector of innovations were converted into a finite vector of realizations by an invertible matrix.
An analytic function is invertible on its domain if it does not take on a value of zero at a point inside
the domain. If, instead, an analytic function takes on a value of zero at a point inside the domain,
then it is noninvertible. The inverse of a noninvertible function is not analytic. Hence, one cannot
recover the vector of innovations by observing the vector of realizations, because inverting a function
with a zero results in a function with negative powers of z. Recovery of the innovations would then
depend on knowledge of future realizations. The factorization theorem of Rozanov ensures that any
process described by a z-transform with either negative powers of z or zeroes can be converted into an
observationally-equivalent process that is characterized by an operator that is invertible and has only
non-negative powers of z, so that it is backward-looking.

To illustrate the variational method that we employ in the frequency domain, we present a simple
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consumer optimization problem. Consider an individual whose earnings evolve stochastically according
to yt = A(L)et, where et is an i.i.d., zero mean, “white noise” period innovation to earnings. The
consumer’s problem is to adjust bond holdings {bt}∞t=0 to maximize quadratic utility,

max
{bt}

−E

∞∑
t=0

βt(yt + rbt−1 − bt)2, (A.1)

where r is the gross interest rate satisfying βr > 1. 1 The decision problem is to choose not just
the initial value of bt, but the entire sequence {bt}∞t=0. This problem implicitly requires the choice
of functions that react to current and possibly past states. Stationarity results in the same function
applying each period.

The stochastic component of a quadratic utility function is essentially a conditional variance. If
innovations are i.i.d., then the expectation of cross-products of random variables yields the sum of
variances. For white-noise innovations, for k > s, k > r,

Et−k

[
et−ret−s

]
=

{
0, r 	= s
σ2

e , r = s, (A.2)

because of the independence of the innovations. Expressed in lag operator notation, this is

Et−k

[
(Lret)(Lset)

]
=

{
0, r 	= s
σ2

e , r = s.

Notice that the “action” is in the exponents of the lag operators. From Cauchy’s theorem (Conway,
1978), it is equivalent to write

σ2
e

1
2πi

∮
zrz−s dz

z
=

{
0, r 	= s
σ2

e , r = s,

where the integration is counterclockwise around the unit circle. In Cauchy’s theorem, z, which is a
complex number with unit radius (it is on the boundary of the disk), is represented in polar form:
z = e−iθ. Now a more conventional integral can be undertaken, integrating over θ ∈ [0, 2π]. Using
Euler’s theorem, which represents complex numbers in trigonometric form, e−iθ = cos θ − i sin θ, gives
θ the interpretation of a frequency, so that z and functions of z are in the frequency domain.

Whiteman (1985) demonstrated that a discounted conditional covariance involving complicated lags
can be succinctly expressed as a convolution. Consider two serially-correlated processes, at and bt, where

at =
∞∑

k=0

Aket−k and bt =
∞∑

k=0

Bket−k.

The discounted conditional covariance as of time t, setting realized innovations to zero, is

Et

[ ∞∑
s=1

βsat+sbt+s

]
= Et

[ ∞∑
s=1

βs

( ∞∑
k=0

Aket+s−k

) ( ∞∑
k=0

Bket+s−k

)]
. (A.3)

1 To make the problem well-defined a (small) adjustment cost must also be included, but we suppress it here because
the net effect of the adjustment cost is just to make the solution stationary. Alternatively, one could simply impose the
requirement that any solution be stationary.
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Because cross-product terms drop out, coefficients of like lags of et can be grouped:

β[A0B0 + βA1B1 + β2A2B2 + . . .]Et[e2
t+1] + β2[A0B0 + βA1B1 + β2A2B2 + . . .]Et[e2

t+2] + . . .

= β[A0B0 + βA1B1 + β2A2B2 + . . .]σ2
e + β2[A0B0 + βA1B1 + β2A2B2 + . . .]σ2

e + . . .

=
βσ2

e

1 − β

∞∑
s=0

βkAkBk =
βσ2

e

1 − β

1
2πi

∮
A(z)B(βz−1)

dz

z
.

(A.4)

This is a useful transformation because the integrand is a product. Since the optimal policy for an
optimization problem in which the objective is an expected value like that in (A.3), the representation
in (A.4) permits a direct variational approach. Equation (A.4) is an instance of Parseval’s formula,
which states that the inner product of analytic functions is the sum of the products of the coefficients
of their power series expansions.

Optimization in the frequency domain. We apply these insights to the consumer’s optimization problem.
Hansen and Sargent (1978, 1979) showed that the first-order conditions of linear-quadratic stochastic
optimization problems could be expressed in lag-operator notation, z-transformed, and solved. White-
man noticed that the z-transformation could be performed on the objective function itself, skipping the
step of finding the time-domain version of the Euler condition. The objective is then a functional, i.e., a
mapping of functions into the real line. One can then use the calculus of variations to find the optimal
policy function.

The first step is to conjecture that the solution to the agent’s optimization problem must be an
analytic function of the fundamental process et:

bt = B(L)et.

The agent’s objective can then be restated in terms of the functions A and B, and the innovations:

max
B(·)

−E

[ ∞∑
t=0

βt
(
(A(L) − (1 − rL)B(L))et

)2
]
.

Expressing the objective in frequency-domain form, using the equivalence established in (A.4), the
agent’s objective can be written as

max
B(·)

− βσ2
e

1 − β

1
2πi

∮
(A(z) − (1 − rz)B(z))(A(βz−1) − (1 − rβz−1)B(βz−1))

dz

z
.

The variational method. Let ζ(z) be an arbitrary analytic function on the domain {z : |z| ≤ β
1
2 }, and

let a be a real number. Let B(z) be the agent’s optimal choice. His objective can be restated as

J(a) = max
a

− βσ2
e

1 − β

1
2πi

∮
(A(z)−(1−rz)(B(z)+aζ(z)))(A(βz−1)−(1−rβz−1)B(βz−1)+aζ(βz−1)))

dz

z
.

This is a conventional problem. Differentiating with respect to a and setting a = 0 yields the first-order
condition describing the agent’s optimal choice of B(·):

J ′(0) = 0 = − βσ2
e

1 − β

1
2πi

∮
ζ(z)(1 − rz)(A(βz−1) − (1 − rβz−1)B(βz−1))

dz

z

− βσ2
e

1 − β

1
2πi

∮
ζ(βz−1)(1 − rβz−1)(A(z) − (1 − rz)B(z))

dz

z
.
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Observe the symmetry between the two integrals—everywhere βz−1 appears in the first integral, z

appears in the second, and conversely. Whiteman establishes that the two integrals are in fact equal;
we refer to this property as “β-symmetry”. Therefore, the first-order condition simplifies to

0 = − 1
2πi

∮
(A(z) − (1 − rz)B(z))(1 − rβz−1)ζ(βz−1)

dz

z
, (A.5)

where we have dropped the constant βσ2
e

1−β .

Clearly, the solution to the agent’s optimization problem cannot depend on ζ: the integral in first-
order condition (A.5) must be zero for arbitrary analytic functions ζ. By Cauchy’s integral theorem, a
contour integral around a singularity—a function of z that has no component that can be represented
as a convergent power series expansion within a domain like the unit disk—is zero. Thus, all that is
needed to make the integral in (A.5) zero is to make the integrand singular inside the unit disk.

Recall that a solution to the agent’s optimization problem must be an analytic function. The next
step in the solution is to separate the forward-looking components in (A.5) from the backward-looking
components, so that we can then eliminate the non-analytic portion from our solution. Examining
equation (A.5), note that by construction ζ is analytic, so that it can be represented by a power series,

ζ(z) =
∞∑

j=0

ζjz
j .

This means that ζ(βz−1) has an expansion of the form

ζ(βz−1) =
∞∑

j=0

ζjβ
jz−j,

which has only nonpositive powers of z. The negative powers of z—all but the first term—define
singularities at z = 0, which is an element of the unit disk. However, the rest of the integrand in (A.5),
(1 − rβz−1)(A(z) − (1 − rz)B(z)), can have both positive and negative powers of z in its power series
expansion. If it were possible to guarantee that only negative powers of z appeared in (1−rβz−1)(A(z)−
(1 − rz)B(z)), then its expansion would take the form

(1 − rβz−1)(A(z) − (1 − rz)B(z)) =
∞∑

j=1

fjβ
jz−j ,

for some {fj}, and the product of this with ζ(βz−1) would take the form

ζ(βz−1)(1 − rβz−1)(A(z) − (1 − rz)B(z)) =
∞∑

j=1

gjβ
jz−j.

for some {gj}. Every term in the sum is a singularity, and the integral of the sum is therefore zero.

The first-order condition (A.5) can now be broken out of the integral and stated as follows:

(1 − rβz−1)(A(z) − (1 − rz)B(z)) =
−1∑
−∞

, (A.6)

where
∑−1

−∞ is shorthand for an arbitrary function that has only negative powers of z, and hence cannot
be part of the solution to the agent’s optimization problem. This type of equation is known as a
Wiener-Hopf equation.
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Factorization. To solve the Wiener-Hopf equation of a stochastic linear-quadratic optimization problem,
we must factor the equation to separate the nonanalytic parts from the analytic parts. The factorization
problem is a generalization of the problem of solving a quadratic equation, but there is no general formula
for the solution. However, if a candidate factorization can be found, then even if it is not analytic
and invertible, there is a general formula for converting that solution into an analytic and invertible
factorization (Ball, Gohberg, Rodman (1990)).

The Wiener-Hopf equation (A.6) can be restated as:

(1 − rβz−1)(1 − rz)B(z) = (1 − rβz−1)A(z) +
−1∑
−∞

.

It is tempting to solve for B(z) by dividing the left-hand side by the coefficient of B(z), (1− rβz−1)(1−
rz). However, this would multiply the

∑−1
−∞ term by positive powers of z, making it impossible to

establish the coefficients of the positive powers of z in the solution.

We must first factor the coefficient of B(z) into the product of analytic and non-analytic functions:

(1 − rβz−1)(1 − rz) = βr2(1 − (βr)−1βz−1)(1 − (βr)−1z).

Because by assumption 1
βr < 1, the first factor on the right-hand side, (1− (βr)−1βz−1), when inverted

has a convergent power series (on the unit disk) in negative powers of z. Hence, we can divide through
by this factor to rewrite the Wiener-Hopf equation as

βr2(1 − (βr)−1z)B(z) =
(1 − rβz−1)

1 − (βr)−1βz−1
A(z) +

−1∑
−∞

, (A.7)

where we use the fact that
1

(1 − (βr)−1βz−1

−1∑
−∞

has only negative powers of z. Since the left-hand side of (A.7) is the product of analytic functions,
applying the annihilator to (A.7) yields

βr2(1 − (βr)−1z)B(z) = [
(1 − rβz−1)

(1 − (βr)−1βz−1)
A(z)]+.

Since (βr)−1 < 1, it follows that the inverse of (1 − (βr)−1z) is also analytic, so that we can divide by
(1 − (βr)−1z) to solve for the optimal B(z),

B(z) =
[(1 − (βr)−1βz−1)−1(1 − rβz−1)A(z)]+

[(βr2)(1 − (βr)−1z)]
.

A more explicit solution for B(z) obtains if the endowment process is AR(1), so that

A(z) =
1

1 − ρz
.

Proposition A.1 establishes a key result that is used repeatedly: the annihilate when there is an AR(1)
construct can be simply calculated—if A(z) is an AR(1), then [f(βz−1)A(z)]+ = f(βρ)A(z).

PROPOSITION A.1: If f is analytic on β−1/2 and ρ < β−1/2, then [f∗(1−ρz)−1]+ = f(βρ)(1−ρz)−1.
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PROOF: Direct computation (see, e.g., Taub (1986)).

Proposition A.2 shows that the proposition about annihilates of first-order AR functions must be
used with caution. If there is a zero in the annihiland, the proposition changes.

PROPOSITION A.2: Let a < β−1/2. Then [f∗ 1− 1
a z−1

1−az ]+ = 0.

PROOF:

[f∗ 1 − 1
az−1

1 − az
]+ =

1
a
[z−1f∗ az − 1

1 − az
]+ =

1
a
[−f∗z−1]+ = 0.

Using Proposition A.1, it follows that

B(z) =
(1 − rβ)A(z)

[(βr2)(1 − (βr)−1βρ)(1 − (βr)−1z)]
.

This formula has a simple “permanent income” interpretation: the agent applies the filter

1 − rβ

[(βr2)(1 − (βr)−1βρ)(1 − (βr)−1L)]

to the endowment process A(L)et in order to smooth consumption.

Vector formulation. The ideas presented above apply with little change to our multi-agent model of
strategic informed stock trading. The primary difference is that our economy has multiple informed
traders, so there is a vector of fundamental processes. Because of this, a vector formulation of the
translation to the frequency domain and manipulations within the frequency domain must be used.

Consider a vector model with objective

max
B(·)

−E

[ ∞∑
t=0

βt
(
(A(L) − B(L)F (L))et

)2
]
,

where et is now a vector of fundamental processes with covariance matrix S. Using the trace operator,
the objective can be written as

max
B(·)

−E

[ ∞∑
t=0

βttr
(
(A(L) − B(L)F (L))et

)2
]
.

Commuting under the trace, taking the expectation, and transforming to the frequency-domain yields
the objective

max
B(z)

1
2πi

∮
tr[(A(βz−1) − B(βz−1)F (βz−1))S(A(z) − B(z)F (z))′]

dz

z
, (A.8)

where F (z) is a function analogous to the net bond trade ρ − rz in a vector setting and ′ denotes the
transpose.

As in the scalar case, a variational procedure is used to solve (A.8). The variation is B(z) + aζ(z).
When the derivative is taken inside the integral and trace, the first-order condition can be stated:

0 = − 1
2πi

∮
tr[(A(βz−1) − B(βz−1)F (βz−1))SF (z)′ζ(z)′]

dz

z
− 1

2πi

∮
tr[ζ(βz−1)F (βz−1)S(A(z) − B(z)F (z))′]

dz

z
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Exploiting β-symmetry (the integrals are equal), the Wiener-Hopf equation simplifies to

(A(z) − B(z)F (z))SF (βz−1)′ =
−1∑
−∞

,

where
∑−1

−∞ is a vector of functions of strictly negative powers of z. Taking transposes, the equation
can be rewritten as

B(z)F (z)SF (βz−1)′ = A(z)SF (βz−1)′ −
−1∑
−∞

.

The factorization theorem applies here as well: F (z)SF (βz−1) can be factored into the product of two
matrixes, H(z) and H(βz−1),

H(z)H(βz−1) = F (z)SF (βz−1)′,

where every entry in the matrix H is an analytic function and its determinant has no zeroes. The
solution is then

B(z) = [A(z)SF (βz−1)′H(βz−1)−1]+H(z)−1.

The factorization problem can be far more difficult in a matrix setting than in a scalar setting; the
methods set out in Ball and Taub (1991) typically must be used. Solving the annihilate remains possible
if the functional forms are tractable; if A(z) has an AR structure then explicit solutions again obtain.
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APPENDIX B: Proofs of Results

PROOF (Lemma 2.1): Equation (1) can be written as

max
{xiT }T≥t

Et

[ ∞∑
T=t

π(1 − π)T−t

[∑
τ≤T

(β̃T−tṽT − β̃τ−tpτ )xiτ

]
| ẽit,Ωt,xit−1

]
(1′)

= Et

[ ∞∑
T=t

π(1 − π)T−t

[∑
τ<t

(β̃T−tṽT − β̃τ−tpτ )xiτ

]
| ẽit,Ωt,xit−1

]

+ max
{xiT }T≥t

Et

[ ∞∑
T=t

π(1 − π)T−t

[ ∑
t≤τ≤T

(β̃T−tṽT − β̃τ−tpτ )xiτ

]
| ẽit,Ωt,xit−1

]
.

To write agent i’s optimization problem so that the dating on prices, orders and expected contributions
to the value process correspond, expand expected lifetime profits from future trading as:

Et

[
πxit

[ ∞∑
T=t

[β̃(1 − π)]T−tṽT −
∞∑

T=t

(1 − π)T−tpt

]
+ πxit+1

[ ∞∑
T=t+1

[β̃(1 − π)]T−tṽT −
∞∑

T=t+1

(1 − π)T−tβ̃pt+1

]

+πxit+2

[ ∞∑
T=t+2

[β̃(1 − π)]T−tṽT −
∞∑

T=t+2

(1 − π)T−tβ̃2pt+2

]
+ . . . | ẽit,Ωt

]

= Et

[
πxit

[ ∞∑
T=t

[β̃(1 − π)]T−tṽT − 1
π

pt

]
+ πxit+1

[ ∞∑
T=t+1

[β̃(1 − π)]T−tṽT − β̃(1 − π)
π

pt+1

]

+πxit+2

[ ∞∑
T=t+2

[β̃(1 − π)]T−tṽT − [β̃(1 − π)]2

π
pt+2

]
+ . . . | ẽit,Ωt

]
.

Again using summation notation, we write the agent’s objective as:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

πxiτ

[ ∞∑
T=τ

[β̃(1 − π)]T−τ ṽT − [β̃(1 − π)]τ−t pτ

π

]
| ẽit,Ωt

]

= max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β̃(1 − π)]τ−t

( ∞∑
T=τ

[β̃(1 − π)]T−τπṽT − pτ

)
| ẽit,Ωt

]
.

We now iterate on the expectation operator to obtain:

max
{xiτ}τ≥t

Et

[
Eτ

[ ∞∑
τ=t

xiτ [β̃(1 − π)]τ−t

( ∞∑
T=τ

[β̃(1 − π)]T−τπṽT − pτ

)
| ẽiτ ,Ωτ

]
| ẽit,Ωt

]
.

Since at date τ , xiτ is a deterministic function of date τ information (solving agent i’s optimization
problem), we pass the date τ expectation operator through to obtain:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β̃(1 − π)]τ−tEτ

[( ∞∑
T=τ

[β̃(1 − π)]T−τπṽT − pτ

)
| ẽiτ ,Ωτ

]
| ẽit,Ωt

]
.

Using the AR(1) structure of ṽT , Eτ

[
ṽT |ẽiτ ,Ωτ

]
= ρT−τEτ

[
ṽτ |ẽiτ ,Ωτ

]
, we simplify the objective to

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β̃(1 − π)]τ−tEτ

[( ∞∑
T=τ

[ρβ̃(1 − π)]T−τπṽτ − pτ

)
| ẽiτ ,Ωτ

]
| ẽit,Ωt

]

= max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β̃(1 − π)]τ−tEτ

[(
π

1 − ρβ̃(1 − π)
ṽτ − pτ

)
| ẽiτ ,Ωτ

]
| ẽit,Ωt

]
.
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Integrating out and rearranging slightly, we finally write agent i’s objective as

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

[β̃(1 − π)]τ−t

(
π

1 − ρβ̃(1 − π)
ṽτ − pτ

)
xiτ | ẽit,Ωt

]
.

PROOF (Lemma 3.1): The first order condition for γi can be written as

[λ(
N∑

j=1

γj) + λ∗γi]JJ∗ = φ

N∑
j=1

b∗jeσ
2
je − λ∗bieb

∗
ieσ

2
ie − λJJ∗ +

−1∑
−∞

.

We combine this equation with those of the other traders to obtain the matrix equation

JJ∗


 λ + λ∗ λ . . . λ

...
...

λ λ . . . λ + λ∗







γ1
...

γN


 =




φ
∑N

j=1 b∗jeσ
2
je − λ∗b1eb

∗
1eσ

2
1e − λJJ∗

...
φ

∑N
j=1 b∗jeσ

2
je − λ∗bNeb

∗
Neσ

2
Ne − λJJ∗


 +

−1∑
−∞

. (B.1)

Next, substitute for JJ∗ =
∑N

j=1 bjeb
∗
jeσ

2
je + σ2

u into the first order condition for λ to obtain

λJJ∗(1 +
N∑

j=1

γj)(1 +
N∑

j=1

γ∗
j ) = φ(1 +

N∑
j=1

γ∗
j )(

N∑
k=1

b∗keσ
2
ke) +

−1∑
−∞

.

Dividing (1 +
∑N

j=1 γ∗
j ) out of the λ first-order condition yields

λJJ∗(1 +
N∑

j=1

γj) = φ(
N∑

k=1

b∗keσ
2
ke) +

−1∑
−∞

. (B.2)

We use (B.2) to simplify γi. Writing equation (B.2) as

λJJ∗ (λ . . . λ )




γ1
...

γN


 = φ(

N∑
k=1

b∗keσ
2
ke) − λJJ∗ +

−1∑
−∞

,

we subtract it from each row of (B.1) to obtain

JJ∗


λ∗ 0 . . . 0

...
...

0 0 . . . λ∗







γ1
...

γN


 = −λ∗




b1eb
∗
1eσ

2
1e

...
bNeb

∗
Neσ

2
Ne


 +

−1∑
−∞

Canceling the λ∗ terms and computing the annihilate yields


γ1
...

γN


 = −J−1[




J∗−1b1eb
∗
1eσ

2
1e

...
J∗−1bNeb

∗
Neσ

2
Ne


]+.

PROOF (Lemma 3.2): Using the definition of J in (9), we can solve for

N∑
j=1

γj = −J−1[J∗−1(JJ∗ − σ2
u)]+.
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Cancelling terms yields

N∑
j=1

γj = −1 + J−1[J∗−1σ2
u]+ ⇒ 1 +

N∑
j=1

γj = J−1[J∗−1σ2
u]+.

Since [J∗−1σ2
u]+ is a scalar and J−1 is invertible by construction, the result follows.

LEMMA B.1: Let 0 < a < 1. Define f(z) by f(z)f(z−1) ≡ (1 − az)(1 − az−1) + σ2. Then

f(z) = f0(1 − f1z) and f1 < a.

PROOF: The equations for f0 and f1 are

f2
0 f1 = a, and σ2 + 1 + a2 = f2

0 (1 + f2
1 ).

The solution for f1 is

f1 =
σ2+1+a2

a ±
√(

σ2+1+a2

a

)2 − 4

2
.

Because the root must be fractional, the smaller root must be chosen, so the radical is subtracted.
Routine algebra then reveals that

σ2+1+a2

a −
√(

σ2+1+a2

a

)2 − 4

2
< a.

Lemma B.1 shows that adding an MA process to an independent i.i.d. process results in a moving-
average component of the joint process that has a smaller MA parameter than the initial MA parameter.
The next lemma establishes a similar result: adding an AR process to an independent i.i.d. process
results in a moving-average component of the joint process that has a smaller MA parameter than the
initial AR parameter. We use this result to establish the characteristics of the function J(z). In Lemma
B.2 the function f(z) differs from Jk(z) only in that it omits the leading constant Jk(0).

LEMMA B.2: Let 1 > a1 > a2 > . . . > ak > 0. Define f(z) by

f(z)f(z−1) ≡
(

c1

1 − a1z
+

c2

1 − a2z
+ . . . +

ck

1 − akz

)(
c1

1 − a1z−1
+

c2

1 − a2z−1
+ . . . +

ck

1 − akz−1

)
+σ2.

Then

f(z) = f0

k∏
i=1

1 − fiz

1 − aiz

where 1 > a1 > f1 > a2 > f2 > . . . > ak > fk > 0, and f0 = σ
(∏k

i=1
ai

fi

)1/2

> σ. Further, each fi is

increasing in σ.

PROOF: Consider a candidate root z1 with 1
a1

< z1 < 1
a2

. For i ≥ 2,

ci

1 − aiz1
> 0 and

1
1 − aiz

−1
1

> 0.

However, 1
1−a1z1

< 0, and indeed becomes arbitrarily negative as z1 approaches a−1
1 . Conversely,

(
c1

1 − a1z
+

c2

1 − a2z
+ . . . +

ck

1 − akz

) (
c1

1 − a1z−1
+

c2

1 − a2z−1
+ . . . +

ck

1 − akz−1

)
, (B.3)
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becomes arbitrarily positive as z1 approaches a−1
2 . Hence, there is a crossing point where f(z1) = 0.

Because (1− aiz) is a monotone function, z1 is the only such solution in the interval (a−1
1 , a−1

2 ). Define
f11 ≡ z−1

1 . Similar reasoning yields f12, . . . , f1,k−1. Now consider zk > a−1
k . As z approaches a−1

k , (B.3)
becomes arbitrarily negative; conversely, as zk → ∞, (B.3) shrinks to zero. In that case, f(z)f(z−1) →
σ2 > 0. Hence, there is a unique crossing point in the interval (a−1

k ,∞) where f(z)f(z−1) = 0.

To obtain f0, evaluate f(z)f(z−1) at z = 0:

f(z)f(z−1)
∣∣∣∣
z=0

= f2
0

k∏
i=1

fi

ai
= σ2,

and solve for f0. Finally, if σ is increased, then 1/z� must be increased toward a� in order to make the
term c�/(1 − a�z

−1) more negative.

A corollary of Lemma B.2 is that if an additional term ck+1/(1 − ak+1z) is added to f , then f0

increases in a continuous fashion.

PROPOSITION B.3: Let h(z) =
∏k−1

i=1 (1 − fiz)/
∏k

i=1(1 − aiz) with 1 > a1 > f1 > . . . > ak > 0.

The partial fractions representation of h(z) is

h(z) =
k∑

i=1

ci

1 − aiz
where

k∑
i=1

ci = 1.

PROOF: The second assertion of the proposition follows from expanding
∏k−1

i (1−fiz)/
∏k

i (1−aiz)
into partial fraction form recursively. First consider the partial fractions expansion

1 − f1z

(1 − a1z)(1 − a2z)
=

c̃1

1 − a1z
+

c̃2

1 − a2z
.

Then

(i) c̃1 =
a1 − f1

a1 − a2
∈ (0, 1); (ii) c̃2 =

f1 − a2

a1 − a2
∈ (0, 1); and (iii) c̃1 + c̃2 = 1.

Now consider the recursive case:

∏k
i=1(1 − fiz)∏k+1
i=1 (1 − aiz)

=
∏k−1

i=1 (1 − fiz)∏k
i=1(1 − aiz)

(1 − fkz)
(1 − ak+1z)

=
∑k−1

i=1 ck
i∏k

i=1(1 − aiz)

(1 − fkz)
(1 − ak+1z)

=
k−1∑
i=1

ck
i (1 − fkz)

(1 − aiz)(1 − ak+1z)
=

k−1∑
i=1

ck
i c̃k

i1

(1 − aiz)
+

k−1∑
i=1

ck
i c̃k

i2

(1 − ak+1z)
=

k−1∑
i=1

ck
i c̃k

i1

(1 − aiz)
+

∑k−1
i=1 ck

i c̃k
i2

(1 − ak+1z)

Observe that because c̃k
ij < 1 and c̃k

i1 + c̃k
i2 = 1, and because, by induction,

∑k−1
i=1 ck

i = 1, then

k−1∑
i=1

ck
i (c̃k

i1 + c̃k
i2) =

k−1∑
i=1

ck
i = 1.

We now turn to the proof of Lemma 4.1 in the main text. We begin with a preliminary lemma.

LEMMA B.4: 1 + γi = J−1[J∗−1(σ2
u + (N − 1)bieb

∗
ieσ

2
ie)]+.
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PROOF: In this proof we assume symmetry across agents, writing b instead of bie and σ2 instead
of σ2

ie. By definition, JJ∗ = Nbb∗σ2
e + σ2

u, so that JJ∗ − bb∗σ2
e = (N − 1)bb∗σ2

e + σ2
u. Dividing both

sides by J∗, taking the annihilate and then dividing by J yields

1 − J−1[J∗−1bb∗σ2
e ]+ = J−1[J∗−1((N − 1)bb∗σ2

e + σ2
u)]+ = J−1[J∗−1((N − 1)bb∗σ2

e + σ2
u)]+.

Finally, Lemma 3.1 reveals that the left-hand-side, 1 − J−1[J∗−1bb∗σ2
e ]+, is (1 + γ).

PROOF (Lemma 4.1): In this proof we use i to index ith element of a series, not the ith trader, so that
we write b(z) in lieu of bie(z), and so on. The proof employs an inductive argument. We first conjecture
a preliminary trading intensity filter bk of the appropriate form: the finite sum of AR terms ck

i

1−ak
i
z
. This

preliminary value is then mapped into a new trading-intensity filter bk+1(z). We demonstrate that the
appropriate properties are preserved by this mapping. These properties are characterized by finding the
zeroes of the appropriate functions—the inverses of these zeroes are the autoregressive coefficients.

Let a preliminary value of b(z) be bk(z) =
∑k

i=1
ck

i

1−ak
i
z
, where ρ = ak

1 > ak
2 > . . . ak

k, and with
ck
i > 0. Using bk(z) to construct the Jk(z) function, we write Jk(z) as

Jk(z) = Jk
0

∏k
i=1(1 − fk

i z)∏k
i=1(1 − ak

i z)
, (B.4)

where by Lemma B.2, a1 > f1 > . . . > ak > fk. It is important to note that the numerator is of the
same polynomial order as the denominator. Next recall the definition of the function g:

gg∗ ≡ λ(1 +
N∑

j=1

γj)(1 + γ∗
i ) + λ∗(1 +

N∑
j=1

γ∗
j )(1 + γi) = µ(1 + γ∗

i ) + µ∗(1 + γi).

Using Lemma B.4, the solutions for for µ and γ are given by

µk(z) = Jk(z)−1Jk(βρ)−1

(
N

k∑
i=1

ck
i

1 − ak
i βρ

)
1

1 − ρz
σ2

e

1 + γk
j = Jk(z)−1[Jk∗−1

(σ2
u + (N − 1)bkbk∗σ2

e)]+ = Jk(z)−1

(
Jk(0)−1σ2

u + (N − 1)σ2
e

k∑
i=1

Jk(βak
i )−1bk(ak

i β)
ck
i

1 − ak
i z

)
.

The Jk(βρ)−1 and Jk(βak
i )−1 terms appear by an application of Proposition A.1, because the annihilands

are products of functions of z−1 with autoregressive terms (1 − ak
i z)−1 for each value of i.

Substituting for µk and γk into gkgk∗ yields:

gkgk∗ = J−1J∗−1J(βρ)−1σ2
e

((
N

k∑
i=1

ck
i

1 − ak
i βρ

1
1 − ρz

) (
J(0)−1σ2

u + (N − 1)σ2
e

k∑
i=1

J(βak
i )−1bk(ak

i β)
ck
i

1 − ak
i βz−1

)

+

(
N

k∑
i=1

ck
i

1 − ak
i βρ

1
1 − ρz−1

) (
J(0)−1σ2

u + (N − 1)σ2
e

k∑
i=1

J(βak
i )−1bk(ak

i β)
ck
i

1 − ak
i z

))
,

where we omit the superscript k from the J functions. Rewrite gkgk∗ as

gkgk∗ =J−1J∗−1J(βρ)−1φφ∗
(

N
k∑

i=1

ck
i

1 − ak
i βρ

)
σ2

e

×
((

J(0)−1σ2
u + σ2

e(N − 1)
k∑

i=1

J(βak
i )−1b(ak

i β)
ck
i

1 − ak
i βz−1

)
(1 − ρβz−1)

+

(
J(0)−1σ2

u + σ2
e(N − 1)

k∑
i=1

J(βak
i )−1b(ak

i β)
ck
i

1 − ak
i z

)
(1 − ρz)

)
≡ J−1J∗−1φφ∗hkhk∗,

(B.5)
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where hk is implicitly defined by

hkhk∗ ≡ J(βρ)−1

(
N

k∑
i=1

ck
i

1 − ak
i βρ

)
σ2

e

×
((

J(0)−1σ2
u + σ2

e(N − 1)
k∑

i=1

J(βak
i )−1b(ak

i β)
ck
i

1 − ak
i βz−1

)
(1 − ρβz−1)

+

(
J(0)−1σ2

u + σ2
e(N − 1)

k∑
i=1

J(βai)−1b(ak
i β)

ck
i

1 − ak
i z

)
(1 − ρz)

)
.

(B.6)

The expression hkhk∗ can be written in factored form as

hk(z)hk(βz−1) = (hk
0)2

(1 − ρz)(1 − ρβz−1)
∏k+1

j=2 (1 − mk
j z)(1 − mk

j βz−1)∏k
j=1(1 − ak

j z)(1 − ak
j βz−1)

,

where

hk(z) = hk
0

(1 − ρz)
∏k+1

j=2 (1 − mk
j z)∏k

j=1(1 − ak
j z)

, (B.7)

and {mk
i } are as yet undetermined. Note that the polynomial order of the numerator terms in h is k+1,

while that of the denominator is k. The term (1− ρz)(1− ρβz−1) in hh∗ follows from a1 = ρ; when the
common denominator is created the coefficient 1 − ρβz−1 is multiplied by 1 − ρz and vice versa.

From equation (7) for b, the iterated version of bk+1 is

bk+1(z) = gk(z)−1[gk(βz−1)
−1

(1 + γk(βz−1))φ(z)]+.

Substituting for gk and then applying Proposition A.1 to the annihilator term yields

bk+1(z) = Jk(βρ)Jk(z)φ(z)−1hk(z)−1Jk(βρ)hk(βρ)−1(1 + γk(βρ))φ(βρ)−1φ(z)

= Ck(βρ)φ(z)−1φ(z)Jk(z)

∏k
j=1(1 − ak

j z)

(1 − ρz)
∏k+1

j=2 (1 − mk
j z)

.

Proposition A.2 does not apply because φ∗−1 cancels with the φ∗ in hk∗−1
. Also note that (hk

0)2 has
been subsumed into the constant Ck(βρ). Next, use (B.4) to substitute for Jk(z) into bk+1(z) to obtain

bk+1(z) = Jk
0 Ck(βρ)

∏k
j=1(1 − fk

j z)∏k
j=1(1 − ak

j z)

∏k
j=1(1 − ak

j z)∏k+1
j=1 (1 − mk

j z)
= Jk

0 Ck(βρ)

∏k
j=1(1 − fk

j z)∏k+1
j=1 (1 − mk

j z)
.

The polynomial order of the denominator is k + 1, while the order of the numerator is k. Therefore,
there is a partial fractions expansion of bk+1(z),

bk+1(z) ≡
k+1∑
i=1

ck+1
i

1 − ak+1
i z

,

in which the numerator coefficients are all scalars, and where ak+1
1 = ρ and ak+1

i = mk
i for i = 2, . . . , k.

Note that since the ak+1
j derive from the definition of b in equation (7), which is a function of g−1,

and g derives from the factorization in gg∗, we are guaranteed by the factorization theorem that the
ak+1

i are real. Thus, it is just a matter of verifying that ak+1
i < ρ, for i = 2, . . . , k + 1.
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Our strategy is to locate the zeroes of the appropriate functions and to relate the zeroes to the
mk

i . We first derive properties of the hk(z)hk(βz−1) factorization in (B.6). Computing the common
denominator of

J(0)−1σ2
u + σ2

e(N − 1)
k∑

i=1

J(βak
i )−1b(ak

i β)
ck
i

1 − ak
i z

,

and its complement that appear in equation (B.6); and then finding the common denominator of the
entire expression simplifies the hk(z)hk(βz−1) factorization to:

hk(z)hk(βz−1) = J(βρ)−1

(
N

k∑
i=1

ck
i

1 − ak
i βρ

)
σ2

e

(1 − ρz)(1 − ρβz−1)∏k
i=1(1 − ak

i z)
∏k

i=1(1 − ak
i βz−1)

×
((

J(0)−1σ2
u

k∏
i=2

(1 − ak
i z)(1 − ak

i βz−1)(1 − ρz + 1 − ρβz−1)

+σ2
e(N − 1)

k∑
i=2

J(βak
i )−1b(ak

i β)ck
i

k∏
j=2,j �=i

(1 − ak
j z)(1 − ak

j βz−1)
(
(1 − ρβz−1)(1 − ak

i z) + (1 − ρz)(1 − ak
i βz−1)

)

+2σ2
e(N − 1)J(βak

1)−1b(ak
1β)ck

1

k∏
j=2

(1 − ak
j z)(1 − ak

j βz−1)
))

,

(B.8)
where we omit the k superscripts on J and b. We decompose the numerator of hk(z)hk(βz−1) into the
leading constant, J(βρ)−1

(
N

∑k
i=1

ck
i

1−ak
i
βρ

)
σ2

e , times Mk(z), where Mk(z) is implicitly defined by

hk(z)hk(βz−1) = J(βρ)−1

(
N

k∑
i=1

ck
i

1 − ak
i βρ

)
σ2

e

Mk(z)∏k
i=1(1 − ak

i z)
∏k

i=1(1 − ak
i βz−1)

.

We can write Mk(z) more compactly in factored form as

Mk(z) ≡ (mk
0)2(1 − ρz)(1 − ρβz−1)

k+1∏
i=2

(1 − mk
i z)(1 − mk

i βz−1),

where mk
0 = hk

0 (see equation (B.7)) and the mk
i coefficients will now be characterized.

We next prove that the coefficients {mk
i } of Mk(z) lie in the interval (0, ρ) for k > 1. There are

two cases: in the first case all the ck
i are positive; in the second case the ck

i can be negative.

In the first case, where ck
i > 0, the strategy is to show that Mk(1/ak

� ) 	= 0 for each value of �, and
that the sign of M �(1/ak

�+1) is opposite that of Mk(1/ak
� ). This guarantees the existence of a value z̃k

� ∈
(1/ak

� , 1/ak
�+1) such that Mk(z̃k

� ) = 0. There are three cases: (i) � = 1, (ii) 2 ≤ � ≤ k, and (iii) � = k+1.

(i) For � = 1, mk
1 = ρ automatically holds.

(ii) mk
� , 2 ≤ � ≤ k. Examining Mk(1/ak

� ), observe that most of the terms in Mk(1/ak
� ) are zero

because 1 − ak
�

1
ak

�

= 0. However, there is a non-zero term,

Mk(1/ak
� ) = (N − 1)J(βak

� )−1b(ak
� β)ck

�

k∏
j=1,j �=�

(1 − ak
j /ak

� )(1 − ak
j βak

� )(1 − ρ/ak
� )(1 − ak

� βak
� ).

To sign Mk(1/ak
� ) note that b(ak

� β) > 0 and

1 − ρ/ak
� < 0; 1 − ak

j /ak
� < 0, j = 2, . . . , � − 1

1 − ak
j /ak

� > 0, j = � + 1, . . . , k

1 − ρβak
� > 0; 1 − ak

j βak
� > 0, j = 1, . . . , k
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Thus, Mk(1/ak
� ) is the product of positive terms and � − 1 negative terms. Hence, Mk(1/ak

� ) has sign
(−1)�−1.

By similar reasoning, the sign of Mk(1/ak
�+1) switches to (−1)�. Because Mk(·) is continuous, there

is at least one zero z̃k
� ∈ (1/ak

� , 1/ak
�+1) such that Mk(z̃k

� ) = 0. In fact, there is only one zero in each
interval—were there more than one zero in an interval, there would have to be an odd number of them.
However, we have proven that there are at most k + 1 such zeroes; this bound would be violated were
there three or more zeroes in some interval. It follows that there are k − 1 zeroes z̃k

� corresponding to
coefficients mk

� such that ρ > ak
2 > mk

2 > . . . > ak
k−1 > mk

k−1 > ak
k.

(iii) mk
k+1. It remains to show that ak

k > mk
k+1. Suppose instead that 1 > mk

k+1 > ρ. Then
z̃k

k+1 = 1/mk
k+1 and clearly Mk(z̃k) > 0 because all terms are now positive. Hence, mk

k+1 cannot exceed
ρ. Because the other intervals ak

i > mk
i > ak

i+1 have been accounted for uniquely, it must be that
ak

k > mk
k+1 > 0.

Now consider the second case, in which it is possible for the ck
i to be negative. Suppose that ck

k < 0.
In that instance, the previous reasoning leads to the conclusion that in the interval (1/ak

� , 1/ak
�+1), there

are two roots instead of one root, because the sign of M(1/ak
� ) is the same as the sign of M(1/ak

�+1).
Complex roots are ruled out by the existence of a sufficient number of roots in the factorization of gg∗.
Therefore there are two real roots in the interval.

We have therefore established that mk
1 , . . . , mk

k+1 lie in the interval (0, ρ).

As all of the above arguments hold for k = 1, the induction argument is complete.

Assertion (i) of Lemma 4.1 follows from Proposition B.3.

PROOF (Lemma 4.2): Because T is equivalent to T̃ , the result follows from Lemma 4.1, which
proves that T̃ maps the sequence ((c0, c1, c2, . . .), (a1, a2, . . .)) into a sequence with the same properties.
Specifically, a bk

ie with k AR-basis elements is mapped into H(β) with k + 1 basis elements.

PROOF (Proposition 4.3): We use the equations for b, J , µ, γ, and g (i.e., equations (7), (9), (11),
Lemma 3.1, and (6), respectively) and combine them into a single equation in JJ∗. We have

JJ∗ = Nbb∗σ2
e + σ2

u

from equation (9). Substituting for b from (7) yields:

b = g−1[g∗−1(1 + γ∗)φ]+ = g−1Abφ

where the constant Ab comes from applying the annihilator lemma, Proposition A.1. Thus

bb∗ = A2
b

φφ∗

µ(1 + γ∗) + µ∗(1 + γ)

Substituting into the expression for JJ∗,

JJ∗ = NA2
b

φφ∗

µ(1 + γ∗) + µ∗(1 + γ)
σ2

e + σ2
u

Again applying the annihilator lemma,

µ = J−1Aµφ,
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where Aµ is another constant; we will detail its structure below. Also,

γ = −J−1[J∗−1b∗bσ2
e ]+ = −J−1[J∗−1 J∗J − σ2

u

N
]+ = − 1

N
+ J−1J(0)−1 σ2

u

N
,

so
1 + γ =

N − 1
N

+ J−1J(0)−1 σ2
u

N
.

Substitute these values in the JJ∗ equation:

JJ∗ = NA2
b

φφ∗

J−1Aµφ(N−1
N + J∗−1J(0)−1 σ2

u

N ) + J∗−1Aµφ∗(N−1
N + J−1J(0)−1 σ2

u

N )
σ2

e + σ2
u. (B.9)

This is a nonlinear functional equation in J . It is highly algebraic in character, that is, if J is a rational
function then it reduces to finding the roots of a polynomial of finite or possibly infinite order.

Denote the mapping implicit in the recursion equation (B.9) by T ∗, with T ∗ : L2(Dβ) → L2(Dβ),
where L2(Dβ) is the analytic square-integrable functions on the β-disk, Dβ = {z∣∣|z| ≤ β1/2}. The
factorization step that recovers J from JJ∗ adds the additional mapping U : L2(Dβ) → H2(Dβ). The
expression for JJ∗ can be integrated around the unit circle to calculate the norm. Therefore the following
norm bounds hold:

‖J‖2 ≤ ‖νφJ‖2σ2
e + σ2

u, (B.10)

where ν is defined by the denominator term

ν−1ν∗−1 ≡ J∗Aµφ(
N − 1

N
+ J∗−1J(0)−1 σ2

u

N
) + JAµφ∗(

N − 1
N

+ J−1J(0)−1 σ2
u

N
)σ2

e .

We now establish that there is a fixed point of T ∗. We need the following two lemmas, which are used
at the end of the proof.

LEMMA B.5: Let 0 < f < ρ. Then

inf{|z|=1}2 Re
1 − fz

1 − fρ
> 1.

PROOF: The argument works for arbitrary moving-average terms as well. Using the polar form
z = e−iθ = cos(θ) + i sin(θ),

inf{|z|=1} Re (1 − fz) = inf{|z|=1}(1 − f cos(θ)), (B.11)

with the infimum clearly attained at θ = 0, or z = 1.

LEMMA B.6: Let α > 0 and either ρ > f1 > a2 > f2 > 0 or ρ > f1 > f2 > a2 > 0. Then

inf{|z|=1} 2Re

1
α

1−f1z + 1−α
1−f2z

1
α

1−f1ρ + 1−α
1−f2ρ

> 1.

PROOF: If 0 < α < 1, then there exists a positive real fraction β(z) such that

1
α

1−f1z + 1−α
1−f2z

= β(z)(1 − f1z) + (1 − β(z))(1 − f2z).
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Therefore
Re (1 − f1z) < β(z)Re(1 − f1z) + (1 − β(z))Re(1 − f2z) < Re(1 − f2z),

or
Re (1 − f1z) > β(z)Re(1 − f1z) + (1 − β(z))Re(1 − f2z) > Re(1 − f2z).

Because the appropriate infimum holds for each of the two terms 1 − f1z and 1 − f2z separately by
Lemma B.5, the convex combination is bounded between them and we are essentially done.

In the non-interleaved case, ρ > f1 > f2 > a, and α > 1. In that case, β(z) > 1 as well. Notice
that

inf 2 Re
1 − fz

1 − ρf
= inf 2

1 − f

1 − ρf

decreases in f . Therefore, raising f2 toward f1, possibly to the point where f2 > a2 and so α > 1, can
only raise the overall infimum. We have already suitably bounded the infimum of the constituents, so
we are done.

PROPOSITION B.7:
‖νφ‖ < 1.

Therefore T ∗ is a contraction mapping and a unique fixed point of T ∗ exists.

PROOF: The proof works by first working out the algebraic expression in (B.9), including the
constants, and then establishing a norm bound for a contraction mapping argument. We assume a
normalization of β = 1 in the proof.

Constants. We first calculate the constants. Applying the annihilator lemma yields:

Ab =
1 + γ(βρ)

g(βρ)
Aµ =

Nb(βρ)
J(βρ)

σ2
e .

We can write (B.9) as

JJ∗ = N
A2

b

Aµ

φφ∗JJ∗

φ(N−1
N J∗ + J(0)−1 σ2

u

N ) + φ∗(N−1
N J + J(0)−1 σ2

u

N )
σ2

e + σ2
u.

Now consider the ratio A2
b/Aµ:

A2
b

Aµ
=

(
1 + γ(βρ)

g(βρ)

)2
J(βρ)

Nb(βρ)σ2
e

.

The constituents of the constant are:

b(βρ) =
1 + γ(βρ)
g(βρ)2

φ(βρ)

and
1 + γ(βρ) =

N − 1
N

+ J(βρ)−1J(0)−1 σ2
u

N
.

After algebraic manipulation the recursion reduces to

JJ∗ =
1

φ∗−1( N−1
N J(0)J∗+

σ2
u

N )

φ(βρ)−1( N−1
N J(0)J(βρ)+

σ2
u

N )
+ φ−1( N−1

N J(0)J+
σ2

u
N )

φ(βρ)−1( N−1
N J(0)J(βρ)+

σ2
u

N )

JJ∗ + σ2
u.
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We express this succinctly as

JJ∗ =
1

H + H∗ JJ∗ + σ2
u =

1
2 Re (H)

JJ∗ + σ2
u. (B.12)

We can bound the denominator of (B.12). We cannot compute the norm of the denominator directly so
we use an indirect argument. The indirect argument is to bound the infimum of the denominator below
by one, and this in turn generates a bound on the norm of 1/2Re(H) below one. That is,

1
2πi

∮
{|z=1|}

1
2 Re (H)

dz

z
≤ 1

inf{|z|=1}2 Re (H)
.

We now bound this expression.

Recall that the structure of J is

J = J(0)
∏k

1(1 − fiz)∏k
1(1 − aiz)

≡ J(0)J̃ ,

with ai ≤ ρ and fi ≤ ρ. We can write the numerator of H as

N − 1
N

J(0)2
∏k

1(1 − fiz)∏k
2(1 − aiz)

+
σ2

u

N
(1 − ρz),

where we note that because of the product φ−1J in the numerator, there is one more fi term than ai

term. In common denominator form, the numerator becomes

N−1
N J(0)2

∏k
1(1 − fiz) + σ2

u

N (1 − ρz)
∏k

2(1 − aiz)∏k
2(1 − aiz)

,

which, using a direct extension of Lemma B.1, can be written as

C

∏k
1(1 − f̃iz)∏k
2(1 − aiz)

where C is a constant, and ρ > f̃ > fk. Therefore, we just need to demonstrate that

2inf{|z|=1} Re




∏k

1
(1−f̃iz)∏

k

2
(1−aiz)∏k

1
(1−f̃iρ)∏

k

2
(1−aiρ)


 > 1.

But this follows immediately as an extension of Lemma B.6. Thus the modulus of T ∗ is a fraction, and
we have a contraction. Since the space of analytic functions H2 (not to be confused with our function
H !) is complete, there is a unique fixed point.

Manipulating the recursion (B.12) reveals more about the structure of J :

PROPOSITION B.8: The dynamic structure of J is determined entirely by the structure of φ and

N , and is independent of σ2
e and σ2

u.

PROOF: We can make the recursion dimensionless by dividing by σ2
u/N :

JJ
∗

=
1

φ∗−1((N−1)J(0)J
∗
+1)

φ(βρ)−1((N−1)J(0)J(βρ)+1)
+ φ−1((N−1)J(0)J+1)

φ(βρ)−1((N−1)J(0)J(βρ)+1)

JJ
∗

+ 1,
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which is indepdendent of σ2
e and σ2

u.

COROLLARY B.9: J ∝ σu and b ∝ σu

σe
.

PROOF: The result for J follows immediately from inspecting the JJ∗ recursion. The result for b

follows from the identity

bb∗ =
JJ∗ − σ2

u

Nσ2
e

.

PROOF (Proposition 4.4): This is an immediate consequence of the previous proposition.

PROOF (Proposition 4.5): We have already established that a fixed point (c̄, ā) = ((c̄0, c̄1, . . .), (ā1, ā2, . . .))
exists and that the ā� are ordered; in the limit it is possible that the ordering is only weak. We now
show that the ordering is strict and that there are infinitely many ā� in the interval (a, ρ). Suppose
there were an m such that there are only finitely many ā� between ρ and a (which by Lemma 4.1 is
zero), and that for all � > m, ā� = a. Then there would effectively only be m + 1 values of ā�, with the
(m + 1)th value of the numerator coefficient c̄� equal to the sum

∑∞
m+1 c�. Applying the operator T̃ to

this finite list of a� and c� terms using Proposition 7.2 generates new values of the a�, {a�
∗}, where

ρ = a∗
1 = a1 > a∗

2 > a2 > a∗
3 > a3 > . . . > am > a∗

m+1 > am+1 = a = 0.

This contradicts the fixed point property of the original {a�}.
PROOF (Proposition 4.6): This is a direct result of factoring in the definition of J from JJ∗ in (13)

and finding the partial fractions representation.

PROOF (Proposition 4.7): This follows directly from the equations defining µ and γ.

Proportionality results. We now establish the proportionality results in section 5. We already established
that J ∝ σu and b ∝ σu

σe
in Corollary B.9. Therefore

γ(z) ∝ b(0)2

J(0)2
σ2

e ∝
σ2

u

σ2
e

σ2
u

σ2
e ∝ 1.

Therefore,
1 +

∑
γi ∝ 1.

Now recall that
µ(z) = J−1[J∗−1Nb∗σ2

eφ]+ ∝ σ2
e

σ2
u

[b∗φ]+ ∝ σ2
e

σ2
u

σu

σe
φ ∝ σe

σu
.

Recall that the pricing filter λ is defined as µ/(1 +
∑

γi). Therefore,

λ ∝ σe

σu
.

The proportionality result for profit is similar. From the objective (9), an informed trader’s expected
profit is:

π = N(φ − µb)γbσ2
e + (φ − µb)bσ2

e + µσ2
u.

Using the proportionality results for b, µ, and γ, we have

µb ∝ 1; γbσ2
e ∝ σuσe; bσ2

e ∝ σuσe; µσ2
u ∝ γσe;

and therefore
π ∝ σeσu.
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Table 2: Correlation and Equilibrium Zero-Correlation Benchmarks: ρ = 0.5

Aggregate Variables

N=2 N=4

Correlation θ 0.50 0.50

Covariance matrix Σe

(
.5 0
.5 0

) 


.25 0 0 0
0 .25 0 0
0 0 .25 0
0 0 0 .25




Informed Profit (
∑

j πj) 0.533189 0.532196

Lag
Variable 0 1 2 3 4 5 6 7 8 9 10

b2
je (θ = 0) .8718 .326 .131 .056 0.024 0.011 0.005 .002 0.001 .000 .000

b4
je (θ = 0) .8754 .306 .120 .050 .022.010 .004 0.002 0.001 0.000 .000 .000

γ2
j (θ = 0) -0.226 -0.047 -0.011 -0.003 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 .000

γ4
j (θ = 0) -0.113 -0.022 -0.005 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 .000

πj2 (θ = 0) 0.496 0.033 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .000
πj4 (θ = 0) 0.496 0.032 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 .000

FIGURE 7.4
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Table 2: Correlation and Equilibrium Outcomes: ρ = 0.5

Aggregate Variables

N=2 N=2 N=4

Correlation θ 0.025 0.50 0.50

Covariance matrix Σe

(
.487805 .0121951
.0121951 .487805

) (
.333333 .166667
.333333 .166667

) 


.1 .05 .05 .05
.05 .1 .05 .05
.05 .05 .1 .05
.05 .05 .05 .1




Informed Profit (
∑

j πj) 0.533442 0.505867 0.437422

Lag
Variable 0 1 2 3 4 5 6 7 8 9 10

b2
je (θ = .025) 0.8887 0.333 0.135 0.058 0.026 0.012 0.006 0.003 0.001 0.000
b2
je (θ = .5) 1.2574 0.465 0.187 0.081 0.036 0.017 0.008 0.002 0. 0.001

b4
je (θ = .5) 1.7676 0.538 0.203 0.085 0.038 0.018 0.008 0.004 0.002 0.001

γ2
j (θ = .025) -0.231 -0.047 -0.011 -0.003 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000
γ2

j (θ = .5) -0.311 -0.044 -0.008 -0.002 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000
γ4

j (θ = .5) -0.190 -0.014 -0.002 -0.001 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000

πj2 (θ = .025) 0.498 0.032 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000
πj2 (θ = .5) 0.488 0.018 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
πj4 (θ = .5) 0.429 0.017 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

FIGURE 7.5
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