Parameter-Dependent Lyapunov Functions For set. Thus for each fixed perturbation there exists a Lyapunov

Linear Systems With Constant Uncertainties function proving stability of the system. In contrast to the
constant D test, this Lyapunov function may be a function of

Peter Seiler, Ufuk Topcu, Andy Packard, and Gary Balasthe perturbation. This paper provides an explicit expoesfr
a parameter-dependent Lyapunov function (PDLF) which can
be derived from the varying D test. This Lyapunov function
Abstract—Robust stability of linear time-invariant systems hag 3 rational quadratic dependence on the uncertainties.

with respect to structured uncertainties is considered. Tk small : P
gain condition is sufficient to prove robust stability and salings There is a significant amount of related research on PDLFs.

are typically used to reduce the conservatism of this condion. It~ 1N€ anSical Popov criterion, Wh?n applied to a linear un-
is known that if the small gain condition is satisfied with corstant ~ certainty, can be interpreted as using a PDLF to prove robust
scalings then there is a single quadratic Lyapunov function stability [14], [17]. This Lyapunov function is quadratic the
which proves robust stability with respect to all allowabletime-  gstate and has an affine dependence on the uncertainty. There

varying perturbations. In this paper we show that if the smal e .
gain condition is satisfied with frequency-varying scaling then are many approaches to develop robust stability conditions

an explicit parameter dependent Lyapunov function can be USing more general PDLFs. Lyapunov functions having an
constructed to prove robust stability with respect to consant affine [14], [18], [19], [20], [17], [21], [22], [23], [24], 5],
uncertainties. This Lyapunov function has a rational quadrtic multi-affine [26], bi-quadratic [27], generic polynomia2§],
dependence on the uncertainties. [29], [30], [31], and linear fractional dependence [32]3][®n
the uncertainty have been considered. Hermite matricels [34
and power forms [35] have also been considered. The Kalman-
Yakubovich-Popov (KYP) lemma [36] connects the PDLF in
Modeling uncertainties can be represented as paramettie Popov Criterion to a frequency domain condition buteher
and/or dynamic perturbations to a nominal model. The entigge few additional connections for these more general PDLF
collection of modeling uncertainties in a system can be cajenditions. One connection is made in [20], [21]. In parttacu
lected into a single structured uncertainty (see, for examp[20], [21] consider linear systems with affine dependence on
[1]. [2]). The structured singular valug)[2], [3], [4] provides real parameter uncertainties. They derive a sufficient itiond
a necessary and sufficient condition for robust stabilithwé- for robust stability using a PDLF having affine dependence
spect to structured linear-time invariant perturbatiéfmvever on the uncertainties. They demonstrate that this sufficient
it is known that computing: is NP Hard [5], [6]. Thus there condition is equivalent to the standard realpper bound [37]
has been extensive research into computational algorithmg restricted to have constant scales and> scales having
which are fast and provide good lower/upper bounds for mastspecific affine dependence on frequency. Thus the condition
problems of engineering interest. in [20], [21] is more conservative than the rgalipper bound
The small gain condition [7], [8] provides an easily comwith generic frequency-varyinfp — G scales which is known
putable sufficient condition for robust stability but is,gen- to be equal tqu for certain block structures [38].
eral, not necessary. Thus scalings are typically introduoe  The work on quadratic separators provides another relevant
reduce the conservatism. For example, if there exists anhstconnection to PDLFs [39], [40], [41], [42]. The authors deri
or frequency-dependent D-scales from an allowable set suwressary and sufficient robust stability conditions based
that the small gain condition holds, then the system is ribpusfinding a Hermitian matrix-valued function, termed a quéidra
stable. These tests have their roots in the multiplier aggites separator, which topologically separates the graph of the
used for passivity analysis [7]. In [2], these two condii@re nominal system from the inverse graph of each uncertainty
referred to as the frequency domain constant D test and thethe allowable set. One version of this condition can be
frequency domain upper bound. In this paper we will refer toterpreted as simultaneously searching for a PDLF and a
these as the constant D and varying D tests. parameter-dependent quadratic separator which satigfipar|
The constant D test is necessary and sufficient for robusttrix inequality (see Theorem 3 of [40]). These necessary
stability with respect to arbitrarily fast linear time-yarg and sufficient conditions are computationally difficult e
perturbations [9]. This condition is connected to the notio(they are equivalent to computing and hence various suffi-
of quadratic stability, i.e. the existence of a single qa#idr cient conditions are derived. One of these sufficient caot
Lyapunov function which proves stability of all possiblejgc- termed the vertex-separator condition, can be used torcanst
tories of the uncertain system for both fixed and time-vagyim PDLF with polytopic dependence on the uncertainties.
perturbations [10], [11], [12], [13], [14], [15]. In partidar, if Another sufficient condition is obtained for linear paraemet
the small gain condition holds with constant D-scales tlmen tvarying systems by applying a constant quadratic separator
uncertain system is quadratically stable. This sufficient condition is shown to be equivalent to the
The varying D test has a different interpretation. The use ekistence of a PDLF which has a linear fractional dependence
frequency-varying D-scales renders the small gain candition the uncertainty (see Theorem 4 of [42]). This particular
necessary and sufficient for robust stability with respect PDLF will be discussed further in Section IV.
arbitrarily slowly-varying linear perturbations [16]. Ehis
the condition that is typically used when computingersus Il. NOTATION
frequency. Clearly this test is also sufficient for robuabdgity C»*™ and R"*™ are complex and reak x m matrices,
with respect to all constant perturbations from the alldeabrespectively. FortM € C™**™, M* is the complex conjugate

I. INTRODUCTION



transpose ofi/. The maximum singular value @f is denoted ~ Lemma 3 (Robust Stability Condition): Let M :=[4 8]
by & (M). For M € C™*™, the spectral radius o¥/ is denoted C(*tm)x(n+m) |f there existsP = P* € C"*" such that
by p (M). If M = M* then all the eigenvalues dff are real P > 0 and
and A\,.. (M) denotes the largest eigenvalue. M = M* . N .
then M > 0 and M < 0 denote the matrix is positive APA-P+ZYTZ2+C°C <0 @)
and negative definite, respectively. Giveh € C**™ and whereY := I — D*D — B*PB andZ := B*PA+ D*C then
B € C"**%, diag(A, B) € C»tm)x(m+s) denotes the block p satisfies:
diagonal concatenation of the two matricdsg B € C"*s™
denotes the Kronecker product. Let and m be positive
integers and partitionl/ € C(ntm)x(n+m) ag )f = [4 B] _
where A € C"*" B e C"*™ (' e C™*", andD e C"xm, Proof: The S-procedure can be used to prove this lemma.
Let A € C™X™ he a matrix such thaf — DA is invertible. For_ example, Chapte_r. 5 of [14_] applies thg S-progedure to
In this case we define the linear fractional transformatidifrive & robust stability condition for continuous-timelLT
F(M,A) := A+ BA (I — DA)~!C. The subscripi refers Systems with norm-bounded time-varying uncertainties. Fo
to the closure of the lower block af/ with the matrix A cor_nple_teness, we provide_a proof for discrete-time systems
and we can use this transformation to define an uncertaif}ich is based on completion of a square.
autonomous discrete-time system,; = Fy(M, A)zy,. Sim- The_algebralc Riccati mequgllty (qu_Jatlon 1) can be u_sed to
ilarly, for Q € C"*" such thatl — AQ is invertible, we define Showa (D) < 1. ThusI — DA is invertible andF; (M, A) is
F,(M,Q) =D+ CQ(I — AQ)~* B. The subscript. refers well-defined for allA with & (A) < 1. To simplify notation,
u ) . . X -1
to the upper block ofM/ being closed with the matrix. defineW := A (I — DA)™" so thatFj(M, A) = A+ BWC.
This transformation can be used to d?fine a transfer functis@mpleting a square and usiagA) < 1 yields:
e define||G|| := . _ _
1Glloo := jmax & (G(e) —A*PA-P+ 2V 'Z— (YWC - Z)'Y H(YWC - Z)
+C*[W*W —W*D*DW — W*D* — DW|C

Thi _ | Hich 4 in Section 1 A*PA-P+Z2Y'Z - (YWC - 2Z)'Y ' (YWC - Z)
is section presents lemmas which are used in Section " " Ch AEA _ 1
to construct a PDLF from the varying D test. The first lemma is . * [C C+€ ({1_ DA)* (A"A = I)(I = DA) C]
the Schur complement lemma. The next lemma relates a blockA"PA— P+ Z2"Y ™" Z + C*C
2_>< 2 Lyapunov inequality to Lyapunov inequalities _for Fhel'he desired result follows by applying Equation 1. -
diagonal blocks. The last lemma relates an algebraic Riccat
inequality to a robust stability condition.

Lemma 1 (Schur Complements [14], [43]): Let IV. MAIN RESULT
p = |PuPuz| o chtm)x(ndm) gnd P — P*. The In this section we consider the robust stability of a disret

T [ Pl P2 i i inti
following conditions are equivalent: time system with respect to s}il:ftured_urjcertamtles. We co
A) P> 0 sider block structuredA c C consisting ofs repeated

complex scalar blocks ang square full complex blocks.

B) Pi; >0 and Py — Py P Pia > 0 e . . .
C) Py >0 andPyy — PPy, Py > 0 The restriction to square full blocks is for notational sim-

Amaz (Fy(M, A PE(M,A) — P) <0 (2
P R (Fy((M,A)"PFi(M,A) = P) <0 (2)

IIl. PRELIMINARY RESULTS

plicity. Given positive integersni, mas, ..., ms4+f Satisfying
Lemma 2 (Block Lyapunov Inequality): Let A = Zf:-lf m; = m, we can define the following sets of block

[Aél ﬁ;ﬁ] c Ctm)x(ntm) gnd P = {lﬁi 1’22} € structuredm x m matrices:
Crtm)x(ntm) phe partitioned conformably. IP = P* > 0 A = {A = diag(611m,, .., 0sIm., A1, ..., Ap) = (3)
and A*PA — P <0 then: R R 5 eC. A e Cm5+i><ms+i}
A) P := Py, satisfiesP >0 and A}, PA;; — P <0 o
B) Q = Py - P{‘QPﬁlPlg satisfies @ > 0 and Ba:={AeA :5(A)<1} (4)
A55QA2 —Q <0 Associated with these block structures we can define sets of

Proof: A) Any diagonal block of a positive (negative)constant and varying D-scales:

definite matrix must itself be positive (negative) definifbus
P > 0 implies P > 0. Also, the (1,1) block of4*PA — P is D.:={D. € C™™ : D.A=AD, VA € A, det(D.) # 0}
A;, PAy, — P and hence this quantity is negative definite. p ._ {Dv(z) Dy Cy (eI — Ay By + det(Dg) 40

B) By the Schur complement lemm&, > 0 implies @@ > ’
0. Also by the Schur complement lemmd:PA — P < 0 [‘éj ol e clktm)x(k+m) D A =AD, VA € A }
implies AP~1A* — P~ < 0. The (2,2) block ofP~! is
Q! (see Equation A.1.7 of [43]). Thus the (2,2) block of By definition, any scaling), from eitherD. or D, satisfies
AP~'A* — P~! < 0 implies A»»Q 145, — Q~! < 0. One A= D;'AD, VA € A.Thus we can inset; at the input to
more application of the Schur complement lemma brings tie and D! at the output ofA. If || D F, (M, L1) Do <
desired resultAs, QA — Q < 0. m 1thenzy, = F(M,D;'AD,)x; is robustly stable with

respect taBa . By the equivalence of the scaled and unscaled



systems, we can then conclude that,, = Fj(M, A)zy is By :=diag (Ba,z, .-, Ba.s; (Im.,, ® Bast1),- -, (8)
robustly stable with respect tBa. This is an indirect proof (Im.., ® Baass))
of robust stability. The two theorems in this section dikect I ’

prove robust stability by constructing Lyapunov functidos Ca :=diag (Ca,p,--, Cas, (Imosy @ Casar)s o ©)
241 = F1(M, A)xy. The theorems are stated in a form which Imyy ® Cd,s+f))
highlights this construction. Dy :=diag (Da,, ..., Das, Im.,; @ Dagss1),..., (10)
Theorem 1 (Constant D Test): Let G(z) := F,(M,1I,) (I @D ))
where M := [4 B] € C(ntm)x(n+m) and p(A ety St
= &P p(A) < 1. If there
A) There existsP = P* € C™*" such thatP > 0 and: oL B
o o N matrices of D, ;(z) (i = 1,...,s) and [CZ DZ*:} €
A"PA—-P+C°C+ (B*PAJFD*C) (B) cki+Dx(ki+1) are the state space matrices df;(z) (i =

I s+1,...,s+ f). Next, defineX (A) : A — CF*F py:
(I—D*D—B*PB) (B*PA+D*C)<0 D (A) y
X(A) =diag (511k1, e ;5sIk57As+1 ®Iks+17 Ce

A R . —1 ~ N .
where A := A, B := BD_', C := D.C, and D = As+f®lks+f)

D.DD;.
B) The solutionP > 0 to Equation 5 satisfies The dimension of thé" block of X (A) depends on the state
N dimension, k;, of the transfer function i block of the
AcBa Amaz (Fi(M, 8)"PE/(M, A) = P) <0 (6) D,(z). For anyA € A, the state space realization b%,(z)

C) Let{A,}3°, C Ba be given. Then: = 0 is a globally ex- given in Equations 7- 10 satisfies the commutation relations
ponentially stable equilibrium point afy1 = F;(M, Ag)xy. AgX(A) = X(A)Aa, BaA = X(A)Bd’, CaX(A) = ACq,
Proof: A) The 4, B, C, and D given in the theorem are @nd DaA = ADg. Thus A commutes withDg but is altered
the state matrices for the system.G:D . The existence of When passing through, andCq. These relations will be used
P > 0 satisfying Equation 5 follows fronj D.GD; |, < 1 I the proof of the following theorem.
and the discrete-time Bounded Real Lemma [2].
B) Define M = [é gl. Since P > 0 satisfies Equation 5, Theorem 2 (Varying D Test): Let M := [Z5] €
we can apply Lemma 3 to conclude Clrrm)xtmtm) - with p(A) < 1 and defineG(z) :=
. . Fu(M,11,). If there exists D,(z) € D, such that
Aoz (BN A) PE(IL,A) = P) <0 || D,GD; o < 1 then:
A) There existsP = P* € C("+2k)x(n+2k) gych thatP > 0
Restricting toA € Ba, we can useD.A = AD, to show gnd:
Fy(M,A) = Fy(M,A). L ey o
C) Define the Lyapunov functioW (z) = 2”7 Pz. B) implies A*PA— P + (B*PA + D*C) (I —D*D — B*PB)

max
AeCmxm ] 5(A)<1

-1

BV (x) which guarantees the robust stability with respect to (B*PA + D*O) +C7C <0 (11)
time-varying perturbations. Formally, C) follows from Bd

Ag B k+m k+m i
discrete-time Lyapunov theory (Section 5.9 of [44]). = where[ ZDZ} € Clhrmpx(tm) are the state matrices of

C

D,(z) and:
As noted in the introduction, an uncertain system is quadrat - Aa BaC —BdDDEIlCd - BdDDolf
ically stable if there exists a single quadratic Lyapunoncfu =0 A =BDg Ca b= BD, .
0 0 Ag—BqD;'Cq ByDj

tion which proves stability of all possible trajectories thke .
uncertain system. Theorem 1 demonstrates that satisfiilg t C :=[Ca DuC ~DaDD;'Cu], D := DyDDy*
small-gain theorem with constant D-scales implies quadrah) Given the solutionP > 0 to Equation 11, define:
stability. The next theorem demonstrates that using frecue ’ '
varying D-scales implies the existence of a PDLF. One diff]f?(A) = Pog + (Pa1 + Pas X (A))

culty is that the state matrices 6f,(z) € D, do not commute * D* * -1
with the A € A. However, we ca(n)derive how is altered (Puy + P X(4) i—X(A) Prs + X(A) Xas X (A))
as it "moves through” the state matrices Bf,(z). (Po1 + Pos X(A)) (12)

1 .
Let Dy(z) := Da + Ca(zI — Aq) " By. Since Dy(z) where theP;; are a block3 x 3 partition of P conformable

commutes with allA € A, it must be block-diagonal: with the 3 x 3 blocks of A. Then P(A) satisfies:
DU(Z) :dzag(Du,1(2)7 ceey Dv,s(z)a max Ama;ﬂ (.Fl(M, A)*P(A)E(M, A) N p(A)) <0
dv,s+l(2)Im3+1a- --7dv,s+f(2)lms+f) A€Ba (13)
A natural state space realization fbx,(z) is given by: C) Let A € Ba be given. Therr = 0 is a globally exponen-
Ay =diag (Ad,l, s Ads Ty ® Adosi)s- ) tially stable equilibrium point ofey1 = Fi(M, A)zy.

Proof: A) The 4, B, C, and D given in the theorem
(I s ®Ad,s+f)) statement are the state matrices for the sysfep@ D, !.



The existence ofP > 0 satisfying Equation 11 follows constant and others to be frequency varying. The example
from | D,GD; ||~ < 1 and the discrete-time Bounded Real in the following section will further demonstrate this pbin

Lemma [2]. ) o o PDLFs with polynomial dependence on the uncertainty

B) Define N/ = | 4 El. SinceP > 0 satisfies Equation 11, ~are used in [28], [29], [30], [31] for linear robust stahylit

C D . . . .

we can apply Lemma 3 to conclude analysis and in [46], [47], [48], [49] for nonlinear regioh o

- - attraction analysis. While polynomial dependence is witho

AG(CMXH}na);(A)<1/\mam (E(M,A)*PE(M,A) - P) <0 loss of generality for linear robust stability [25], [50}, i
] ' - . might require a high degree. It would be useful to see if
Define the coordinate transformation: algorithms can be developed based on the particular form

T — [ b (}8} of the PDLF given in Equation 12.
X(A)o1

~ Theorem 2 demonstrates that satisfying the small gain
Define R := T-'F(M,A)T and S := T*PT. Multiplying  condition with frequency varying D-scales implies the ex-
F(M,A)*PF,(M,A) — P on the left/right byT*/T" and istence of a PDLF with a rational-quadratic dependence on
inserting 7T~ yields R*SR — S. This is a congruence the uncertainties. The class of PDLFs of this form includes
transformation and hendg@* SR — S remains strictly negative those which have an affine dependence on the uncertainties.
definite for allA € Ba. Performing block multiplications and This provides another explanation for why the affine PDLF
applying the commutations relations satisfiedXbyA) yields: condition given in [20], [21] is more conservative than wggin

OIS, frequency-varyingD — G scales.
R = { 8 Fz(JOWA) 8] We can also compare the PDLF from the varying D test
Sut (Por 4 Prs X(A))* () to that obtained from a special case of the quadratic sep-
S = {P21+P23X(A) Pas .)} arator condition for continuous-time, linear parameteryva
) ing systems [42]. These systems have the farm= A +

(
(
) ¢ (
whereSy; := Pi1+PisX (A)+X (A)* P+ X(A)*PsX(A)  B(I— A(t)D)"" A(t)C with A(t) having a block diagonal
and blocks denoted by) do not affect the remaining argu-structure of repeated real scalars. A sufficient condition f
ment in the proof. The proof is concluded by first applyingobust stability with respect to the time-varying real paeders
Lemma 2-A toR*SR— S < 0 and then applying Lemma 2-B.is derived using a constant quadratic separator. This gritic
C) For eachA € Ba define the Lyapunov function condition is no more conservative than using consfant G
V(z,A) = 2T P(A)z. C) follows from B) and discrete-time scales but it is, in general, more conservative than using a
Lyapunov theory (Section 5.9 of [44]). m frequency varying quadratic separator. The sufficient ¢erd
with the constant quadratic separator is shown to be eaunval

Comments: . ) . to the existence of a PDLF of the form:
« This paper uses a discrete-time formulation but the results T
. . : . I 7
carry over to the continuous-time case. The lemmas in  P(A) := [(I—AD)’lAC} P [(I_AD)AAC (14)

Section Il must be restated in terms of the continuous-time
Lyapunov inequality, Bounded-Real Lemma, and algebraldiis PDLF proves robust stability with respect to time-vagy
Riccati inequality (refer to Chapter 5 of [14]). The proof$arameter variations and hence it also proves robust isyabil
and results in Section IV then require only minor modificawith respect to constant parameter uncertainties. The dés
tions. The continuous-time PDLF in the varying D test ha8DLFs of this form is not directly comparable to PDLFs of
the same structure and dependence on the solution of the form given in Equation 12; in general neither form is more
continuous-time algebraic Riccati inequality. general than the other. It is notable that if the nominaleyst
. The algebraic Riccati inequalities (Equations 5 and 1hgs no direct feedthrough( = 0) then the PDLF from the
can be converted to linear matrix inequalities by the Schaenstant quadratic separator condition reduces to a dtiadra
complement lemma. Thus we can use available softwatependence on the uncertainty. The form of the PDLF from
(e.g. LMILab [1] and Sedumi [45]) to solv& > 0. Both the varying D test can, in principle, have a rational quadrat
theorems then give an explicit construction for a Lyapundgiependence on the uncertainty for any nominal system.
function which proves robust stability. However, this can We can briefly summarize four related cases:
be computationally demanding in the case of the varying D 1) Constant D-scales: The small-gain condition with con-
test since the variabl® has dimensiom + 2k wherek is stantD-scales is only a sufficient condition for robust stability.
the state dimension aob, (z). Fitting the magnitude data, If this sufficient condition is satisfied then the system is
|D, ()|, from a frequency griddechussv [1] calculation quadratically stable and there exists a parameter independ
with a state-space model can lead to high state dimensidiyapunov function which proves robust stability.
for D,(z). This is especially true for the full blocks of 2) Frequency Varying D-scales. The small-gain condition
D, (z) associated with repeated scalar uncertainties. with frequency varyingD-scales is only a sufficient condition
« If the i** block of D, (z) is constant then its state dimenfor robust stability. In this paper we showed that if thisfisuf
sion isk; = 0. In this caseX(A), and henceP(A), do cient condition is satisfied then one can explicitly consitra
not depend on the corresponding blockf Thus we can PDLF (Equation 12) which proves robust stability.
obtain Lyapunov functions which are partially parameter- 3) Constant Quadratic Separator: The constant quadratic
dependent by fixing some blocks of the D-scale to bseparator condition is only a sufficient condition for rabus



stability. If this sufficient condition is satisfied then tkeis L evesenveRLford L (e 8 (areem), Tty (e

a PDLF (Equation 14) which proves robust stability [42]. i As 5. goes
general, the form of this PDLF is neither more nor less gdne :
than the form derived from the varying test.

4) Frequency Varying Quadratic Separator: The frequency

varying quadratic separator condition is necessary anii su 051
cient for robust stability (see Theorem 1 in either [40] at]4

It is not known how to explicitly construct a PDLF when this or
condition is satisfied. This would be interesting since iuldo —
provide a form for the PDLF which could be assumed witho -05}

loss of generality when analyzing the robustness of line

systems with respect to constant uncertainties. In paaticit it

is well known that quadratic Lyapunov functions are suffitie
to prove stability of linear systems. Thus if a linear sysiem s ‘ ‘ ‘ ‘ ‘ ‘
stable then there is a Lyapunov function which is a quadra -3 -2 -1 0 1 2 8
function of the state which proves stability. One does neheFig. 1. Level Sets{z : V(z,A) = 1} for 62 € [-1,1]

to consider more complicated Lyapunov functions for line

: For stabil sis of cain | Stémis #he lines denote thax 3 block partition used in the Lyapunov
systems. For stability analysis of uncertain linear sy function construction of Theorem 2. Using this construttio

implies that we only need to consider Lyapunov function&efine the Lyapunov functio (x, A) :— pr(A)x where

which are quadratic in the stqte but with an arbitrary fuodil p (A) is given by:
dependence on the uncertainty. It would be useful for algo- _
rithm development to know if there is a functional depen@enc}s(m — (3719 0 ] 10° { 1.48 74.7752}

on the uncertainties which can be assumed without loss of 0" 7s0.81F 643.162 + 1204.5 | —4.7762 5.085;
generality. Since the frequency-varying quadratic SEpBraThis PDLE proves stability ofr; = Fi(M, A)z for each
condition is necessary and sufficient for robust stability, ., ctantA € Ba: We verified this statement on a finite grid
potentially provides a path to understanding this funalon s \ i es of(81,ds), |6 < 1. This Lyapunov function does
dependence. Specifically, if we can construct an explicitPD . depend o, since the_corresponding block &, (2) is a

when this condition is satisfied then the form of this PDLF calynstant. Figure 1 shows the unit level sets of this Lyapunov

be assumed without loss of generality when analyzing linegf, ction ass, varies from—1 to +1. The level sets are skewed
uncertain systems. One might then develop algorithms ba

on this functional form similar to the current developmeht o
algorithms centered around affine Lyapunov functions.

rotate withy,.

VI. CONCLUSIONS

V. EXAMPLE This paper considered robust stability with respect tocstru
Consider the two-state system..; = F(M,A)zy from tured uncertainties. If the small gain condition is satifie
[12] where A := {A = diag(6, 52)+: 5, € C} :';md: with constant scalings then the uncertain system is ropustl

stable with respect to norm-bounded time-varying perturba
tions. In this case, there is a single Lyapunov function Wwhic
P60 8 proves stability over all possible trajectories, i.e. tlystesm
Chooses = 0.9 andb = 0.5. This system is not quadraticallyis quadratically stable. If the small gain condition is std
stable but is robustly stable with respect to constant A.  with frequency-varying scalings then the uncertain system
Consider the time-varying perturbatiods, = diag(1,0) robustly stable with respect to norm-bounded constantpert
for k even andA; = diag(0, —1) for k odd. Fork odd, the bations. In this paper we constructed a PDLF which proves
two step evolution of the system s, ; = [_1(-)‘_”821 *O(_)éﬁl} x,. robust stability with respect to constant uncertaintiebisT
This has eigenvalues at 0.3094 and 2.1206 which demdyapunov function has a rational quadratic dependence@n th
strates that the system is not stable for all time varyingncertainties. It might prove fruitful to use this partiauform
perturbations inBa. Hence the system is not quadraticalljo develop algorithms for stability and region of attrantio
stable. DefineZ(z) := F,(M, 11;). We used LMILab [1] to analysis for nonlinear, uncertain systems. It would also be
minimize | D.G' D !||« over D. € D.. The optimal constant interesting to see if a similar explicit construction can be
scaling isD, = I, and, as expected, the minimal value ogiven for the frequency-varying quadratic separator ciorli
|D.GD | s = 9.50 which exceeds 1. This would be interesting since it would provide a form for
Next, consider the scaling.,(z) = diag(1, 22215250.9025)  the PDLF which could be assumed without loss of generality
For this scaling||D,GD; |l = 0.526 < 1 and by the when analyzing the robustness of linear systems with réspec
varying D test we conclude the system is robustly stable with constant uncertainties.
respect to constanfA € Ba. We again used LMILab to
computeP’ > 0 which satisfies Equation 11. The result is: Acknowledgments
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