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Abstract

Current practice for flight control validation relies heavily on linear analyses

and nonlinear, high-fidelity simulations. This process would be enhanced by

the addition of nonlinear analyses of the flight control system. This paper

demonstrates the use of region of attraction estimation for studying nonlinear

effects. A nonlinear polynomial model is constructed for the longitudinal

dynamics of NASA’s Generic Transport Model aircraft. A polynomial model

for the short period dynamics is obtained by decoupling this mode from

the nonlinear longitudinal model. Polynomial optimization techniques are

applied to estimate region of attractions around trim conditions.
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Analysis, Flight Control

1. Introduction

Safety critical flight systems require extensive validation prior to entry

into service. Validation of the flight control system is becoming more dif-
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ficult due to the increased use of advanced flight control algorithms, e.g.

adaptive flight controls. NASA’s Aviation Safety Program (AvSP) aims to

reduce the fatal (commercial) aircraft accident rate by 90% by 2022 (Heller

et al., 2003). A key challenge in achieving this goal is the need for extensive

validation and certification tools for the flight systems. The current certi-

fication and validation procedure involves analytical, simulation-based and

experimental techniques (Heller et al., 2003). Current practice is to assess

the closed-loop stability and performance characteristics of the aircraft flight

control system around numerous trim conditions using linear analysis tools.

The linear analysis methods include stability margins, robustness analysis

and worst-case analysis. The linear analysis results are supplemented with

Monte Carlo simulations of the full nonlinear equations of motion to provide

further confidence in the system performance and to uncover nonlinear dy-

namic characteristics, e.g. limit cycles, that are not revealed by the linear

analyses. To summarize, current practice involves extensive linear analysis

at different trim conditions and probabilistic nonlinear simulation results.

The certification process typically does not involve any analytical nonlinear

methods.

The gap between linear analyses and Monte Carlo simulations can cause

significant nonlinear effects to go undetected. For example, several F/A-18

aircraft were lost due to a nonlinear loss-of-control phenomenon known as

the falling leaf mode (Jaramillo and Ralston, 1996; Heller et al., 1999; Lluch,

1998; Heller et al., 2004). Linear analysis tools did not detect the potential

of the closed-loop system to exhibit the falling leaf mode. Thus there is a

need for nonlinear analysis tools to fill this gap (Chakraborty et al., 2009).
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Recently, significant research has been performed on the development of non-

linear analysis tools for computing regions of attraction, reachability sets,

input-output gains, and robustness with respect to uncertainty for nonlinear

polynomial systems (Tan, 2006; Tan et al., 2008; Topcu et al., 2007, 2008;

Chiang and Thorp, 1989; Davison and Kurak, 1971; Genesio et al., 1985;

Tibken, 2000; Tibken and Fan, 2006; Vannelli and Vidyasagar, 1985; Par-

rilo, 2000). These tools make use of polynomial sum-of-squares optimization

(Parrilo, 2000). These tools can only be applied to the dynamics described

by polynomial vector field . These techniques offer great potential to bridge

the gap in the flight control validation process.

The objective of this paper is to demonstrate the advantage of includ-

ing nonlinear analysis tools based on SOS techniques in the flight control

law validation process. The computational requirements for sum-of-squares

(SOS) optimizations grow rapidly in the number of variables and polynomial

degree. This roughly limits SOS methods to nonlinear analysis problems

with at most 8-10 states and degree 3-5 polynomial models. Consequently,

the construction of accurate, low-degree polynomial models is an important

step in the proposed analysis process.

This paper applies the nonlinear analysis tools on NASA’s Generic Trans-

port Model (GTM) aircraft (Cox, 2009; Murch and Foster, 2007). The GTM

is the primary test aircraft for NASA’s Airborne Subscale Transport Air-

craft Research (AirSTAR) flight test facility (Jordan and Bailey, 2008; Jor-

dan et al., 2006; Bailey et al., 2005). The AirSTAR program addresses the

challenges associated with validating flight control law in adverse condition

(Murch et al., 2009; Murch, 2008; Gregory et al., 2009). The polynomial
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model constructed in this paper accurately represents the longitudinal dy-

namics of NASA’s Generic Transport Model (GTM) aircraft and it is suitable

to address the issues with flight control law validation and verification.

The paper has the following structure. First, a polynomial model of

the longitudinal dynamics of NASA’s GTM aircraft (Cox, 2009; Murch and

Foster, 2007) is constructed in Section 2. The longitudinal dynamics consist

of a phugoid and short period mode. In Section 2.3, a polynomial model

for the short period dynamics is obtained by decoupling this mode from the

nonlinear longitudinal model. This nonlinear short period model is of interest

because the decoupling of the longitudinal modes is typically done using

linearized models. Section 3 describes a computational procedure to estimate

regions of attraction for polynomial systems (Jarvis-Wloszek, 2003; Jarvis-

Wloszek et al., 2003; Tan and Packard, 2004; Jarvis-Wloszek et al., 2005;

Tan, 2006; Topcu et al., 2007, 2008). This algorithm is applied in Section 4

to estimate regions of attractions for the open-loop short period dynamics

and a closed-loop longitudinal GTM aircraft. The analysis of the two-state

short period model in Section 4 is for illustrative purposes since the system

trajectories can be entirely visualized in a phase-plane diagram. This model

is used to demonstrate that the linearized model fails to capture significant

nonlinear effects. The analysis of the four-state longitudinal GTM aircraft

demonstrates that the nonlinear region-of-attraction (ROA) computational

procedure can be applied to systems with higher state dimensions. The paper

concludes with a summary of the contribution of the paper.
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2. Polynomial Aircraft Models

NASA’s Generic Transport Model (GTM) describes a remote-controlled

5.5 percent scale commercial aircraft (Cox, 2009; Murch and Foster, 2007).

The main GTM aircraft parameters are provided in Table 1. NASA con-

structed a high fidelity 6 degree-of-freedom Simulink model of the GTM

with the aerodynamic coefficients described as look-up tables. This section

describes the construction of polynomial models of the GTM longitudinal

and short period dynamics based on the look-up table data.

Table 1: Aircraft and Environment Parameters

Wing Area, S 0.5483 m2

Mean Aerodynamic Chord, c̄ 0.2790 m

Mass, m 22.50 kg

Pitch Axis Moment of Inertia, Iyy 5.768 kg-m2

Air Density, ρ 1.224 kg/m3

Gravity Constant, g 9.810 m/s2

2.1. Longitudinal Dynamics

The longitudinal dynamics of the GTM are described by a standard four-

state longitudinal model (Stevens and Lewis, 1992):

V̇ =
1

m
(−D −mg sin (θ − α) + Tx cosα + Tz sinα) (1)

α̇ =
1

mV
(−L+mg cos (θ − α)− Tx sinα + Tz cosα) + q (2)

q̇ =
(M + Tm)

Iyy
(3)

θ̇ = q (4)
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where V is the air speed (m/s), α is the angle of attack (rad), q is the

pitch rate (rad/s) and θ is the pitch angle (rad). The control inputs are the

elevator deflection δelev (rad) and engine throttle δth (percent). For ease of

interpretation, plots of α, q and δelev are shown in units of degs, degs/s, and

degs, respectively.

The drag force D (N), lift force L (N), and aerodynamic pitching moment

M (N-m) are given by:

D = q̄SCD(α, δelev, q̂) (5)

L = q̄SCL(α, δelev, q̂) (6)

M = q̄Sc̄Cm(α, δelev, q̂) (7)

where q̄ := 1
2
ρV 2 is the dynamic pressure (N/m2) and q̂ := c̄

2V
q is the nor-

malized pitch rate (unitless). CD, CL, and Cm are unitless aerodynamic

coefficients computed from look-up tables provided by NASA.

The GTM has one engine on the port side and one on the starboard side

of the airframe. Equal thrust settings for both engines is assumed. The

thrust from a single engine T (N) is a function of the throttle setting δth

(percent). T (δth) is a given ninth-order polynomial in NASA’s high fidelity

GTM simulation model. Tx (N) and Tz (N) denote the projection of the total

engine thrust along the body x-axis and body-z axis, respectively. Tm (N-m)

denotes the pitching moment due to both engines. Tx, Tz and Tm are given

by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (8)

Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (9)

Tm(δth) = rzTx(δth)− rxTz(δth) (10)
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nENG = 2 is the number of engines. ε2 = 0.0375 rad and ε3 = −0.0294 rad

are angles that specify the rotation from engine axes to the airplane body

axes. rx = 0.1371 m and rz = 0.0907 m specify the moment arm of the

thrust.

2.2. Polynomial Longitudinal Model

The following terms of the longitudinal model presented in Section 2.1

are approximated by low-order polynomials:

1. Trigonometric functions: sin(α), cos(α), sin(θ − α), cos(θ − α)

2. Engine model: T (δth)

3. Rational dependence on speed:
1

V
4. Aerodynamic coefficients: CD, CL, Cm

Constructing polynomial approximations for the trigonometric functions, en-

gine model, and rational dependence on speed is relatively straight-forward.

The trigonometric functions are approximated by Taylor series expansions:

sin z ≈ z − 1
6
z3 and cos z ≈ 1 − 1

2
z2 for z in units of radians. For |z| ≤ π

4

rad the maximum approximation error for the sine and cosine functions is

0.35% and 2.2%, respectively. For the engine model, a least squares tech-

nique is used to approximate the ninth order polynomial function T (δth) by

the following third order polynomial:

T (δth) ≈ −8.751× 10−6δ3
th + 5.115× 10−3δ2

th + 3.673× 10−1δth + 4.825 (11)

The maximum approximation error is 1.3% over the full range throttle inputs

δth ∈ [0%, 100%]. The least squares technique is also used to compute a linear
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fit to
1

V
over the desired range of interest from 30 m/s to 60 m/s:

1

V
≈ −5.304× 10−4V + 4.699× 10−2 (12)

The maximum approximation error is 9% over the specified velocity range.

The linear fit for
1

V
is used in both the α̇ equation and the equation for the

normalized pitch rate q̂.

Derivation of the polynomial approximations for the aerodynamic coef-

ficients requires a more detailed explanation. NASA provides raw look-up

table data for the aerodynamic coefficients in the airframe body axes, i.e. the

raw data is provided for CX , CZ , and Cm.2 In addition, each aerodynamic

coefficient is computed as a sum of three terms which model the aerodynamic

effects of the basic airframe, elevator inputs, and pitch rate. For example,

CX(α, δelev, q̂) is a sum of three terms each of which is computed from a

look-up table:

CX(α, δelev, q̂) =CX,α(α) + CX,δelev
(α, δelev) + CX,q̂(α, q̂) (13)

CX,α models the basic airframe dependence of the body-X force on the angle

of attack. CX,δelev
and CX,q̂ model the aerodynamic effects of the elevator

input and pitch rate, respectively. All body-axis look-up tables were trans-

formed into lift and drag coordinates via a rotation:CD
CL

 = −

 cos(α) sin(α)

− sin(α) cos(α)

CX
CZ

 (14)

2The notation refers to standard aircraft body axis conventions (Stevens and Lewis,

1992). x is directed to the front along the longitudinal axis of the aircraft and z is directed

down. X and Z are the aerodynamic forces along the x and z axes, respectively.
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A weighted least squares technique is used to fit the lift and drag look-up

table data. Accurate, low-order polynomial fits could be obtained for all

look-up tables after rotating into the lift and drag coordinates. For example,

Figure 1 show the look-up table data and cubic polynomial fits for CL,α, CD,α

and Cm,α . The polynomial function approximations for all aerodynamic

coefficient look-up tables are provided in Appendix A.1.
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Figure 1: Look-up table data and polynomial fit for CL,α, Cm,α, CD,α

There are two important issues in this fitting procedure. First, the fitting

of the CL/CD data rather than the raw CX/CY is justified by the structure of

the dynamic equations. For example, −D enters directly into the equation for

V̇ (Equation 1). V̇ can be alternatively expressed in terms of X and Z forces

via the substitution −D = X cos(α) + Z sin(α). In this form fitting the raw
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aerodynamic look-up data for CX and CZ would introduce approximation

errors in X and Z. Approximation errors would also be introduced by the

polynomial fits for cos(α) and sin(α). Directly fitting the look-up data for CD

only leads to one lumped approximation error in the −D term. Second, the

least squares solutions for the lift/drag/pitching moment data were weighted

to obtain extremely accurate fits at low angles of attack (−5o ≤ α ≤ 15o) and

less accurate fits at higher angles of attack (α ≥ 15o). This weighting ensures

that the polynomial model retains trim characteristics that are similar to

those of the original nonlinear model. Note that the polynomial fits fail

to capture important characteristics of the look-up table data of CL,α and

Cm,α for angles of attack between 15o ≤ α ≤ 40o. The mismatch between

the raw data and the polynomial fitting causes the polynomial and look-up

table models to have different trim characteristics for angles of attack in

this range. H owever, the analyses presented in this paper correspond to low

angle of attack (α ≈ 2 − 3o) trim conditions. Moreover, both the models

were simulated with numerous doublet and step inputs. The qualitative

characteristics of both the trajectories are similar.

A degree seven polynomial model is obtained after replacing all non-

polynomial terms with their polynomial approximations. The polynomial

model takes the form:

ẋ = f(x, u) (15)

where x := [V (m/s), α(rad), q(rad/s), θ(rad)], and u := [δelev(rad), δth(%)].

The degree seven polynomial model f(x, u) is provided in Appendix A.2.

The trim conditions for level flight across the range of velocities V ∈

[30, 60] m/s are computed to assess the quality of the polynomial approxi-
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Figure 2: Trim angle of attack and inputs vs. trim speed

mation. The trim conditions assume level flight (α = θ) and no pitch rate

(q = 0 deg/s). Figure 2 shows the trim angle-of-attack α and trim inputs

(δelev, δth) versus trim speed for both the original nonlinear model and the

polynomial approximation. The trim behavior of the polynomial model is

similar to the original nonlinear model. Both models were simulated with

a variety of step and doublet inputs and the time-domain responses were

similar.
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The polynomial approximation to the original nonlinear model is only

valid within a certain region of state-space. The polynomial approxima-

tion for the trigonometric function (sin(α), cos(α) etc.) is valid up to ap-

proximately ±50 deg for the corresponding angle. This provides an upper

bound on the range of validity for the polynomial model in the α direction.

The look-up table data for the basic airframe aerodynamic coefficients is

within the range of 5 deg ≤ α ≤ 85 deg, providing a lower bound on the

region of validity in α direction. Hence, the polynomial model is valid for

5 deg ≤ α ≤ 50 deg. The least-square approximation to the rational de-

pendence on speed (
1

V
) is valid over the range from 30 m/s to 60 m/s with

a maximum error of approximately 9%. The least-square approximation of

the look-up table data to the rate derivative terms, i.e. CL,q̂ , CD,q̂, Cm,q̂,

is valid for −70 deg/s ≤ q ≤ 70 deg/s. This limits the range of validity in

the pitch rate direction. The polynomial model is valid within the above

specified region in the state-space.

This validation procedure is heuristic but it is still an open problem to

develop rigorous and computable metrics of the approximation error between

a generic nonlinear (non-analytic) model and a polynomial model. There are

many ways to conceptually extend linear system metrics, e.g. the H∞ norm,

but the difficulty is in obtaining algorithms to easily compute these metrics

for nontrivial nonlinear systems.

2.3. Polynomial Short Period Model

The longitudinal dynamics of an aircraft consist of a phugoid and short

period mode. The phugoid mode is a long duration oscillation involving air

speed and pitch angle. The short period mode is a faster oscillation involving
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angle-of-attack and pitch rate. The 4-state model of the longitudinal aircraft

dynamics (Equations 1-4) can be decoupled into models of the short period

(α and q) and phugoid (V and θ) modes. This decoupling is typically done

on the linearized model of the longitudinal dynamics (Stevens and Lewis,

1992). In fact, this decoupling can be done, to a good approximation, on the

nonlinear longitudinal dynamics. The resulting nonlinear short period model

provides a simpler model for nonlinear analysis than the 4-state longitudinal

model. This nonlinear short period model is of interest to flight control

engineers since the short period mode is an important determinant of the

aircraft flying and handling qualities. Moreover, the decoupled nonlinear

short period model may provide insight for the design an inner-loop control

laws in presence of the nonlinearities. The remainder of this section describes

the construction of the nonlinear short period model.

Consider the flight condition at level flight and the speed V = 45 m/s:
Vt

αt

qt

θt

 =


45.00 m/s

0.04924 rad

0 rad/s,

0.04924 rad

 ,
δelev,t
δth,t

 =

 14.33 %

0.04892 rad

 (16)

The subscript “t” denotes a trim value. A polynomial short period model is

extracted from the 4-state polynomial model, Equation (15), by holding V ,

θ and δth at their trim values. Define two polynomials:

g1(α, q, δelev) := f2([Vt, α, q, θt], [δth,t, δelev]) (17)

g2(α, q, δelev) := f3([Vt, α, q, θt], [δth,t, δelev]) (18)

where f2 and f3 are from the 4-state polynomial longitudinal model provided
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in Appendix A.2. The polynomial short period is given by:

α̇ = g1(α, q, δelev) (19)

q̇ = g2(α, q, δelev) (20)

The short period model has two states [α, q]T and one input δelev.

A simulation comparison is performed to verify that the polynomial short

period model provides a good approximation for the short period mode of

the original 4-state longitudinal model (Equations 1-4). The short period

model is simulated from many initial conditions [α(0), q(0)] with the elevator

held fixed at the trim value. The original 4-state model is also simulated

starting from initial conditions of the form [Vt, α(0), q(0), θt] with both inputs

held fixed at their trim values. In Figure 3, the phase plane for the short

period model is shown in solid paths while the projection of the four-state

simulation trajectory onto the (α, q) plane is shown in dotted paths. This

phase plane comparison shows that there is excellent agreement between the

trajectories of the two models over a wide range of initial conditions. The

main differences occur as the trajectories converge to the trim point. This

is due to the short period model converging to the trim condition while the

phugoid mode in the 4-state longitudinal model causes the trajectories to

have a slow, low-amplitude oscillatory behavior near the trim point. The

behavior around the trim point is shown in the inset of Figure 3. In addition

to this phase plane comparison, good agreement was observed between the

two models for simulations with step and doublet inputs. Moreover, this

short period model is valid within the specified region in the state-space as

mentioned in Section 2.2.
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3. Region of Attraction Estimation

This section provides a brief overview of a computational method to es-

timate the region of attraction (ROA). Consider an autonomous nonlinear

dynamical system of the form:

ẋ = f(x), x(0) = x0 (21)

where x ∈ Rn is the state vector and f : Rn → Rn is a multivariable polyno-

mial. Assume that x = 0 is a locally asymptotically stable equilibrium point.

Formally, the ROA is defined as:

R =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
(22)
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Computing the exact ROA for nonlinear dynamical systems is very difficult.

There has been significant research devoted to estimating invariant subsets

of the ROA (Parrilo, 2000; Vannelli and Vidyasagar, 1985; Tibken and Fan,

2006; Tibken, 2000; Hauser and Lai, 1992; Hachicho and Tibken, 2002; Gen-

esio et al., 1985; Davison and Kurak, 1971; Chiang and Thorp, 1989). The

approach taken in this paper is to restrict the search to ellipsoidal approxi-

mations of the ROA. Given an n× n matrix N = NT > 0, define the shape

function p(x) := xTNx and level set Eβ := {x ∈ Rn : p(x) ≤ β}. p(x)

defines the shape of the ellipsoid and β determines the size of the ellipsoid

Eβ. The choice of p is problem dependent and reflects dimensional scaling

information as well as the importance of certain directions in the state space.

Given the shape function p, the problem is to find the largest ellipsoid Eβ
contained in the ROA:

β∗ = max β (23)

subject to: Eβ ⊂ R

Determining the best ellipsoidal approximation to the ROA is still a chal-

lenging computational problem. Instead, lower and upper bounds for β∗

satisfying β ≤ β∗ ≤ β̄ are computed. If the lower and upper bounds are

close then the largest ellipsoid level set, defined by Equation (23), has been

approximately computed.

The upper bounds are computed via a search for initial conditions leading

to divergent trajectories. If limt→∞ x(t) = +∞ when starting from x(0) =

x0,div then x0,div /∈ R. If we define β̄div := p(x0,div) then Eβ̄div
6⊂ R which

implies β∗ ≤ β̄div and Eβ∗ ⊆ Eβ̄div
. An exhaustive Monte Carlo search is used

to find the tightest possible upper bound on β∗. Specifically, random initial
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conditions are chosen starting on the boundary of a large ellipsoid: Choose

x0 satisfying p(x0) = βtry where βtry is sufficiently large that βtry � β∗. If

a divergent trajectory is found, the initial condition is stored and an upper

bound on β∗ is computed. βtry is then decreased by a factor of 0.995 and the

search continues until a maximum number of simulations is reached. β̄MC will

denote the smallest upper bound computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent re-

sults connecting sums-of-squares polynomials to semidefinite programming.

Computing these bounds requires the vector field f(x) in Equation (21) to

be a polynomial function. A basic introduction to sum-of-squares optimiza-

tions is provided in Appendix B. The algorithm to compute a lower bound

using sum-of-squares optimizations is briefly described here. Full algorithmic

details are provided in the references (Jarvis-Wloszek, 2003; Jarvis-Wloszek

et al., 2003; Tan and Packard, 2004; Jarvis-Wloszek et al., 2005; Tan, 2006;

Topcu et al., 2007, 2008). Lemma 1 is the main Lyapunov theorem used to

compute lower bounds on β∗. This specific lemma is proved by Tan (2006)

but very similar results are given in textbooks, e.g. by Vidyasagar (1993).

Lemma 1. If there exists γ > 0 and a polynomial V : Rn → R such that:

V (0) = 0 and V (x) > 0 ∀x 6= 0 (24)

Ωγ := {x ∈ Rn : V (x) ≤ γ} is bounded. (25)

Ωγ ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} ∪ {0} (26)

then for all x ∈ Ωγ, the solution of Equation (21) exists, satisfies x(t) ∈ Ωγ

for all t ≥ 0, and Ωγ ⊂ R.

A function V , satisfying the conditions in Lemma 1 is a Lyapunov func-
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tion and Ωγ provides an estimate of the region of attraction. If x = 0 is

asymptotically stable, a linearization can be used to compute a Lyapunov

function. Let A := ∂f
∂x

∣∣
x=0

be the linearization of the dynamics about the ori-

gin and compute P > 0 that solves the Lyapunov equation ATP +PA = −I.

VLIN(x) := xTPx is a quadratic Lyapunov function that satisfies the condi-

tions of Lemma 1 for sufficiently small γ > 0. VLIN can be used to compute

a lower bound on β∗ by solving two maximizations:

γ∗ := max γ (27)

subject to: Ωγ ⊂ {x ∈ Rn : ∇VLIN(x)f(x) < 0}

β := max β (28)

subject to: Eβ ⊂ Ωγ∗

The first maximization finds the largest level set Ωγ∗ of VLIN such that

Lemma 1 can be used to verify Ωγ∗ ⊆ R. The second maximization finds the

largest ellipsoid Eβ contain within Ωγ∗ . The computational algorithm used

replaces the set containment constraints with a sufficient condition involving

non-negative functions (Tan, 2006). For example, Eβ ⊂ Ωγ∗ in Optimiza-

tion (28) is replaced by

β := max
β, s(x)

β (29)

subject to: s(x) ≥ 0 ∀x

− (β − p(x)) s(x) + (γ∗ − VLIN(x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. it is found

as part of the optimization. It is straight-forward to show that the two non-

18



negativity conditions in Optimization (29) are a sufficient condition for the

set containment condition in Optimization (28). If s(x) is restricted to be

a polynomial then both constraints involve the non-negativity of polynomial

functions. A sufficient condition for a generic multi-variate polynomial h(x)

to be non-negative is the existence of polynomials {g1, . . . , gn} such that

h = g2
1 + · · · + g2

n. A polynomial which can be decomposed in this way is

rather appropriately called a sum-of-squares (SOS). Finally, if we replace the

non-negativity conditions in Optimization (29) with SOS constraints, then

we arrive at an SOS optimization problem:

β := max β (30)

subject to: s(x) is SOS

− (β − p(x))s(x) + (γ∗ − VLIN(x)) is SOS

There are connections between SOS polynomials and semidefinite matrices.

Moreover, optimization problems involving SOS constraints can be converted

and solved as a semidefinite programming optimization. Importantly, there

is freely available software to set up and solve these problems (Prajna et al.,

2004; Lofberg, 2004; Sturm, 1999; Balas et al., 2009). β
LIN

will denote the

lower bound obtained from Optimization (30) using the quadratic Lyapunov

function obtained from linearized analysis.

Unfortunately, β
LIN

is usually orders of magnitude smaller than the upper

bound β̄MC . Several methods to compute better Lyapunov functions exist,

including V -s iterations (Jarvis-Wloszek, 2003; Jarvis-Wloszek et al., 2003;

Tan and Packard, 2004; Jarvis-Wloszek et al., 2005), bilinear optimization

(Tan, 2006), and the use of simulation data (Topcu et al., 2007, 2008). In this
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paper, the V -s iteration is used. The Lyapunov function V (x) in the iteration

is initialized with the linearized Lyapunov function VLIN . The iteration also

uses functions l1(x) = −ε1xTx and l2(x) = −ε2xTx where ε1 and ε2 are small

positive constants on the order of 10−6. The V -s iteration algorithm steps

are provided below.

1. γ Step: Hold V fixed and solve for s2 and γ∗

γ∗ := max
s2∈SOS,γ

γ s.t. − (γ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS

2. β Step: Hold V , γ∗ fixed and solve for s1 and β

β := max
s1∈SOS,β

β s.t. − (β − p)s1 + (γ∗ − V ) ∈ SOS

3. V step: Hold s1, s2, β, γ∗ fixed and solve for V satisfying:

− (γ∗ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS

− (β − p)s1 + (γ∗ − V ) ∈ SOS

V − l1 ∈ SOS, V (0) = 0

4. Repeat as long as the lower bound β continues to increase.

Software and additional documentation on the V -s iteration is provided at

Balas et al. (2009). The basic issue is that searching for a Lyapunov function

V results in a bilinear term V s2 in the γ constraint. This bilinear term can

not be handled directly within the SOS programming framework because the

constraints in SOS programs must be linear in the decision variables. The

V − s iteration avoids the bilinearity in V s2 by holding either s2 or V fixed.

Each step of this iteration is a linear SOS optimization that can be solved

with available software. In the V -s iteration, the Lyapunov functions are

allowed to have polynomial degree greater than two. Increasing the degree
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of the Lyapunov function will improve the lower bound at the expense of

computational complexity.

The V step requires additional discussion. An interior-point linear matrix

inequality solver is used to find a feasible solution to the feasibility problem

in the V step. The Lyapunov function V that is used in the γ and β steps will

be feasible for the constraints in the V step. Thus it possible for the solver

to simply return the same Lyapunov function that was used in the γ and β

steps. While this is possible, it typically happens that the solver returns a

different V that allows both γ and β to be increased at the next iteration.

This step is informally justified by the fact that interior point solvers try to

return a solution at the analytic center of set specified by the linear matrix

inequality constraints. Thus the V step typically returns a feasible V that is

“pushed away” from the constraints. A more formal theory for the behavior

of this feasibility step is still an open question.

4. Analysis of Generic Transport Models

4.1. Analysis of Short Period Model

In this section the region of attraction for the short period GTM in Equa-

tions (19)-(20) is analyzed. Since this model has only two states it is easy

to plot and visualize the entire phase plane. The analysis in this section is

for illustrative purposes and a more realistic, higher-dimensional example is

provided in Section 4.2.

The open-loop short period model can be analytically linearized about

the trim condition to obtain a linear short period model: ˙δx = Aδx + Bδu

where δx := [α− αt, q− qt]T and δu := δelev − δelev,t. For the trim condition

21



in Equation (16) the state matrices are given by:

A =

∂g1∂α
∂g1
∂q

∂g2
∂α

∂g2
∂α

 ∣∣∣∣
(αt, qt)

=

−3.236 0.9227

−45.34 −4.372

 (31)

B =

 ∂g1
∂δelev

∂g2
∂δelev

 ∣∣∣∣
(αt, qt, δelev,t)

=

−0.3166

−59.98

 (32)

The eigenvalues of this linearization are −3.80 ± 6.44i. The trim condition

is asymptotically stable since the eigenvalues are in the open left half of

the complex plane. Figure 4 shows the phase plane simulation of the linear

(dashed) and nonlinear (solid) short period model. Qualitatively, both the

linear and nonlinear phase plane have stable spiral characteristics. This

qualitative similarity between the linear and nonlinear short period model

implies that the nonlinearities are not significant and the results of linear

analyses are expected to be valid over a wide range of flight conditions.

Moreover, Figure 4 demonstrates that region of attraction for the short period

model contains the region of the state space over which the polynomial model

is valid. Recall, the region of validity for the polynomial model is mentioned

in Section 2.1.

For the purposes of illustration, it is demonstrated that the linearization

can fail to detect the effects of significant nonlinearities. Recall that in the

GTM model, Cm is based on three look-up tables:

Cm(α, δelev, q̂) = Cm,α(α) + Cm,δelev
(α, δelev) + Cm,q̂(α, q̂) (33)

The look-up table data for pitch damping derivative Cm,q̂ is provided on a grid

of twenty-four values of angle of attack α in [−0.5236, 0.8727] rad ([−30, 50]

deg) and fifteen values of normalized pitch rate q̂ in [−7.500× 10−3, 7.500×
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Figure 4: Nonlinear (solid) and linear (dashed) phase plane simulation for polynomial

GTM short period model

10−3] (unitless). It is easier to interpret this data in terms of actual rather

than normalized pitch rates. The normalized pitch rates in the table grid can

be converted at a trim speed Vt to actual pitch rates via the relation q = 2Vt

c̄
q̂.

This relation is q = 322.6q̂ rad/s (=1.8484 × 104q̂ deg/s) at the trim speed

Vt = 45m/s. Figure 5 shows the raw look-up table data Cm,q̂ versus q for five

different values of α. Each thin solid-dotted line is Cm,q vs. q for a specific

value of α in the look-up table.

In the polynomial longitudinal model, a linear fit is used to approximate

the rate damping look-up table: Cm,q̂(α, q̂) ≈ −41.25q̂. The rate damping

is independent of the angle of attack in the approximation. This linear fit

can be converted to actual pitch rate (rad/s) at the trim speed Vt = 45m/s:

Cm,q̂ ≈ −0.1279q. Figure 5 also shows the linear fit versus pitch rate in
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deg/s (thick solid line). This linear relationship is a typical characteristic of

a commercial aircraft like the GTM.

Figure 5: Pitch rate damping vs. pitch rate for raw look-up table data, linear fit, and

cubic nonlinearity.

To demonstrate the effects of nonlinearities consider the following cubic

pitch rate damping function:

Cm,q̂(α, q̂) = −41.25q̂ + 5.318q̂3 (34)

This function, shown in Figure 5 as a thick dashed curve, results in less

damping at higher pitch rates and would lead to a less stable short period

model. The inclusion of this cubic term is purely to illustrate the effects of

aerodynamic nonlinearities on a simple model. It is not meant to model the

behavior of the actual GTM aircraft at high pitch rates. The Cm aerodynamic
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coefficient only enters the q̇ dynamic equation (Equation (3)). Hence the

cubic term modification to Cm,q̂ only affects the function f3 in polynomial

longitudinal model provided in the Appendix. The updated f3 based on

Equation (34) is given below as f̃3.

f̃3 = −6.573× 10−9V 5q3 + 1.747× 10−6V 4q3 − 1.548× 10−4V 3q3

− 3.569× 10−3V 2α3 + 4.571× 10−3V 2q3 + 4.9530× 10−5V 3q

+ 9.596× 10−3V 2α2 + 2.049× 10−2V 2αδelev − 2.431× 10−2V 2α

− 3.063× 10−2V 2δelev − 4.388× 10−3V 2q − 2.594× 10−7δ3
th

+ 2.461× 10−3V 2 + 1.516× 10−4δ2
th + 1.089× 10−2δth

+ 1.430× 10−1

(35)

The linearization of the updated short period model is unchanged by this

modification and is still given by Equations (31) and (32). This statement is

verified by noting that Cm,q̂ only affects the short period linearization through

a term of the form:

∂Cm,q̂
∂q

∣∣∣∣
(αt, qt)

=

[
−41.25

c̄

2V
+ 15.96

( c̄

2V
q
)2
] ∣∣∣∣

(αt, qt)

(36)

The second term is due to the cubic nonlinearity but this term is zero since

qt = 0 at trim. To summarize, the linearization predicts no change in the

aircraft stability when the cubic rate damping term is included.

Figure 6 shows the phase plane for the short period model with this cubic

rate damping term. The stable trajectories are in solid while the dashed

trajectories grow unbounded. The region of attraction consists of all points

that lie on the stable (solid) trajectories. As expected, the cubic term in
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Cm,q̂ decreases the aircraft damping and this reduces the size of the region

of attraction.

Figure 6 also shows two ellipsoidal estimates of the region of attraction.

These are computed using the V -s iteration with quartic Lyapunov function

as described in the Section 3 but with different shape functions. T he se-

lection of the shape factor is problem dependent and engineering judgement

is required to choose this. Usually, the relative weightings of the diagonal

elements of the shape factor is determined by the physical operating range of

the states around the trim point. In other words, the shape matrix roughly

scales each state by the maximum magnitude observed during the flight con-

ditions. The solid ellipse is computed with the shape function p1(x) = xTN1x

where x := [α − αt, q − qt] and N1 := diag(0.3491 rad, 0.8727 rad/s)−2 :=

diag(20 deg, 50 deg/s)−2. For this shape function the lower bound on the

region of attraction estimate is β
1

= 1.76. This verifies that the ellipse

Eβ
1

:= {x ∈ Rn : p1(x) ≤ β
1
} is a subset of the region of attraction. The

center of the ellipse is at the trim condition. It has a minor axis length

of 20 deg · β
1

= 26.53 deg along the α axis and a major axis length of

50 deg/s · β
1

= 66.33 deg/s along the q axis. Note that there is an unstable

trajectory that nearly touches the boundary of Eβ
1
. Thus the ellipsoidal es-

timate is tight in the sense that any further increase the size of the ellipse

will cause it to no longer be a subset of the ROA.

Choosing the shape matrix as N2 := diag(0.1745 rad, 0.8727 rad/s)−2 :=

diag(10 deg, 50 deg/s)−2 decreases the shape of the ellipse in the α direction

as compared to the q direction. For the shape function p2(x) = xTN2x the

lower bound on the region of attraction estimate is β
2

= 5.69. Eβ
2

:= {x ∈
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Figure 6: Phase plane simulation for polynomial short period model with cubic Cm,q̂ with

lower bound estimation of ROA for different shape factor; Stable trajectories are denoted

by solid and dashed denotes the unstable trajectories

Rn : p2(x) ≤ β
2
} is shown as the dashed ellipse in Figure 6. This estimate is

also tight since it has an unstable trajectory that nearly touches the boundary

of the ellipse. This estimate of the region of attraction is significantly larger

in q direction than Eβ
1

and it is only slightly smaller in the α direction.

Ultimately the choice between p1 and p2 depends on which direction of the

state space is more important to the analyst.

Moreover, Figure 7 shows the Lyapunov sublevel sets for different shape

factor. V1 and V2 indicate Lyapunov function for the shape factor N1 and

N2, respectively. Notice that, each of the estimated ellipsoidal approxima-

tion (shown in dash-dotted) just touches the boundary of the corresponding
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Lyapunov sublevel set. This indicates that the estimate is tight for the given

shape factor.
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Figure 7: Invariant sublevel sets of Lyapunov function for shape factor N1 (solid) and N2

(dashed); Estimated ellipsoidal approximation is also shown in dash-dotted

This example demonstrates the benefit of nonlinear region of attraction

estimation for flight control analysis. A comparison between Figures 4 and 6

demonstrates that the addition of the cubic pitch rate damping nonlinearity

significantly reduced the size of the stability region. However, the short

period linearization is unaffected by this nonlinear term and hence linear

analyses fail to detect any stability issues. The reduction in the stability

region is captured by the nonlinear ROA estimation technique.

This example also graphically demonstrates that impact of the shape
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function on the region of attraction estimate. In a generic, higher dimen-

sional problem the shape function level sets are ellipsoids. The choice of a

shape function would depend on the relative importance and units of the

states. The unstable trajectories can also be used to judge the quality of the

ellipsoidal ROA lower bounds. For a higher dimensional problems, the phase

plane is not easily visualized. The Monte Carlo search described in Sec-

tion 4.2 is used to compute upper bounds on the optimal ellipsoidal estimate

from unstable trajectories. Section 4.2 applies the techniques to computing

both lower and upper bounds for the ellipsoidal ROA of the 4-state longitu-

dinal GTM dynamics.

4.2. Analysis of 4-State Longitudinal Model

Phase-plane simulation alone is sufficient to understand the stability re-

gions for 2-state models. However, phase-plane analysis is not applicable

when the state dimension is greater than two or three. In this section, the

techniques described in Section 3 are used to estimate the stability region

of the 4-state longitudinal GTM dynamics with a simple proportional inner-

loop control law.

Inner loop pitch rate feedback is typically used to improve the short period

damping of the aircraft. The following proportional pitch rate feedback is

used to improve the damping of the GTM aircraft:

δelev = Kqq + δ̄elev = 0.0698q + δ̄elev (37)

The open loop short period dynamics of the GTM are slightly underdamped.

The poles of the short period linearization (Equation 31) have a damping

ratio of 0.509. The rate feedback controller increases the damping ratio
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to 0.713. Equations (15) and (37) describe the nonlinear dynamics of the

closed-loop system with the thrust being held at its trim value.

Region of attraction analysis is performed for the GTM aircraft around

the level flight condition at V = 45 m/s. The full trim condition is given by

Equation (16). The shape function is p(z) = zTNz where

N := diag(20 m/s, 0.3491 rad, 0.8727 rad/s, 0.3491 rad)−2 (38)

:= diag(20 m/s, 20 deg, 50 deg/s, 20 deg)−2

The shape function, p, roughly scales each state by the maximum magni-

tude observed during the flight condition. At straight and level flight, α and

θ are expected to have similar deviations. Hence, the maximum deviation

for both α and θ are chosen to be of the same magnitude. The velocity is

assumed to deviate at most 20 m/s from its trim airspeed of 45 m/s during

the flight condition. This range of airspeed (V ∈ [25 m/s, 65 m/s]) is outside

the range of validity of the model by 5 m/s. Recall, the polynomial model

is valid over the range of airspeed from 30 m/s to 60 m/s. The maximum

deviation in pitch rate is chosen so that the maximum deviation stays within

the range of model validity in the pitch rate direction. The polynomial model

is valid for −70 deg/s ≤ q ≤ 70 deg/s.

The polynomial model of the longitudinal dynamics was modified in two

ways to make it suitable for the computational algorithms. First the state

was redefined as z := x− xt := [V − Vt, α− αt, q − qt, θ − θt]T to shift the

trim condition to the origin of the state space. Next, all polynomial terms

with degree greater than five and/or coefficients less than 10−6 were removed

from the model. The terms have negligible effect on the model but their
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removal greatly reduces the computation time for the lower bounds due to

the computation of the V -s iteration growing rapidly with the degree of the

polynomial model and the Lyapunov function.

Scaling of the model is another important issue for the numerical stability

of the V -s iteration. The magnitude of the coefficients in the fifth order

closed-loop polynomial model can vary greatly. For example, the magnitude

of the minimum and maximum coefficients in the velocity derivative equation

(V̇ ) are 6.860 × 10−6 and 85.38, respectively. Scaling of the state-space of

the closed-loop dynamics is used to improve the numerical conditioning. The

states are scaled as zscl = Dz whereD = N2. In the zscl coordinates the shape

function is p(zscl) = zTsclzscl. After scaling the magnitude of the minimum and

maximum coefficients in the velocity derivative equation (V̇ ) are 1.197×10−4

and 0.520, respectively. The V -s iteration was run on the scaled model and

results converted back to unscaled coordinates.

The V -s iteration with a quartic Lyapunov function resulted in a lower

bound estimate of β
4

= 3.36. This verifies that the ellipsoid Eβ
4

:= {x ∈ Rn :

p(x) ≤ β
4
} is a subset of the region of attraction. The center of the ellipsoid

is at the trim condition. It has a length of 20 deg ·
√
β

4
= 36.66 deg along the

α axis. The other axis lengths can be computed similarly. The upper bound

from Monte Carlo simulation approach is computed to be β̄MC = 3.76. In

other words, Monte Carlo simulation found an unstable trajectory with a

point on the ellipsoid Eβ
MC

.

The ellipsoidal bounds on the region of attraction can be visualized by

plotting slices of the ellipsoids Eβ
4

and Eβ
MC

. Figure 8 shows slices of these

ellipsoidal ROA bounds in the α-q plane. The solid ellipse is the slice of
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Figure 8: Lower and Upper Bound Estimate of ROA for the GTM longitudinal model;

the rectangular region defines the validity region of the model

the Eβ
4
. Every initial condition within this ellipsoid will return to the trim

condition (marked as an ’x’). The dashed ellipse is the slice of Eβ
MC

in the

α-q plane. There is an unstable trajectory that touches Eβ
MC

although it may

not necessarily touch the ellipse in the α-q plane. The Monte Carlo search

returned the following initial condition yielding an unstable trajectory.

x0,div := [45.36 m/s, −0.6231 rad, 0.3701 rad/s, 1.1957 rad]T

:= [45.36 m/s, −35.70 deg, 21.21 deg/s, 68.51 deg]T

The dotted rectangular box in Figure 8 shows the region of validity for the

model. The region of validity for the polynomial model is explained in Sec-

tion 2.1. The closeness of the inner and outer ellipsoids implies, for engineer-

ing purposes, that the best ROA ellipsoid problem has been solved.
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The ellipsoidal bounds in Figure 8 are symmetric about the trim point.

This is due to the choice of a shape function p centered at the trim point. The

region of interest in the state space is not symmetric about the trim point.

For example, the model region of validity is skewed toward positive angles

of attack. It is possible to perform the region of attraction analysis with

shape functions that are not symmetric about the trim point. However the

theoretical and algorithmic details of non-symmetric shape functions have

not been fully developed. This will be investigated further in future work.

Both lower (β
4
) and upper bounds (β̄MC) of the ROA ellipsoid provide

useful information. The lower bound ellipsoid Eβ
4

defines the set of initial

conditions for which the control law will bring the aircraft back to its trim

point. If the aircraft is perturbed due to a wind gust or other upset con-

dition but remains within this ellipsoid then the control law will recover

the aircraft and bring it back to trim. For example, the state [V, α, q, θ]T

= [Vt, 30.0 deg, 20.0 deg/s, θt]
T is inside Eβ

4
. If a disturbance pushes the

GTM aircraft to this state then the control law will bring the aircraft back

to its trim point. The upper bound ellipsoid Eβ
MC

contains at least one ini-

tial condition that will cause the aircraft to diverge from its trim condition.

Upset conditions that push the aircraft state to this upper bound ellipsoid

could lead to loss of control. In other words, information from these two

ellipsoids can be used to draw conclusions about the safe flight envelope.

The size of these ellipsoids measure the robustness of the flight control law

to disturbances. In summary, the ellipsoids define a metric for the safe flight

envelope of the GTM aircraft.

The proposed V -s iteration employs SOS polynomial optimization algo-
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rithm. Hence, estimating the ROA bound can be computationally intensive.

The computational time required to estimate the lower bounds are summa-

rized in Table 2. Note, results for quadratic Lyapunov function are also

presented in Table 2. The quartic /degree six Lyapunov functions provide

better lower bounds than the quadratic Lyapunov functions. The degree six

Lyapunov function has resulted significantly improved lower bounds than the

quadratic one for the 4-state problem. However, the bounds are very close for

the 2-state problem for different degree of Lyapunov function. The analyses

are performed on Intel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM

Table 2: Computational time for performing ROA analysis. Analysis performed on In-

tel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM

Plant Lyapunov iteration β Time (sec)

2nd 12 1.50 50.8
2 State, 3rd Degree

4th 45 1.76 96.9

2nd 30 0.361 802
4-state, 7th degree

4th

5. Summary

This paper demonstrated the utility of polynomial modeling and region

of attraction analysis for aircraft flight control systems. Low degree polyno-

mial models were constructed for the longitudinal and short period dynamics

of NASA’s GTM aircraft. The nonlinear short period model is of interest

since this mode is typically decoupled using a linearization of the longitu-

dinal dynamics. Ellipsoidal region of attraction estimates were computed
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for both models. These region of attraction estimates provide quantitative

information about the nonlinear aircraft dynamics. This is in contrast to

linearizations that may be valid only in a small neighborhood of the trim

condition.

The future direction of research is oriented towards overcoming the limita-

tions imposed by using the polynomial SOS optimization technique to estimate

the ROA. The ROA estimation procedure presented in this paper does not

handle hard nonlinearities like actuator saturation. Work is under progress

to blend in the IQC framework with the presented estimation procedure to

handle actuator saturation. Another direction of research can be envisioned

by realizing that suitable metric needs to be developed for comparing two dif-

ferent nonlinear models. Moreover, the SOS technique is computationally

intensive and further investigation is required to reduce the computational

cost of the SOS technique to handle large (more than 4 states) system.
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A. Longitudinal GTM Model

A.1. Polynomial Aerodynamic Coefficients

Each aerodynamic coefficient is computed as a sum of three terms which

model the aerodynamic effects of the basic airframe, elevator inputs, and

pitch rate. For example, C∗(α, δelev, q̂) is a sum of three terms each of which

is computed from a look-up table:

C∗(α, δelev, q̂) =C∗,α(α) + C∗,δelev
(α, δelev) + C∗,q̂(α, q̂)

where * can be replaced by D, L, m to form the drag force, lift force and

pitching moment coefficient, respectively.

The basic airframe coefficients for CD, CL, Cm are:

CD,α(α) = −1.477α3 + 3.110α2 − 1.303× 10−1α + 3.060× 10−2

CL,α(α) = 2.141α3 − 6.575α2 + 5.298α + 5.337× 10−2

Cm,α(α) = −2.199× 10−1α3 + 5.912× 10−1α2 − 1.498α + 1.516× 10−1

The effects of control surface (elevator) on the aerodynamic coefficients

are modeled as:

CD,δelev
(α, δelev) = −5.943× 10−2α2 + 1.435× 10−1αδelev + 5.967× 10−2δ2

elev

+ 2.661× 10−2α + 2.733× 10−2δelev − 1.903× 10−3

CL,δelev
(α, δelev) = 4.188× 10−3α2 − 3.438× 10−1αδelev + 9.293× 10−2δ2

elev

− 3.497× 10−2α + 4.610× 10−1δelev + 2.543× 10−3

Cm,δelev
(α, δelev) = 1.263αδelev − 1.887δelev
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Finally, the contributions due to the pitch damping are expressed as:

CD,q̂(α, q̂) = −2.197× 10−2α2 + 33.58αq̂ − 151.0q̂2

− 3.022× 10−3α− 9.691× 10−1q̂ + 2.221× 10−4

CL,q̂(α, q̂) = 2.297× 10−2α2 − 1.359αq̂ − 856.7q̂2

− 1.673× 10−2α + 34.38q̂ + 3.703× 10−3

Cm,q̂(α, q̂) = −41.24q̂

A.2. 4-state Polynomial Model

The 4-state polynomial longitudinal model is provided in this subsection.

The ordering of the states and inputs are, respectively: x = [V (m/s), α(rad), q(rad/s), θ(rad)],

and u = [δelev(rad), δth(%)]. The polynomial model is:

f(x, u) := [f1(x, u), f2(x, u), f3(x, u), f4(x, u)]T

f1 = 1.233× 10−8V 4q2 + 4.853× 10−9α3δ3
th + 3.705× 10−5V 3αq

− 2.184× 10−6V 3q2 + 2.203× 10−2V 2α3 − 2.836× 10−6α3δ2
th

+ 3.885× 10−7α2δ3
th − 1.069× 10−6V 3q − 4.517× 10−2V 2α2

− 2.140× 10−3V 2αδelev − 3.282× 10−3V 2αq − 8.901× 10−4V 2δ2
elev

+ 9.677× 10−5V 2q2 − 2.037× 10−4α3δth − 2.270× 10−4α2δ2
th

− 2.912× 10−8αδ3
th + 1.591× 10−3V 2α− 4.077× 10−4V 2δelev

+ 9.475× 10−5V 2q − 1.637α3 − 1.631× 10−2α2δth + 4.903α2θ

− 4.903αθ2 + 1.702× 10−5αδ2
th − 7.771× 10−7δ3

th + 1.634θ3

− 4.319× 10−4V 2 − 2.142× 10−1α2 + 1.222× 10−3αδth

+ 4.541× 10−4δ2
th + 9.823α + 3.261× 10−2δth − 9.807θ + 4.284× 10−1
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f2 = −3.709× 10−11V 5q2 + 6.869× 10−11V α3δ3
th + 7.957× 10−10V 4αq

+ 9.860× 10−9V 4q2 + 1.694× 10−5V 3α3 − 4.015× 10−8V α3δ2
th

− 7.722× 10−12V α2δ3
th − 6.086× 10−9α3δ3

th − 2.013× 10−8V 4q

− 5.180× 10−5V 3α2 − 2.720× 10−6V 3αδelev − 1.410× 10−7V 3αq

+ 7.352× 10−7V 3δ2
elev − 8.736× 10−7V 3q2 − 1.501× 10−3V 2α3

− 2.883× 10−6V α3δth + 4.513× 10−9V α2δ2
th − 4.121× 10−10V αδ3

th

+ 3.557× 10−6α3δ2
th + 6.841× 10−10α2δ3

th + 4.151× 10−5V 3α

+ 3.648× 10−6V 3δelev + 3.566× 10−6V 3q + 6.246× 10−6V 2αq

+ 4.589× 10−3V 2α2 + 2.410× 10−74V 2αδelev − 6.514× 10−5V 2δ2
elev

+ 2.580× 10−5V 2q2 − 3.787× 10−5V α3 + 3.241× 10−7V α2δth

+ 2.409× 10−7V αδ2
th + 1.544× 10−11V δ3

th + 2.554× 10−4α3δth

− 3.998× 10−7α2δ2
th + 3.651× 10−8αδ3

th + 4.716× 10−7V 3

− 3.677× 10−3V 2α− 3.231× 10−4V 2δelev − 1.579× 10−4V 2q

+ 2.605× 10−3V α2 + 1.730× 10−5V αδth − 5.201× 10−3V αθ

− 9.026× 10−9V δ2
th + 2.601× 10−3V θ2 + 3.355× 10−3α3

− 2.872× 10−5α2δth − 2.134× 10−5αδ2
th − 1.368× 10−9δ3

th

− 4.178× 10−5V 2 + 2.272× 10−4V α− 6.483× 10−7V δth

− 2.308× 10−1α2 − 1.532× 10−3αδth + 4.608× 10−1αθ

− 2.304× 10−1θ2 + 7.997× 10−7δ2
th − 5.210× 10−3V

− 2.013× 10−2α + 5.744× 10−5δth + q + 4.616× 10−1
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f3 = −6.573× 10−9V 5q3 + 1.747× 10−6V 4q3 − 1.548× 10−4V 3q3

− 3.569× 10−3V 2α3 + 4.571× 10−3V 2q3 + 4.9530× 10−5V 3q

+ 9.596× 10−3V 2α2 + 2.049× 10−2V 2αδelev − 2.431× 10−2V 2α

− 3.063× 10−2V 2δelev − 4.388× 10−3V 2q − 2.594× 10−7δ3
th

+ 2.461× 10−3V 2 + 1.516× 10−4δ2
th + 1.089× 10−2δth + 1.430× 10−1

f4 = q

B. Basics of SOS Optimization

This appendix provides a brief review of sum-of-squares optimizations.

Additional details can be found in (Parrilo, 2000, 2003; Lasserre, 2001). A

polynomial p is a sum of squares (SOS) if there exist polynomials {fi}mi=1

such that p =
∑m

i=1 f
2
i . For example, p = x2 − 4xy + 7y2 is a sum of squares

since p = f 2
1 + f 2

2 where f1 = (x− 2y)2 and f2 = 3y2. Note that if p is a sum

of squares then p(x) ≥ 0 ∀x ∈ Rn. Thus p ∈ SOS is a sufficient condition for

a polynomial to be globally non-negative.

Quadratic forms can be expressed as p(x) = xTQx where Q is a symmetric

matrix. Similarly, polynomials of degree ≤ 2d can be expressed as p(x) =

z(x)TQz(x) where the vector z contains all monomials of degree ≤ d. This

is known as the Gram matrix form. An important fact is that p is SOS if

and only if there exists Q � 0 such that p(x) = z(x)TQz(x). This provides

a connection between SOS polynomials and positive semidefinite matrices.

A sum-of-squares program is an optimization problem with a linear cost
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and SOS constraints on the decision variables (Prajna et al., 2004):

min
u∈Rn

cTu (39)

subject to: ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ SOS (k = 1, . . . Ns)

The vector c ∈ Rn and polynomials {ak,j} are given as part of the optimiza-

tion data. u ∈ Rn are decision variables. SOS programs can be converted

to semidefinite programs (SDPs) using the connection between SOS polyno-

mials and positive semidefinite matrices. SOSTOOLS (Prajna et al., 2004),

Yalmip (Lofberg, 2004), and SOSOPT (Balas et al., 2009) are freely available

MATLAB toolboxes for solving SOS optimizations. These packages allow the

user to specify the polynomial constraints using a symbolic toolbox. Then

they convert the SOS optimization into an SDP which is solved with Se-

DuMi (Sturm, 2001, 1999) or another freely available SDP solver. Finally

the solution of the SDP is converted back to a polynomial solution.

A drawback is that the size of the resulting SDP grows rapidly if the SOS

optimization involves polynomials with many variables and/or high degree.

For a generic degree 2d polynomial p in n variables, the Gram matrix repre-

sentation involves
(
n+d
d

)
monomials. An SOS constraint on p is enforced via

a positive semidefinite constraint on the lz× lz Gram matrix Q. For example,

the Gram matrix has dimension lz = 495 for a generic degree 2d = 8 polyno-

mial in n = 8 variables. The size of this positive semidefinite constraint is at

or near the limits of current semidefinite programming solvers. While vari-

ous techniques can be used to exploit the problem structure (Gatermann and

Parrilo, 2004), this computational growth is a generic trend in SOS optimiza-

tions. For analysis of polynomial systems, this roughly limits the approach
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to systems with fewer than 8-10 states and cubic degree models. Polynomial

models of higher degree can be handled if there are fewer states.
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