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The F/A-18 Hornet aircraft with the original flight control law exhibited an out-of-

control phenomenon known as the falling leaf mode. The falling leaf mode went unde-

tected during the validation and verification stage of the flight control law. Several F/A-18

Hornet aircraft were lost due to the falling leaf mode which led to the redesign of the

lateral-directional axis of the flight control law. The revised flight control law exhibited

successful suppression of the falling leaf mode during flight tests with aggressive maneuvers.

Prior to performing expensive flight tests, the flight control law was extensively validated

and verified by performing linear robustness analysis at different trim points and running

many Monte-Carlo simulations. Additional insight can be gained by using nonlinear anal-

yses. This paper compares the two flight control laws using nonlinear region-of-attraction

analyses and Monte Carlo simulations. The results of these nonlinear analyses indicate

that the revised flight control law has better significantly improved nonlinear robustness

properties as compared with baseline design.

Nomenclature

α Angle-of-attack, rad

β Sideslip Angle, rad

V Velocity, ft
s

p Roll rate, rad
s

q Pitch rate, rad
s

r Yaw rate, rad
s

φ Bank angle, rad

θ Pitch angle, rad
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ψ Yaw angle, rad

T Thrust, lbf

ρ Density, slugs
ft3

q̄ Dynamic pressure, lbs
ft2

m Mass, slugs

g Gravitational Constant, fts2

ay Lateral acceleration, g

I.C. Initial Condition

I. Introduction

Safety critical flight systems require extensive validation prior to entry into service. Validation of the

flight control system is becoming more difficult due to the increased use of advanced flight control algorithms,

e.g. nonlinear flight controls systems. NASA’s Aviation Safety Program (AvSP) aims to reduce the fatal

(commercial) aircraft accident rate by 90% by 2022.1 A key challenge to achieving this goal is the need for

extensive validation and certification tools for the flight systems. The current certification and validation

procedure involves analysis, simulations, and experimental techniques such as flight tests.1 Prior to flight

tests, extensive analyses and simulations are performed to validate safety of the system. Standard practice is

to assess the closed-loop stability and performance characteristics of the aircraft flight control system around

numerous trim conditions using linear analysis tools. These techniques include stability margins, robustness

analyses and worst-case analyses. These linear analyses are supplemented with Monte Carlo simulations of

the full nonlinear equations of motion to provide further confidence in the system performance.

The simulations are also used to uncover nonlinear dynamic characteristics, e.g. limit cycles, that are

not revealed by the linear analyses. Hence, current practice involves extensive linear analyses at different

trim conditions and probabilistic nonlinear simulations. The certification process typically does not involve

nonlinear analysis methods. This gap between linear analyses and Monte Carlo simulations can result in

significant nonlinear effects going undetected. The F/A-18 Hornet aircraft is one example which suffered

from the existing gap in the validation procedure.

The US Navy F/A-18 A/B/C/D Hornet aircraft with the original baseline flight control law experienced

a number of out-of-control flight departures since the early 1980’s. Many of these incidents have been

described as a falling leaf motion of the aircraft.2 The falling leaf motion dynamics is nonlinear in nature

which made analysis challenging. An extensive revision of the baseline control law was performed by NAVAIR

and Boeing in 2001 to suppress departure phenomenon, improve maneuvering performance and to expand

the flight envelope.2 The revised control law was implemented on the F/A-18 E/F Super Hornet aircraft

after successful flight tests. These flight tests included aggressive maneuvers that demonstrated successful

suppression of the falling leaf motion by the revised control law.
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The baseline flight control law of the F/A-18 Hornet aircraft went through the extensive validation and

verification process without detecting the susceptibility to the falling leaf motion. The failure to detect the

falling leaf motion is not due to the lack of an accurate aerodynamic model. In fact, it was shown3 that a

nonlinear simulation model of the F/A-18 Hornet aircraft is able to reproduce the falling leaf mode. Thus

the failure to detect this susceptibility must be attributed to the lack of appropriate analysis tools.

Classical gain and phase margin analyses indicate that the revised flight control law has similar robustness

properties as the baseline flight control law.3 More advanced linear analysis tools, such as µ and worst-case

performance, indicate that the revised flight controller has noticeably better robustness properties than the

baseline control law.3 However, it can be difficult to interpret these results since the falling leaf motion is a

truly nonlinear dynamical phenomenon. Thus nonlinear analyses tools would provide useful insight into the

susceptibility of both control laws to the falling leaf motion.

Recently, significant research has been performed on the development of nonlinear analysis tools for com-

puting regions of attraction, reachability sets, input-output gains, and robustness with respect to uncertainty

for nonlinear polynomial systems.4–13 These tools make use of polynomial sum-of-squares optimization13

and hence they can only be applied to systems whose dynamics are described by polynomial vector fields.

These techniques offer great potential to complement the linear analyses and nonlinear simulations that are

typically used in the flight control validation process.

The main objective of this paper is to use Monte Carlo simulations and nonlinear region of attraction

analyses to assess the robustness properties of the two F/A-18 flight control laws. Region of attraction

(ROA) analysis for nonlinear systems provides a guaranteed stability region using Lyapunov theory and

sum-of-squares optimization.4–6,13,14 The ROA analysis complements the use of Monte Carlo simulations.

Sum-of-squares stability analysis has previously been applied to simple examples.4–6,13,14 This paper presents

the first successful application of these techniques to an actual industrial flight control problem. The falling

leaf motion is due to nonlinearities in the aircraft dynamics and cannot be replicated with linear models.

Thus analysis of the F/A-18 control laws is a particularly interesting example for the application of nonlinear

robustness analysis techniques.

The paper has the following structure. First, a computational procedure to estimate regions of attraction

for polynomial systems4–6,15–18 is provided in Section II. The six degree-of-freedom (DOF) nine state model

of the F/A-18 aircraft is discussed in Section III. State-space realizations for the baseline and revised control

laws are given in Section IV. Polynomial models are constructed in Section V for the closed loop systems

with the baseline and revised flight control laws. This step is required because the computational method to

estimate the ROA is only applicable for polynomial systems. The robustness properties of the two closed-

loop systems are then analyzed in Section VI. The paper concludes with a summary of the contributions of

the paper.
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II. Region-of-Attraction (ROA) Estimation

This section describes the technical approach to estimate the region of attraction for nonlinear, polynomial

systems. This analysis is based on a fundamental difference between asymptotic stability for linear and

nonlinear systems. For linear systems, asymptotic stability of an equilibrium point is a global property.

In other words, if an equilibrium point is asymptotically stable then its state trajectory will converge back

to the equilibrium when starting from any initial condition. For nonlinear systems, asymptotically stable

equilibrium points are not necessarily globally asymptotically stable. Khalil19 and Vidyasagar20 provide

good introductory discussions of this issue. The region-of-attraction (ROA) of an asymptotically stable

equilibrium point is the set of initial conditions whose state trajectories converge back to the equilibrium.19

If the ROA is small, then a disturbance can easily drive the system out of the ROA and the system will fail

to come back to the stable equilibrium point. Thus the size of the ROA can be interpreted as a measure of

the stability properties of a nonlinear system around an equilibrium point. This motivates the computation

of ROA estimates.

Consider an autonomous nonlinear, polynomial system of the form:

ẋ = f(x), x(0) = x0 (1)

where x ∈ Rn is the state vector and f : Rn → Rn is a multivariable polynomial. Assume that the origin

is a locally asymptotically stable equilibrium point. This assumption is without loss of generality because

state coordinates can always be redefined to shift an equilibrium point to the origin. The ROA is formally

defined as:

R :=
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
(2)

Computing the exact ROA for nonlinear dynamical systems is very difficult. There has been significant

research devoted to estimating invariant subsets of the ROA.7–13,21,22 The approach taken in this paper is

to restrict the search to ellipsoidal approximations of the ROA. Given an n× n matrix N = NT > 0, define

the shape function p(x) := xTNx and level set Eβ := {x ∈ Rn : p(x) ≤ β}. p(x) defines the shape of the

ellipsoid and β determines the size of the ellipsoid Eβ . The choice of p is problem dependent and reflects

dimensional scaling information as well as the importance of certain directions in the state space. N can

typically be chosen to be diagonal with Ni,i := 1/x2
i,max. With this choice, Eβ=1 is a coordinate-aligned

ellipsoid whose extreme points along the ith state direction are ±xi,max. In this form, the level set value β

provides an easily interpretable value for the size of the level set.

Given the shape function p, the problem is to find the largest ellipsoid Eβ contained in the ROA:

β∗ = maxβ (3)

subject to: Eβ ⊂ R

Determining the best ellipsoidal approximation to the ROA is still a challenging computational problem.
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Instead, lower and upper bounds for β∗ satisfying β ≤ β∗ ≤ β̄ are computed. If the lower and upper bounds

are close then the largest ellipsoid level set, defined by Equation (3), has been approximately computed.

The upper bounds are computed via a search for initial conditions leading to divergent trajectories. If

limt→∞ x(t) = +∞ when starting from x(0) = x0,div then x0,div /∈ R. If we define β̄div := p(x0,div) then

Eβ̄div 6⊂ R which implies β∗ ≤ β̄div. An exhaustive Monte Carlo search is used to find a tight upper bound

on β∗. Specifically, random initial conditions are chosen starting on the boundary of a large ellipsoid: x0

is chosen to satisfy p(x0) = βtry where βtry is sufficiently large that βtry � β∗. If a divergent trajectory

is found, the initial condition is stored and an upper bound on β∗ is computed. βtry is then decreased by

a factor of 0.995 and the search continues until a maximum number of simulations is reached. There is a

trade-off involved in choosing the factor 0.995. A smaller factor results in a larger reduction of the upper

bound for each divergent trajectory but it typically limits the accuracy of the upper bound. No divergent

trajectories can be found when βtry < β∗ and this roughly limits the upper bound accuracy to β∗/(factor).

The value of 0.995 is very close to one and is chosen to obtain an accurate upper bound on β∗. β̄MC will

denote the smallest upper bound computed with this Monte Carlo search.

The lower bounds are computed using Lyapunov functions and recent results connecting sums-of-squares

polynomials to semidefinite programming. Computing these bounds requires the vector field f(x) in Equa-

tion (1) to be a polynomial function. The computational algorithm is briefly described here and full algo-

rithmic details are provided in references.4–6,15–18 Lemma 1 is the main Lyapunov theorem used to compute

lower bounds on β∗. This specific lemma is proved by4 but very similar results are given in textbooks.20

Lemma 1 If there exists γ > 0 and a polynomial V : Rn → R such that:

V (0) = 0 and V (x) > 0 ∀x 6= 0 (4)

Ωγ := {x ∈ Rn : V (x) ≤ γ} is bounded. (5)

Ωγ ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} ∪ {0} (6)

then for all x ∈ Ωγ , the solution of Equation (1) exists, satisfies x(t) ∈ Ωγ for all t ≥ 0, and Ωγ ⊂ R.

A function V , satisfying the conditions in Lemma 1 is a Lyapunov function and Ωγ provides an estimate of

the region of attraction. If x = 0 is asymptotically stable, a linearization can be used to compute a Lyapunov

function. Let A := ∂f
∂x

∣∣∣
x=0

be the linearization of the dynamics about the origin and compute P > 0 that

solves the Lyapunov equation ATP + PA = −I. VLIN (x) := xTPx is a quadratic Lyapunov function that

satisfies the conditions of Lemma 1 for sufficiently small γ > 0. VLIN can be used to compute a lower bound
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on β∗ by solving two maximizations:

γ∗ := max γ (7)

subject to: Ωγ ⊂ {x ∈ Rn : ∇VLIN (x)f(x) < 0}

β := maxβ (8)

subject to: Eβ ⊂ Ωγ∗

The first maximization finds the largest level set Ωγ∗ of VLIN such that Lemma 1 can be used to verify

Ωγ∗ ⊆ R. The second maximization finds the largest ellipsoid Eβ contain within Ωγ∗ . The set containment

constraints are replaced with a sufficient condition involving non-negative polynomials.4 For example, Eβ ⊂

Ωγ∗ in Optimization (8) is replaced by

β := max
β, s(x)

β (9)

subject to: s(x) ≥ 0 ∀x

− (β − p(x)) s(x) + (γ∗ − VLIN (x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. it is found as part of the optimization.

It is straight-forward to show that the two non-negativity conditions in Optimization (9) are a sufficient

condition for the set containment condition in Optimization (8). If s(x) is restricted to be a polynomial,

both constraints involve the non-negativity of polynomial functions. A sufficient condition for a generic

multi-variate polynomial h(x) to be non-negative is the existence of polynomials {g1, . . . , gn} such that

h = g2
1 + · · · + g2

n. A polynomial which can be decomposed in this way is called a sum-of-squares (SOS).

Finally, if we replace the non-negativity conditions in Optimization (9) with SOS constraints, then we arrive

at an SOS optimization problem:

β := maxβ (10)

subject to: s(x) is SOS

− (β − p(x))s(x) + (γ∗ − VLIN (x)) is SOS

There are connections between SOS polynomials and semidefinite matrices. Moreover, optimization prob-

lems involving SOS constraints can be converted and solved as a semidefinite programming optimization.

Importantly, there is freely available software to set up and solve these problems.14,23–25 β
LIN

will denote

the lower bound obtained from Optimization (10) using the quadratic Lyapunov function obtained from

linearized analysis.

Unfortunately, β
LIN

is usually orders of magnitude smaller than the upper bound β̄MC . Several methods
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to compute better Lyapunov functions exist, including V -s iterations,15–18 bilinear optimization,4 and the use

of simulation data.5,6 In this paper, V -s iteration is used to compute the Lyapunov function and the inner

ellipsoidal approximation to the ROA. The Lyapunov function V (x) in the iteration is initialized with the

linearized Lyapunov function VLIN . The iteration also uses functions l1(x) = −ε1xTx and l2(x) = −ε2xTx

where ε1 and ε2 are small positive constants on the order of 10−6. The V -s iteration algorithm steps are:

1. γ Step: Hold V fixed and solve for s2 and γ∗

γ∗ := max
s2∈SOS,γ

γ s.t. − (γ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS

2. β Step: Hold V , γ∗ fixed and solve for s1 and β

β := max
s1∈SOS,β

β s.t. − (β − p)s1 + (γ∗ − V ) ∈ SOS

3. V step: Hold s1, s2, β, γ∗ fixed and solve for V satisfying:

− (γ∗ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS

− (β − p)s1 + (γ∗ − V ) ∈ SOS

V − l1 ∈ SOS, V (0) = 0

4. Repeat as long as the lower bound β continues to increase.

Software and additional documentation on the V -s iteration is provided in the references.25 The basic

issue is that searching for a Lyapunov function V results in a bilinear term V s2 in the γ constraint. This

bilinear term can not be handled directly within the SOS programming framework because the constraints

in SOS programs must be linear in the decision variables. The V − s iteration avoids the bilinearity in

V s2 by holding either s2 or V fixed. Each step of this iteration is a linear SOS optimization that can be

solved with available software. In the V -s iteration, the Lyapunov functions are allowed to have polynomial

degree greater than two. Increasing the degree of the Lyapunov function will improve the lower bound at

the expense of computational complexity.

The V step requires additional discussion. An interior-point linear matrix inequality solver is used to

find a feasible solution to the feasibility problem in the V step. The Lyapunov function V that is used in the

γ and β steps will be feasible for the constraints in the V step. Thus it is possible for the solver to simply

return the same Lyapunov function that was used in the γ and β steps. While this is possible, it typically

happens that the solver returns a different V that allows both γ and β to be increased at the next iteration.

This step can be understood by the fact that interior point solvers try to return a solution at the analytic

center of set specified by the linear matrix inequality constraints. Thus the V step typically returns a feasible

V that is “pushed away” from the constraints. A more formal theory for the behavior of this feasibility step

is an open question.
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III. F/A-18 Aircraft and Model Development

This section provides a brief mathematical description of the six degree-of-freedom (DOF) F/A-18 air-

craft. A more detailed description can be found in3 and the references therein. It is important to note that

the falling leaf motion can be reproduced in simulation using this six DOF model of the F/A-18 aircraft.3

The mathematical description of the DOF, 9-state model for the F/A-18 aircraft uses flight tests data

publicly available for the F/A-18 High Alpha Research Vehicle (HARV).26–30 The aerodynamic characteristics

of the F/A-18 Hornet and Super Hornet are similar to the HARV aircraft. The aerodynamic characteristics

of the aircraft are expressed as closed-form polynomial approximations to flight test data with functional

dependence on states and control surfaces.3 State variables describing the F/A-18 mathematical model are:

velocity (V , ft/s), sideslip angle (β, rad), angle-of-attack (α, rad), roll rate (p, rad/s), pitch rate (q, rad/s),

yaw rate (r, rad/s), bank angle (φ, rad), pitch angle (θ, rad) and yaw angle (ψ, rad). Symmetric stabilator

(δstab, rad), differential aileron (δail, rad), differential rudder (δrud, rad) and thrust (T , lbf) are considered

as control effectors for the analyses performed in this paper. Table 1 lists the aerodynamic reference and

physical parameters of the F/A-18 Hornet.31

Table 1. Aircraft Parameters

Wing Area, S 400 ft2

Mean Aerodynamic Chord, c̄ 11.52 ft
Wing Span, b 37.42 ft

Mass, m 1034.5 slugs
Roll Axis Moment of Inertia, Ixx 23000 slug-ft2

Pitch Axis Moment of Inertia, Iyy 151293 slug-ft2

Yaw Axis Moment of Inertia, Izz 169945 slug-ft2

Cross-product of Inertia about y-axis, Ixz -2971 slug-ft2

The mathematical model of the F/A-18 Hornet is described by the conventional aircraft equations of

motion30,32,33 in the following form:

ẋ = f(x, u) (11)

where x := [V (ft/s), β(rad), α(rad), p(rad/s), q(rad/s) r(rad/s), φ(rad), θ(rad), ψ(rad)]. and u :=

[δail(rad), δrud(rad), δstab(rad), T (lbf)].

The equations of motion are presented next. Closed-form polynomial expressions for the aerodynamic

coefficients are presented in Appendix A. A detailed description of the aerodynamic model is provided in.3

The kinematics of the aircraft are described in terms of Euler angles. The kinematic relations are given

in Equation (12). 
φ̇

θ̇

ψ̇

 =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ



p

q

r

 (12)
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Equation (13) defines the force equations for the F/A-18 Hornet. The aerodynamic forces, gravity forces

and thrust force applied to the aircraft are considered. For all analyses, the thrust force is assumed to be

constant and fixed at its trim value.

V̇ = − 1
m

(D cosβ − Y sinβ) + g(cosφ cos θ sinα cosβ + sinφ cos θ sinβ

− sin θ cosα cosβ) +
T

m
cosα cosβ (13a)

α̇ = − 1
mV cosβ

L+ q − tanβ(p cosα+ r sinα)

+
g

V cosβ
(cosφ cos θ cosα+ sinα sin θ)− T sinα

mV cosβ
(13b)

β̇ =
1
mV

(Y cosβ +D sinβ) + p sinα− r cosα+
g

V
cosβ sinφ cos θ

+
sinβ
V

(g cosα sin θ − g sinα cosφ cos θ +
T

m
cosα) (13c)

where CD, CL, CY denote the drag, lift and sideforce coefficients, respectively. These force coefficients are

expressed as a sum of basic airframe and control deflections as C∗ = C∗,basic(α, β) + C∗,control(α, δcontrol).

The variable ’*’ denotes D, L, Y and δcontrol can be replaced by δstab, δail, δrud. The detailed expressions

for these force coefficients are provided in Appendix A.

The aerodynamic moments are considered for external applied moments. The gyroscopic effect of the

moment is neglected in this paper. Equation (14) describes the moment equations for the F/A-18 Hornet.


ṗ

q̇

ṙ

 =


Izz
κ 0 Ixz

κ

0 1
Iyy

0

Ixz
κ 0 Ixx

κ




l

M

n

−


0 −r q

r 0 −p

−q p 0




Ixx 0 −Ixz

0 Iyy 0

−Ixz 0 Izz



p

q

r


 (14)

where κ = IxxIzz − I2
xz. l := q̄SbCl, M := q̄ScCM , n := q̄SbCn denote the roll, pitch and yaw moment,

respectively. The moment coefficients, Cl, CM , and Cn, are expressed as a sum of basic airframe, control

deflections, and rate damping as C∗ = C∗,basic(α, β) +C∗,control(α, δcontrol) +C∗,rate(rate, V ). The variable

’*’ denotes l, M, n , control denotes stab, ail, rud and rate denotes the variable p, q, r. Appendix A

provides explicit forms for these moment coefficients.

IV. F/A-18 Flight Control Laws

State-space realizations for both the baseline and revised flight control laws are presented in this section.

A simplified architecture for the flight control laws is used to formulate the state-space realization. More

detailed descriptions of these flight control laws can be found in.3

The baseline controller structure for the F/A-18 aircraft closely follows the Control Augmentation Sys-

tem (CAS) presented in the report by Buttrill, Arbuckle, and Hoffler.31 The papers by Heller, David, &

Holmberg2 and Heller, Niewoehner, & Lawson34 provide a detailed description of the revised flight control
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law. The actuator dynamics are neglected in this paper. The actuators have fast dynamics and can be

neglected without causing any significant variation in the analysis results.

The controller, K =

 Ac Bc

Cc DC

 can be realized as following:

ẋc = Acxc +Bcy (15)

u3 = Ccxc +Dcy (16)

where xc is the controller state, u3 := [δail, δrud, δstab] indicates the input of the plant. The plant mea-

surements are y := [ay, p, r, α, β, q, β̇lin]. The lateral acceleration is given by ay =
q̄S

mg
CY (in units of

g) and computed around a flight condition. Moreover, the measurement signal β̇lin represents the linearized

representation of the sideslip-rate (β̇). This signal is estimated by using a 1st order approximation to the

sideslip state derivative equation around a flight condition.

The baseline flight control law is:

 Ac Bc

Cc Dc

 =



−1 0 0 4.9 0 0 0 0

0 0 0.8 0 0 0 0 0

−1 −0.5 0 −1.1 0 0 0 0

0 0 0 0 −0.8 0 −8 0


(17)

and the revised controller is:

 Ac Bc

Cc Dc

 =



−1 0 0 4.9 0 0 0 0

0 0 0.8 0 0 2 0 0.5

−1 −0.5 0 −1.1 0 0 0 0

0 0 0 0 −0.8 0 −8 0


(18)

The revised flight control law has two additional feedback channels, sideslip and sideslip rate feedback,

compared with the baseline flight control law. The paper by Heller, David, & Holmberg2 refers to these

additional two feedback channels, especially the sideslip rate feedback, being the key for suppressing the

falling leaf motion.

V. Polynomial Model Formulation & Validation of F/A-18 Aircraft

Section II described an approach to estimate regions of attraction for nonlinear systems. The approach

to estimate lower bounds on the ROA relies on SOS optimization methods and can only be applied to

polynomial systems. Moreover, the computational requirements for the SOS optimizations grow rapidly in

the number of state variables and polynomial degree. This approximately limits this method to nonlinear
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analysis problems with at most 7-10 states and degree 3-5 polynomial models. Consequently, the construction

of accurate, low-degree polynomial models is an important step in the proposed analysis process. This section

formulates cubic degree polynomial models for the closed-loop systems consisting of the F/A-18 aircraft and

the baseline and revised flight control laws.

A. Polynomial Model Formulation

A nine state, six DOF nonlinear model for the F/A-18 was described in Section III. The phugoid mode of

the aircraft involves the V and θ states. The phugoid mode is slow and is not important for capturing the

falling leaf characteristics. The heading angle ψ also does not impact any of other state dynamics and hence

it can be neglected. Consequently a six state model of the F/A-18 aircraft is sufficient for analyzing the

falling leaf mode. Additional rationale for neglecting (V, θ, ψ) is discussed in.3

The mechanism to extract a six-state representation from the nine-state model is outlined. First, the

nine-state model, Equation (11), is trimmed around a specific flight condition. Consider the flight condition

for a coordinated turn (βt = 0o) at a 35o bank angle and at Vt = 350 ft/s. The trim values are provided in

Equation (19). The subscript ’t’ denotes a trim value.



αt

pt

qt

rt

θt

ψt


=



20.17o

−1.083o/s

1.855o/s

2.634o/s

18.690

0o


,



δstab,t

δail,t

δrud,t

δth,t


=



−4.449o

−0.4383o

−1.352o

14500 lbf


(19)

The analysis in this paper, is performed around the flight condition mentioned in Equation (19). This

flight condition is one of the eight different operating points, specifically Plant 4, around which linear analysis

was performed in a previous work.3

The states and inputs for the six-state model are defined relative to this trim point: x6 := [β − βt, α−

αt, p− pt, q− qt, r− rt, φ−φt] and u3 := [δail− δailt , δrud− δrudt , δstab− δstabt ]. The state derivatives for

the six state model, ẋ6, are computed using Equation (13c), (13b), (14) and the first row (φ̇ entry) of (12),

respectively. In these equations, V , θ, ψ and T are held fixed at their trimmed values. Moreover, these state

derivatives are linear in the inputs. Thus the six-state model is of the following form:

ẋ6 = F (x6) +G(x6)u3 (20)

y = H(x6) + J(x6)u3 (21)

Figure 1 shows the structure of the closed-loop plant considered. P denotes the 6-state nonlinear model

mentioned in Equation (20) and (21). K denotes either the baseline or revised control law presented in
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Section IV. Both the closed-loop models are formed with the negative feedback of the controller (K) around

the nonlinear plant (P ), as shown in Figure 1.

-
rref = 0g

-
- K - P

u3 -y

6

Figure 1. Feedback System

The autonomous (rref = 0) closed-loop dynamics are given by:

dxcl
dt

= F(xcl) (22)

where xcl := [xT6 , xc]
T ∈ R7 denotes the closed-loop states and F is given by Equation (23).

F =

F (x6)−G(x6)Ccxc −G(x6)DcM(x6)−1(H(x6)− J(x6)Ccxc) +G(x6)u3t

Acxc +BcM(x6)−1 (H (x6)− J (x6)Ccxc)

 (23)

where M(x6) = (Il + J (x6)Dc). l denotes the number of measurements in y.

The 7-state closed-loop model F , in Equation (23), is nonlinear due to trigonometric terms, M(x6)−1,

and polynomial functions to model the aerodynamic coefficients. F can be approximated by a third degree

polynomial function of xcl. The approximation steps are as follows. First, the linearization of F is computed

at xcl = 0. Then F is expressed as F := Flinxcl + Fnonl(xcl) where Flin denotes the linearization. Second,

each entry of the vector-valued function Fnonl(xcl) is approximated by a polynomial consisting of second and

third degree terms. The benefit of this procedure is that the polynomial model retains the same linearization

as the original nonlinear model.

The polynomial approximation step exploits structure that exists in the nonlinear model. For example,

p, q, r, and xc typically enter linearly with nonlinear functions of α, β, and/or φ. To illustrate the point,

consider the state-derivative φ̇ = p+ tan θ (q sinφ+ r cosφ) from Equation 12. The value of θ is held at its

trim value during approximation. Notice, q and r enters linearly with nonlinear functions of φ. By examining

each state-derivative separately, insight can be gained on the structure of the nonlinear model.

The assumed structure of the polynomial approximation used in this paper is shown while presenting

the approximated closed-loop polynomial model in Appendix B. This structure is used to determine the

second and third degree terms to include in the polynomial functions. Then the coefficients of the polynomial

functions are computed to approximate Equation (23) over a specified range of the closed-loop state-space.

The range of the state space is chosen to be the seven dimensional hypercube in Table 2. The table provides

the minimum and maximum deviations of each state from the trim point in Equation (19). Values are
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provided in degree for ease of interpretation. The hypercube is uniformly gridded along each dimension by

the number of points specified in Table 2. This gridding results in a total of 60000 samples in the hypercube.

The nonlinear function Fnonl is evaluated at these points and least squares is used to compute the polynomial

coefficients that minimize the difference between Fnonl and the polynomial function at these 60000 samples.

The approximation results a cubic degree polynomial model of the form:

ẋcl = P(xcl) (24)

P is provided in Appendix B for both the baseline and the revised controller.

Table 2. State space hypercube data for constructing polynomial models

State Range: [min max] Sampled Data Points
β (deg) [−10o 10o] 5
α (deg) [−25o 25o] 6
p (deg/s) [−35o 35o/s] 5
q (deg/s) [−30o/s 30o/s] 5
r (deg/s) [−15o/s 15o/s] 5
φ (deg) [−25o 25o] 5
xc (deg) [−20o 20o] 4

B. Polynomial Model Validation

The cubic polynomial models for the baseline and revised control laws involve approximations due to ne-

glecting three aircraft states and due to the polynomial least-squares fits. It is important to determine if the

cubic polynomial models are sufficiently accurate. This section compares the polynomial closed-loop models

with closed-loop models constructed with the original nine-state nonlinear model (Equation (11)). The term

”original model” will refer to the closed loop models constructed with the nine-state nonlinear model. Nu-

merical tools do not exist to rigorously perform this comparison and hence the validation performed in this

section relies on heuristic procedures. However, the validation provides some confidence that the polynomial

model provides, for engineering purposes, a sufficiently accurate approximation.

The first validation method is to compare the polynomial and original model by simulating from many

initial conditions. Numerous simulations have been performed by perturbing the states from their trim

values. Most state trajectories are similar for both the polynomial and original model. Figure 2 compares

the polynomial and original models with the baseline control law. This specific simulation is performed by

perturbing the β, α, p, q, r, φ states by 50, 20o, 25o, 20o/s, 20o/s, 5o/s, respectively, from their trim

points. For the original models, V , θ, and ψ are initialized to their trim values. The simulation results

show that the polynomial model is in good agreement with the original model. Note, however, that the α

trajectory for the polynomial model diverges from the original model as time progresses. This deviation

is large (relative to other states) when the perturbation in the α state is large. However, the simulation

comparisons show that the cubic degree polynomial model captures the dynamic characteristics of the original
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closed-loop model, even with such large perturbation in the initial condition.

Figure 3 provides a similar comparison of the polynomial and original models with the revised control

law. Similar results were obtained at many other simulation initial conditions. This indicates that the

polynomial approximation accurately the closed-loop dynamics of the original nonlinear closed-loop model.
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Figure 2. Simulation comparison between the original and approximated closed-loop baseline models due to
initial perturbation in the states

The second comparison method provides a statistical quantification on the accuracy of the polynomial

model approximation. The closed-loop realization for either of the controllers can be generated by using

Equation (23) based on the original nonlinear model. For a given control law, two different seven state

realizations are developed: (i) F , based on the original nonlinear model, and (ii) P, a cubic degree polynomial

approximation to P. For this comparison, both the models are evaluated by sampling random points within

the ellipsoid xcl
TNxcl ≤ β̄, where β̄ is the upper bound of ROA estimation introduced in Section II. The

value of β̄ for both the control law is estimated in Section VI.A. Moreover, the shape matrix N in the ellipsoid

is presented in Equation (25). The relative weightings of the diagonal elements of N is determined by the

physical operating range of the states around the trim point specified. In other words, the shape matrix

roughly scales each state by the maximum magnitude observed during the flight conditions. The maximum

magnitude is chosen to be the range of states over which the least squares is performed, as mentioned in

Table 2. For ease of interpretation, the shape matrix is also provided in units of degree or degree/sec.

However, the computation is performed using the radian representation of N .
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Figure 3. Simulation comparison between the original and approximated closed-loop revised models due to
initial perturbation in the states

N := diag(0.1745 rad, 0.4363 rad, 0.6109 rad/s, 0.5236 rad/s, 0.2618 rad/s, 0.4363 rad, 0.3491 rad)−2 (25)

:= diag(10o, 25o, 35o/s, 30o/s, 15o/s, 25o, 20o)−2 (26)

Now, define relative error :=
||(F|xi − P|xi)||2
||F|xi ||2

, where xi ∈ R7×1 satisfies xiTNxi ≤ β̄. The relative

error, evaluated within the ellipsoid, defines a metric on the notion of how ’close’ the approximated model

is to the original model. The relative error for the baseline control law is computed at 30,000 different

xi ∈ R7×1 within the ellipsoid xiTNxi ≤ 2.3. Note, β̄ = 2.3 is taken from Section VI.A. The approximation

incurs less than 10% relative error on 88% of the 30,000 points. Similarly, the relative error for the revised

control law is also computed at 30,000 different points within the ellipsoid xi
TNxi ≤ 5.9. In this case, the

approximation incurs less than 10% relative error on approximately 90% of the 30,000 points. Moreover, for

both the control laws, the spread of the relative error is uniform as the approximated models deviate away

from the trim point.

Both these validation procedure is heuristic since it is still an open problem to develop rigorous and

computable metrics of the approximation error between a generic nonlinear (non-analytic) model and a
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polynomial model. However, these approaches provide some confidence that the developed polynomial

model has captured the dynamic characteristics of the original model, for all engineering purposes.

VI. Nonlinear Analysis

Extensive linear analyses has been performed to compare the robustness properties of the closed loop

systems with the baseline and revised flight control laws.3 Both the controllers yield similar gain and phase

margins, while some of the µ analyses indicated that the revised design has better robustness properties

than the baseline. However, linear analysis is only valid within a small region around the operating point

which is in general insufficient for analyzing nonlinear phenomenon like the falling leaf motion. This section

applies the nonlinear ROA estimation (described in Section II) method to compare the robustness properties

of both flight control laws. The analyses are performed for the operating point mentioned in Equation (19)

using the cubic polynomial closed-loop models developed in Section V.

A. Estimation of Upper Bound on ROA

The Monte Carlo search, described in Section II, is used to estimate ROA upper bounds β̄ for both flight

control laws. The Monte Carlo search was performed with 2 million simulations each for the baseline

and revised control laws. The search returns an initial condition x0 on the boundary of the ellipsoid, i.e.

p(x0) = xT0 Nx0 = β̄MC , that causes the system to go unstable. Hence, the value of the β̄MC provides an

upper bound of the ROA for the F/A-18 aircraft. Recall that the shape matrix N is defined in Equation (25).

The baseline control law provides an upper bound of β̄MC = 2.298 whereas the revised control law provides

an upper bound of β̄MC = 5.836.

The Monte Carlo search returned the following initial condition for the closed system with the baseline

control law:

x0 = [−5.632o, −33.54o/s, 7.908o/s, 0.6103o, 3.959o, 6.107o/s, 0.06820o]T

This initial condition satisfies p(x0) = 2.298. Figure 4 shows the unstable response of the baseline system

resulting from this initial condition. Decreasing the initial condition slightly to 0.995x0 leads to a stable

response.

For the revised control law the Monte Carlo search returned the following initial condition:

x0 = [3.841o, 54.25o/s, 8.705o/s, 29.45o, 1.641o, 0.630o/s, 0.7880o]T

This initial condition satisfies p(x0) = 5.895 and Figure 5 shows the unstable response of the revised system

resulting from this initial condition. Again, a stable initial condition is obtained by slightly decreasing the

initial condition to 0.995x0.
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Figure 4. Unstable trajectories for Baseline control law with IC s.t. xTo Nxo = 2.298
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Figure 5. Unstable trajectories for Revised control law with IC s.t. xTo Nxo = 5.895
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B. Estimation of Lower Bound on ROA

The V -s iteration, described in Section II, is employed to estimate the ROA lower bounds β for both the

F/A-18 flight control laws. Recall, N = NT indicates the shape matrix of ellipsoid and is determined by the

physical operating range of the states around the trim point specified. N is provided by Equation (25). The

ellipsoid, xTclNxcl = β, defines the set of initial conditions for which the control law will bring the aircraft

back to its trim point. The state corresponding to the smaller diagonal element of N is expected to have a

wide range of variation in estimating the region of attraction. If the aircraft is perturbed due to a wind gust

or other upset condition but remains in the ellipsoid then the control law will recover the vehicle back to

trim. In other words the ellipsoid defines a safe flight envelope for the F/A-18. Hence, the ROA provides a

measure of how much perturbation the aircraft can tolerate before it becomes unstable. Roughly, the value

of the β can be thought of as ’nonlinear stability margin’, similar to the linear stability margin (km) concept

presented in the linear analysis.3 However, these two margins are not directly comparable to each other.

Increasing the degree of the Lyapunov function improves the lower bound estimate of the ROA as dis-

cussed in Section II. At first, bounds using the quadratic Lyapunov function from linearized analysis, denoted

as β
LIN

, are computed. This method has been proposed for validation of flight control laws.1 The baseline

flight control law achieves a bound of β
LIN

= 5.100× 10−3 while the revised achieves β
LIN

= 8.200× 10−3.

Recall, the upper bound estimation, β̄MC , of the ROA is 2.298 for baseline and 5.895 for the revised flight

control law. These lower bounds are not particularly useful since they are three orders of magnitude smaller

than the corresponding upper bounds. The estimate of the lower bound needs to be improved. Hence, the

V -s iteration with quadratic and quartic Lyapunov functions are used to increase the lower bound estimate.

The V -s iteration with quadratic Lyapunov functions gives β
2

= 0.8921 for the baseline control law and

β
2

= 3.719 for the revised control law. The lower bound estimation was improved dramatically compared

to the linearized Lyapunov analysis. However, the estimation can be further improved by using quartic

Lyapunov function. The V -s iteration with quartic Lyapunov functions is β
4

= 2.006 for the baseline control

law and β
4

= 4.299 for the revised control law. These bounds are significantly larger than the bounds

obtained for the linearized Lyapunov function. A sixth order Lyapunov function can lead to improved

lower bounds but with a significant increase in computation time. The lower bounds with different degree

of Lyapunov function show that the linearized ROA method is much more conservative than the results

obtained using the quartic Lyapunov function.

C. Discussion

The largest ellipsoid contained in the region of attraction is denoted as Eβ∗ := {xcl ∈ R7 : xTclNxcl ≤ β∗}.

The lower and upper bounds on β∗ have been computed for the closed-loop systems with both F/A-18 flight

control laws. The bounds on β∗ for the baseline control law are: 2.006 ≤ β∗ ≤ 2.298. For the revised control

law the bounds are: 4.299 ≤ xTclNxcl ≤ 5.895. These bounds on the ROA can be visualized by plotting

slices of the ellipsoid xTclNxcl. Figure 6 and 7 show slices of both the inner/outer approximations of the best

ellipsoidal ROA approximation for both the flight control laws, respectively in α-β and p-r planes. These
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states are chosen since they play an important role in characterizing the falling leaf motion. In both the

figures, the solid lines show the slices of the inner bounds obtained from quartic Lyapunov analysis. Every

initial condition within the solid ellipses will return to the trim condition (marked as a ’+’). If the aircraft is

perturbed due to an upset condition or wind gust but remains within this ellipsoid then the control law will

recover the aircraft and bring it back to trim. The dashed lines show the slices of the outer bounds obtained

from Monte Carlo analysis. There is at least one initial condition on the outer ellipsoid which leads to a

divergent trajectory. The ellipsoid is seven dimensional and hence the initial condition leading to a divergent

trajectory does not necessarily lie on the slice of the ellipsoid shown in the figure. Upset conditions that

push the aircraft state to this upper bound ellipsoid could potentially lead to loss of control.
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Figure 6. Lower / upper bound slices for ROA estimate in α− β plane. The lower bound estimate is based on
the quartic Lyapunov function.

The closeness of these upper/lower bounds indicate that the best ellipsoidal ROA approximation problem

has been solved for engineering purposes. Hence, definitive conclusions regarding the stability region about

the flight control laws can be drawn for the F/A-18 aircraft. The slices for the quartic Lyapunov functions

demonstrate that the ROA estimate for the revised control law is larger than the one for the baseline

control law. For example, from the α-β slice it can be concluded that the baseline controller returns to the

trim condition for initial perturbations in an ellipse defined by β between (approximately) −14o and +14o

and α between (approximately) −15 and +55o. The revised controller returns to the trim condition for

initial perturbations in an ellipse defined by β between −21o and +21o and α between −32o and +72o. It is

important to note that, the revised controller is better able to damp out the sideslip motion and consequently,

increasing the dutch-roll damping. It has been shown that increased dutch-roll damping due to the revised
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flight control law architecture is one of the key reasons to suppress the falling leaf motion.2 Figure 6 shows

that the sideslip damping has significantly improved in the revised flight control law compared to the baseline

design. The stability region also increases along other state direction under the revised flight control law.

Moreover, the aircraft also achieves an increased stability region along the angle-of-attack direction with the

revised design. Overall, the suppression of the falling leaf can be attributed to the larger stability region

provided by the revised flight control law.

In fact, the robustness improvement for the revised controller is more dramatic if the volume of the

ROA estimate is considered. The volume of the ellipsoid Eβ is proportional to β(n/2) where n = 7 is

the state dimension. Thus the ROA estimate obtained by the revised control law has a volume which is

(β
4,rev

/β
4,base

)3.5 greater than that obtained by the baseline design. This corresponds to a volume increase

of 14.3 for the revised flight control law. Thus information from these two ellipsoids can be used to draw

conclusions about the safe flight envelope. The size of these ellipsoids measure the robustness of the flight

control law to disturbances. In summary, the ellipsoids define a metric for the safe flight envelope of the

F/A-18 aircraft. Based on this metric, the revised control law has an increased safe flight envelope, which

helps suppressing the falling leaf motion.

The nonlinear analysis imposes a limitation that the dynamics of the aircraft need to be described

by the polynomial functions of the states. Hence, the caveat with this nonlinear analysis results is that

the size of the ROA may be larger than where the polynomial model is valid. Due to the approximation

procedure, the approximated polynomial model deviates from the original model away from the trim points.
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As a cross-validation, both the approximated and the original model are simulated by sampling the initial

conditions on the ellipsoid xclTNxcl = β̄. Numerous simulation comparisons revealed that both the models’

state trajectories are in good agreement, in light of the discussion of Section V.B. Moreover, the heuristic

statistical method of model validation, performed in Section V.B, also provides some confidence on the

validity of the approximated model on the boundary of the outer ellipsoidal approximation.

The computation time required for the lower bounds is summarized in Table 3. The quartic Lyapunov

functions provided much better lower bounds than the quadratic Lyapunov functions. However, computing

bounds with quartic Lyapunov functions required significantly more time than computing bounds with

quadratic Lyapunov functions. This is due to the computational growth of SOS optimizations due to an

increase in the degree of the polynomial model. Increasing the state dimension, e.g. by including the V

and θ states, also would result in a large increase in computation for the lower bounds. The analyses are

performed on Intel(R) Core(TM) i7 CPU 2.67GHz 8.00GB RAM.

Table 3. Computational time for estimating lower bound of ROA with V -s iteration procedure

Plant Lyapunov Degree Iteration Steps Baseline Revised
4th 80 7.935 Hrs 7.365 Hrs

7-State, Cubic Degree
2nd 40 0.113 Hrs 0.111 Hrs

7-State Linear 2nd 40 0.00340 Hrs 0.00440 Hrs

VII. Summary

This paper estimated bounds on the regions of attraction for two F/A flight control laws. Upper bounds

were estimated using Monte Carlo simulations and lower bounds were estimated using sum of squares op-

timization. It is important to note that the ROA analysis accounts for significant nonlinearities in the

F/A-18 aircraft dynamics. This makes the analysis more applicable to nonlinear flight phenomenon such

as the falling leaf mode. The conclusion of this analysis is that the revised F/A-18 flight control law has a

significantly larger region of attraction than the baseline control law. This nonlinear analysis indicates that

revised control law is less susceptible to to a loss of control phenomenon like the falling leaf mode.
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Appendix

A. Aerodynamic Coefficients

The aerodynamic coefficients presented here have been extracted from various papers.26–30,35 The aerody-

namic model of the aircraft is presented here as closed-form expression. Moreover, the MATLAB M-files to

generate the models and the results shown in this paper can also be found in the website:

http://www.aem.umn.edu/ AerospaceControl/

Pitching Moment, Cm = (Cmα2
α2 + Cmα1

α+ Cmα0
) + (Cmδstab2 α

2 + Cmδstab1
α+ Cmδstab0

)δstab

+
c̄

2VT
(Cmq3α

3 + Cmq2α
2 + Cmq1α+ Cmq0 )q

Rolling Moment, Cl = (Clβ4α
4 + Clβ3α

3 + Clβ2α
2 + Clβ1α+ Clβ0 )β

+ (Clδail3 α
3 + Clδail2

α2 + Clδail1
α+ Clδail0

)δail

+ (Clδrud3 α
3 + Clδrud2

α2 + Clδrud1
α+ Clδrud0

)δrud

+
b

2VT
(Clp1α+ Clp0 )p+

b

2VT
(Clr2α

2 + Clr1α+ Clr0 )r

Yawing Moment, Cn = (Cnβ2α
2 + Cnβ1α+ Cnβ0 )β

+ (Cnδrud4 α
4 + Cnδrud3

α3 + Cnδrud2
α2 + Cnδrud1

α+ Cnδrud0
)δrud

+ (Cnδail3 α
3 + Cnδail2

α2 + Cnδail1
α+ Cnδail0

)δail

+
b

2VT
(Cnp1α+ Cnp0 )p+

b

2VT
(Cnr1α+ Cnr0 )r

Sideforce Coefficient, CY = (CYβ2α
2 + CYβ2α+ CYβ0 )β

+ (CYδail3 α
3 + CYδail2

α2 + CYδail1
α+ CYδail0

)δail

+ (CYδrud3 α
3 + CYδrud2

α2 + CYδrud1
α+ CYδrud0

)δrud

Lift Coefficient, CL = (CLα3
α3 + CLα2

α2 + CLα1
α+ CLα0

) cos(
2β
3

)

+ (CLδstab3 α
3 + CLδstab2

α2 + CLδstab1
α+ CLδstab0

)δstab

Drag Coefficient, CD = (CDα4
α4 + CDα3

α3 + CDα2
α2 + CDα1

α+ CDα0
) cosβ + CD0

+ (CDδstab3 α
3 + CDδstab2

α2 + CDδstab1
α+ CDδstab0

)δstab
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Table 4. Aerodynamic Moment Coefficients

Pitching Moment Rolling Moment Yawing Moment
Cmα2

= -1.2897 Clβ4 = -1.6196 Cnβ2 = -0.3816
Cmα1

= 0.5110 Clβ3 = 2.3843 Cnβ1 = 0.0329
Cmα0

= -0.0866 Clβ2 = -0.3620 Cnβ0 = 0.0885
Cmδstab2

= 0.9338 Clβ1 = -0.4153 Cnδail3
= 0.2694

Cmδstab1
= -0.3245 Clβ0 = -0.0556 Cnδail2

= -0.3413

Cmδstab0
= -0.9051 Clδail3

= 0.1989 Cnδail1
= 0.0584

Cmq3 = 64.7190 Clδail2
= -0.2646 Cnδail0

= 0.0104

Cmq2 = -68.5641 Clδail1
= -0.0516 Cnδrud4

= 0.3899

Cmq1 = 10.9921 Clδail0
= 0.1424 Cnδrud3

= -0.8980

Cmq0 = -4.1186 Clδrud3
= -0.0274 Cnδrud2

= 0.5564

Clδrud2
= 0.0083 Cnδrud1

= -0.0176

Clδrud1
= 0.0014 Cnδrud0

= -0.0780

Clδrud0
= 0.0129 Cnp1 = -0.0881

Clp1 = 0.2377 Cnp0 = 0.0792
Clp0 = -0.3540 Cnr1 = -0.1307
Clr2 = -1.0871 Cnr0 = -0.4326
Clr1 = 0.7804
Clr0 = 0.1983

Table 5. Aerodynamic Force Coefficients

Sideforce Coefficient Drag Force Coefficient Lift Force Coefficient
CYβ2 = -0.1926 CDα4

= 1.4610 CLα3
= 1.1645

CYβ1 = 0.2654 CDα3
= -5.7341 CLα2

= -5.4246
CYβ0 = -0.7344 CDα2

= 6.3971 CLα1
= 5.6770

CYδail3
= -0.8500 CDα1

= -0.1995 CLα0
= -0.0204

CYδail2
= 1.5317 CDα0

= -1.4994 CLδstab3
= 2.1852

CYδail1
= -0.2403 CD0 = 1.5036 CLδstab2

= -2.6975

CYδail0
= -0.1656 CDδstab3

= -3.8578 CLδstab1
= 0.4055

CYδrud3
= 0.9351 CDδstab2

= 4.2360 CLδstab0
= 0.5725

CYδrud2
= -1.6921 CDδstab1

= -0.2739

CYδrud1
= 0.4082 CDδstab0

= 0.0366

CYδrud0
= 0.2054

B. Closed-loop Polynomial Model

The closed-loop cubic degree polynomial models discussed in Section V are presented below. Moreover, the

MATLAB M-files to generate the models can also be found in the website:

http://www.aem.umn.edu/ AerospaceControl/
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Baseline Polynomial Model

The cubic degree polynomial approximation for the closed-loop system with the baseline control law is:

β̇ = −3.978× 10−3α3 − 2.191× 10−1α2β + 2.9427× 10−5α2φ− 2.458× 10−3αβ2

+ 5.509× 10−2αβφ− 4.330× 10−5αφ2 + 6.2222× 10−2β3 − 1.672× 10−2β2φ

+ 2.785× 10−3βφ2 − 6.786× 10−3φ3 + 2.708× 10−2α2 + 2.017× 10−1αβ

− 5.323× 10−5αφ− 2.698× 10−2β2 + 2.729× 10−2βφ− 2.747× 10−2φ2

+ (−3.181× 10−1α2 + 3.466× 10−2β2 + 9.638× 10−1α)p

+ (−3.634× 10−1αβ + 2.708× 10−1β)q

+ (4.009× 10−1α2 − 5.344× 10−3β2 + 3.141× 10−1α)r

+ (2.496× 10−2α2 − 2.630× 10−2β2 − 5.127× 10−2α)xcB

+−1.411× 10−3α+ 2.314× 10−2β + 3.474× 10−1p+ 7.134× 10−2φ

− 9.225× 10−1r + 1.406× 10−2xcB

α̇ = −2.139× 10−1α3 + 7.550× 10−3α2β + 3.540× 10−2α2φ− 1.846× 10−2αβ2

− 4.181× 10−5αβφ+ 1.029× 10−2αφ2 − 4.365× 10−3β3 − 4.154× 10−3β2φ

− 6.8825× 10−5βφ2 + 1.252× 10−2φ3 + 3.637× 10−1α2 − 5.181× 10−2αβ

+ 1.364× 10−2αφ− 2.243× 10−2β2 + 1.093× 10−4βφ− 3.648× 10−2φ2

+ (6.357× 10−1αβ − 9.576× 10−1β)p

+ (−1.132α2 + 1.988× 10−1β2 + 6.941× 10−1α)q

+ (−7.499× 10−1αβ − 3.619× 10−1β)r

+−2.299× 10−1α+ 1.870× 10−3β − 4.688× 10−2φ+ 7.259× 10−1q

ṗ = −3.314× 10−2α3 − 19.69α2β − 1.646× 10−3αβ2 + 18.79β3 − 8.022× 10−2α2

+ 15.86αβ + 1.219× 10−3β2 + (−5.204× 10−1α2 + 1.252α)p

+ (−4.737α2 + 6.823× 10−2α)r − 8.150× 10−1qr − 3.173× 10−2pq

+ (−2.056α2 + 3.553× 10−2α)xcB + 4.916× 10−2α− 7.366β − 9.538× 10−1p

− 3.688× 10−2q + 1.479r + 6.513× 10−1xcB

q̇ = 1.553α3 − 2.174α2 + (17.13α2 + 4.40α)q − 1.964× 10−2r2 + 9.712× 10−1pr

+ 1.964× 10−2p2 + (−2.303α+ 4.393× 10−2p− 14.56q − 2.026× 10−2r)
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ṙ = −3.196× 10−2α3 − 1.678α2β + 1.274× 10−2αβ2 − 3.236× 10−1β3

+ 3.869× 10−2α2 − 1.795αβ − 9.442× 10−3β2

+ (−9.543× 10−2α2 + 2.081× 10−2α)p+ (−5.179× 10−1α2 + 4.541× 10−1α)r

+ 3.173× 10−2qr − 7.543× 10−1pq + (−5.102× 10−1α2 + 4.497× 10−1α)xcB

+−1.329× 10−2α+ 5.164× 10−1β + 5.438× 10−3p+ 1.579× 10−2q

− 5.042× 10−1r − 3.129× 10−1xcB

φ̇ = (−1.481× 10−1φ2 + 2.921× 10−1φ)q + (−7.226× 10−2φ2 − 2.181× 10−1φ)r

+ p+ 1.941× 10−1q + 2.772× 10−1r

ẋcB = 4.900r − xcB

Revised Polynomial Model

The cubic degree polynomial approximation for the closed-loop system with the revised control law is:

β̇ = 3.153× 10−6α3 − 2.065× 10−1α2β + 1.958× 10−3α2φ− 1.360× 10−3αβ2

+ 5.556× 10−2αβφ− 4.814× 10−4αφ2 + 5.772× 10−2β3 − 1.964× 10−2β2φ

+ 3.563× 10−3βφ2 − 6.644× 10−3φ3 + 2.404× 10−2α2 + 1.717× 10−1αβ

− 6.328× 10−3αφ− 2.454× 10−2β2 + 2.606× 10−2βφ− 2.771× 10−2φ2

+ (−3.010× 10−1α2 + 2.034× 10−2β2 + 9.247× 10−1α)p

+ (−3.634× 10−1αβ + 2.708× 10−1β)q

+ (3.558× 10−1α2 + 3.255× 10−2β2 + 4.181× 10−1α)r

+ (2.576× 10−2α2 − 2.700× 10−2β2 − 5.287× 10−2α)xcR

+−1.434× 10−3α+ 2.750× 10−2β + 3.529× 10−1p

+ 7.253× 10−2φ− 9.372× 10−1r + 1.429× 10−2xcR

α̇ = −2.139× 10−1α3 + 7.550× 10−3α2β + 3.540× 10−2α2φ− 1.845× 10−2αβ2

− 4.182× 10−5αβφ+ 1.029× 10−2αφ2 − 4.365× 10−3β3 − 4.154× 10−3β2φ

− 6.883× 10−5βφ2 + 1.252× 10−2φ3 + 3.637× 10−1α2 − 5.181× 10−2αβ

+ 1.364× 10−2αφ− 2.243× 10−2β2 + 1.093× 10−4βφ− 3.649× 10−2φ2

+ (6.357× 10−1αβ − 9.576× 10−1β)p

+ (−1.132α2 + 1.988× 10−1β2 + 6.941× 10−1α)q

+ (−7.499× 10−1αβ − 3.619× 10−1β)r

+−2.299× 10−1α+ 1.871× 10−3β − 4.688× 10−2φ+ 7.259× 10−1q
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ṗ = −4.415× 10−1α3 − 23.22α2β − 7.476× 10−1α2φ− 2.556× 10−1αβ2

+ 20.20β3 + 2.031× 10−1α2 + 20.65αβ + 1.149αφ+ 6.667× 10−2β2

+ (−5.104α2 + 7.496α)p+ (7.453α2 − 16.52α)r

− 3.173× 10−2pq − 8.151× 10−1qr + (−2.227α2 + 2.823× 10−1α)xcR

+ 6.123× 10−2α− 9.701β − 3.923p− 6.103× 10−1φ

− 3.688× 10−2q + 9.365r + 5.311× 10−1xcR

q̇ = 1.554α3 − 2.175α2 + (17.13α2 + 4.404α)q + 1.964× 10−2p2 − 1.964× 10−2r2

+ 9.713× 10−1pr +−2.303α+ 4.393× 10−2p− 14.55q − 2.026× 10−2r

ṙ = −2.469× 10−1α3 − 2.324α2β + 9.538× 10−2αβ2 − 4.018× 10−2β3

+ 1.781× 10−1α2 − 1.419αβ − 2.519× 10−2β2

+ (−9.357× 10−1α2 + 5.264× 10−1α)p+ (1.7156α2 − 8.8988× 10−1α)r

+ 3.173× 10−2qr − 7.544× 10−1pq + (−5.427× 10−1α2 + 4.694× 10−1α)xcR

+ (−1.344× 10−2α+ 5.455× 10−1β + 4.254× 10−2p+ 7.624× 10−3φ

+ 1.579× 10−2q − 6.027× 10−1r − 3.114× 10−1xcR)

φ̇ = (−1.481× 10−1φ2 + 2.921× 10−1φ)q + (−7.226× 10−2φ2 − 2.182× 10−1φ)r

+ p+ 1.941× 10−1q + 2.772× 10−1r

ẋcR = 4.900r − xcR
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