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Abstract— This paper considers the design of robustH., problem, the filter enters the design interconnection in an
filters for continuous-time linear systems with uncertainies open loop (rather than a feedback) configuration and this
described by integral quadratic constraints (IQCs). The sy- structure can be exploited. In [25], [26], the filter synibes

thesis problem can be converted into an infinite-dimensiora bl . ted int _definit SDP
optimization with frequency dependent linear matrix inequality ~ ProPlem is converted into a semi-definite program (SDP)

constraints on the filter and IQC multipliers. This optimization ~ [3] using a special 1QC factorization to enforce nominal
is approximated by a finite dimensional semidefinite program stability. The set of allowable IQC multipliers is, in geakr

by restricting the filter to be a linear combination of basis infinite dimensional. The approach in [25], [26] obtains a

functions and enforcing the constraints on a finite, but dens, - : : T - p
grid of frequencies. A heuristic algorithm is described to aiickly Imlée dlmeg§|0?al opt]imlﬁatlon tl))y fesft”c“tr.‘g the multeps
solve the resulting finite dimensional optimization. A smadl 0 be combinations OF chosen basis tunctions.

example is provided to demonstrate the proposed algorithm. A frequency-gridding approach is taken in this paper.
First, it is shown that IQC performance condition can be
. INTRODUCTION turned into a frequency-dependent linear matrix inequalit

&LMI) in the filter and multipliers. Next, a finite dimen-
sional optimization is obtained by enforcing the frequency

feedback control. The well-known Kalman Filter [14], [15], ) L
[13] provides an optimal minimum-variance estimator fordependent LMI on a dense frequency grid and restricting the
er to be a linear combination of chosen basis functions.

linear systems subject to Gaussian noise. The rise of FODLE'% ¢ d dent 10C multioli lowed to b
control techniques in the 1980s led to an interest in alteran e frequency-dependent IQC multipliers are allowed to be

tive filters, e.g. thefl filter (a generalization of the Kalman arbitrary functions on the frequency grid. One drawback of

filter) and theH., filter ([28], [11]). These methods assumethis approach is that some optimization variables are fre-
the signals are generated by a known dynamic model afyency independent and this couples together all frequency

robustness with respect to model uncertainty is an impt)rtaﬂefper_]der.]t constraints, The resulting f|n|te—d|menS|opa¥9
[Jyzation is convex but with a large number of constraints

consideration. Numerous papers on robust filter design ha d iabl Thi heuristi hod

appeared [1], [20], [17], [33], [16], [7], [21], [4], [23].4], and variables. This paper proposes a heuristic method to

91, [27], [30], [31], [29], [32], [25], [26]. obtain a reasonably fast algorithm to solve this problene Th
i ’ ’ ’ ’ ’ ' proposed algorithm has similarities to frequency-grigdin

approaches applied for robust feedforward design [10], [5]

described by Integral Quadratic Constraints (IQCs). IQiGs, [6] a_md for_ s_olvmg LMIs_ derived from the KYP 'em”_‘a. [1.9]'
troduced in [18], provide a general framework for robussnes Finally, it is worth noting that the current paper minimizes
analysis of linear systems with respect to nonlinearitied a an upfper”bOLtjr?d lonct he V}/Ol‘St-C&ﬁQo mtg.;. perforrr(;apcet.h_
uncertainties. Robust filter design has been considerdd W§peC| ically, the 1QC performance condition used in this

static 1QC multipliers in [16], [23], [27] and with dynamic paper is only a sufficient condition for the filter to achieve a
multipliers in [27], [25], [26]. The current paper aiso con-given level of performance over the set of allowable uncer-

siders dynamic IQCs multipliers. The problem formulatiofXNtes- Th? use O.f upper bounds on worst-case p.erf(?rmance
is equivalent to that in [25], [26] but the solution proceelur Is common in the literature but one notable exception is,[31]

is distinct [29]. In [31], [29] it is observed that directly minimizindgn¢
The design problem requires a search for the filter and t orst-case performance over the model uncertainty, rather

IQC multiplier. For the case of LTI uncertainties, this can b an an upper bound, is an infinite-dimensional convex

recast as a-synthesis problem and the coordinate-wise p-jptimization in the filter. This is a useful insight but the
iteration has been applied to solve for the filter and uncez[a_lgonthms in [31], [29] are more computationally demargin

tainty multipliers [1]. The D-K iteration yields sub-optah han the one proposed here. Moreover, the algorithms in [31]

solutions but is a standard method to handle the noncoryvex[gg] are developed for repeated real parameter uncegainti

that arises in robust control synthesis. In robust filterigtes and it does not seem possible to extend this to the classes
y ) of uncertainties/nonlinearities that can be handled withie

Estimation is important for both signal processing an

This paper considers the robusf,, filtering problem
for uncertain, continuous-time systems with the uncetiesn
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tions with real coefficients that are analytic in the closed The following theorem, from [18], formulates a stability
right half of the complex planéR™>", C™*" andRH”*"™  condition for the feedback interconnection in terms of IQCs
denote the sets ofr x n matrices whose elements are inand a frequency-domain matrix inequality.

R, C, and RH,,, respectively. A single superscript index
is used to denote vectors, el denotes the set df x 1
vectors whose elements arelitn For a matrixM in R™*™

or C™* MT denotes the transpose add* denotes the i) for everyr € [0, 1], the interconnection off and7A

Theorem 1:Let G(s) € RH.X™ and letA be a bounded
causal operator. Assume that:

complex conjugate transpose. is well-posed.
L4]0,00) is the space of functiong : [0,00) — R! iy for every r € [0, 1], the IQC defined byl is satisfied
satisfying|| f|| < co where by TA.
o 0.5 iii) Je > 0 such that
1= [ e e W . .
0 {G(}w)} I(jw) [G(}w)] <—el YweR (7)
fr denotes the truncated function:
o) { f(t) fort<T o then the feedback interconnection@fand A is stable.
T(l) ‘= -
0 fort>T The IQC framework can be extended to robust per-

The extended space, denotégl., is the set of functiong  formance analysis. Consider the feedback interconnection
such thatfr € L for all T" > 0. shown in Figure 1 and partitiof? := g” 212 con-
21 22
. INTEGRAL QUADRATIC CONSTRAINTS formably with the pairs of input/output signals. Define:
This section briefly reviews the IQC framework introduced

in [18]. Let Il : jR — CUFm)x(Hm) pe a measurable  pj(q 11, ~) = {Gll Gl?}*n {Gll Gl?}

Hermitian-valued function. Two signats € L7*[0, o) and 1 0 1 0
v € L4[0,00) satisfy the IQC defined byl if Go1 G| [T 0 ][Ga Go
+ 2
I [mw)]*m ) [ﬁum] >0 @ P LY
oo L) TV i) | =

where (jw) and w(jw) are Fourier transforms of and FOr anyA satisfying the 1QC defined byl, the feedback
w, respectivelyl is called an “IQC multiplier” or simply intérconnection shown in Figure 1 haig-.gam fromd to e
a “multiplier”. 1QCs can be used to describe the relation!€SS thamy if there existse > 0 such that:

ship between input-output signals of system components. A . . <

bounded operatoA : L} [0,00) — L5[0,0) satisfies the M(G(jw), 1(jw),7) < —el Vo €R ©)

€

IQC defined byll if Equation 3 holds for alllv,w) where  Thjs result requires minor modifications to the definitions

v € L5[0,00) andw = A(v). _ 3 of stability and well-posedness adapted to the LFT intercon
Consider the feedback interconnection specified by theection in Figure 1. The proof is straightforward and dstail
following equations: can be found in Section 6.5 of [24]. More general quadratic

v = Gug + i () fheerf?c::;n\:/% i:w:ljr::;sn (c:)?]ntha;o k;?nconsidered. In this paper,
ve = Avr) + fo (5) >
where f; € L).[0,00) and f, € LJ'[0,00) are exogenous v w
inputs. G is a causal, linear time-invariant operator on " A
[0, 00) with transfer functionG(s) € RH.*™. A is a
causal operator o}, [0, 00) with bounded gain. ~
Definition 1: The feedback interconnection ¢ and A a D
is well-posedif the map (v1,v2) — (f1, f2) defined by P « d
Equations 4 and 5 has a causal inverselgh™ [0, co).

Definition 2: The feedback interconnection ¢ and A
is stableif the interconnection is well-posed and if the map

(v1,v2) — (f1, f2) has a bounded inverse, i.e. there exists a
constanty > 0 such that The frequency domain inequality in Equation 9 is, in

T T general, a sufficient but not necessary condition for thestwor
/ (vlTvl + ngUQ)dt < 7/ (flel + szfQ)dt (6) caseL gain to be less tham. The bound on thé.» gain can
0 0 be improved by searching over any set of IQC multipliers
for any 7" > 0 and for any solution of the feedback satisfied byA. Specifically, if A satisfies the 1QCs defined
interconnection. by {IL,}&, then it satisfies the IQC defined by aHyin the

Fig. 1. Interconnection for robust performance assessment




set a € RY is a vector of frequency independent variables and
N B(jw) : jJR — CM is a vector of frequency dependent
M .— {Zaini C >0, i=1,.. .,N} (10) Variables. Any of the{IT;};"}* may either be functions of
= frequency or constant. More explicit details on multipdier

An improved bound on thel, gain can be computed by for block structured uncertainty can be found in [12], [24].

solving: IV. ROBUSTFILTER DESIGN
jnf (11) A. Problem Formulation
s.t. M(G(jw), I(jw),y) < —el Yw € R Figure 2 shows the interconnection structure for the robust

filter design problem considered in this paper. The general-
The KYP lemma [22] can be used to convert the frequengy ey plantP has two inputs and three outputé.c L}

domain inequality constraint into a LMI in the decisionyanotes the input disturbancgss L)* andz € L} denote

variables. Thus this optimization can be recast as a finitgse measurements and signals to be estimated, respectively
dimensional SDP [3]. _ _ _ Any noises in the measurements are included.in € L3*

_ The form of I in Equation 10 arises naturally in many ang,, e 12+ are interconnection signals associated with the
instances. For example, Iét be the saturation nonlinearity. plant uncertainty. The blocks dP partitioned according to
Then A satisfies the IQC defined by multiplier for the {hage input/output signals are denoted as:

[0,1] sector:11;, := [{ L ]. If H := 5 then A also

satisfies the 1QC defined b, := |, _2_1(’;1’1,{*)}. Il, b ?1 ?2 y
corresponds to a Zames/Falb multiplier for monotonic, odd, S e 22 (14)

static nonlinearities [34]A also satisfies the IQC defined by P Pao

any Il € I := {1l + allz = a1, a2 > 0} o The filter I € RH": *"» uses the measurements to construct
However, the form offI in Equation 10 is not sufficiently 5, estimates.

general to handle the class of multipliers for LTI uncertain

ties. For example, leAA denote the set of unit norm-bounded, v A w
LTI uncertainties. Them\ € A satisfies the IQC defined by Gp i
any multiplierII in the set: "
_[Buwr 0 ] c I r | p
= { [ 0 —pGw| P AU 20 e (12) ) i ] P,
This set involves an arbitrary function of frequengy,jw), D B

subject to the frequency domain inequalityjw) > 0, Vw.
For this set of multipliers Equation 11 is an infinite dimen- Fig. 2. Interconnection for robust filter design
sional optimization. The standard approach in IQC analysis
is to use basis functions to represent such arbitrary fonsti
of frequency [12]. In other words3(jw) = Zf‘il Bidi(jw) Let A denote a set of uncertainties / nonlinearities. et
where {¢;(jw)}M, are chosen basis functions. This is thedenote a set of multipliers such that for atye A and any
Ritz approximation method for solving infinite dimensionalll € II, A satisfies the 1QC defined Hy. It is assumed that
optimizations [2]. With this approximation, the optimizat IT is in the form of Equation 13. The problem considered in
in Equation 11 can again be recast as a finite-dimensiorihiis paper is to design a filter that minimizes the IQC upper
SDP. bound on the worst-case performance. In other words, the
The current paper will not approximate the multipliers usebjective is to solve the optimization:
ing basis functions. The set of uncertaintiasis allowed to . )
be block structured and will also have block structure that 7= FeRH"zlEfy HGH'Y (15)
depends on this set of allowable uncertainties. Some blocks = )
of II will depend on frequency-independent variables and St M(Gr(jw), l(jw),7) < —el Yw € R
other blocks will depend on frequency dependent Variabl%here:
that are subject to frequency dependent LMI constraints. A
general form for the set of multipliers is: Gpi— Py Prp (16)
—FPy+ Ps1 —FPy+ Pso
N M

II = {H(Jw) = Z aZHZ(]w) + Z 57,(jw)HN+z(]W)

=1 i=1

G is the system contained in the dashed box of Figure 2.
Gr maps the inputgw, d) to the outputyv,e). The opti-
mization in Equation 15 involves solving for the filter and

LMI(w, 0, B(jw)) < —el ¥ € R} 13 the 1QC multipliers.



B. Filter Synthesis of frequencies{wy } 12 ;:

The constraint in the robust filter design problem (Equa- 5 ~ inf 7y (21)
tion 15) contains one term that involves a producfafiw) a€RM, §,eCN, r€RP
with itself. By Schur complements [3], the constraint is M
equivalent to (suppressing the functional dependengepn st. LMI <Wk, Z”E(j“’k)’o"ﬁkvﬂo < —el
* =1
Py P2 Py P2 0 0 _
{I 0} HL 0“—"_’,0 —’YQJ‘(.)]S—GI fork=1,...,n,
[—F P21 + P51 —FPoy + Ps2] | -1 The 3, are the frequency-dependent variables in the 1QC
Vw € R (17)  multiplier defined atv,. The proposed approach uses basis

functions for the filter but allows the multipliers to be
The (.) term in the (1,2) block can be inferred from symme=rbitrary functions on the frequency grid. This can roughly
try. At each frequency this matrix inequality is jointly afé pe viewed as dual to the approach taken in [25], [26]
in F'(jw) andIl(jw). Thus the robust filter design problemwhere basis functions are chosen for the multipliers but the
can be expressed as an infinite-dimensional optimizatithh wifilter is allowed to be an arbitrary, linear system. It will be

LMI constraints in the multiplier variables and filter: assumed that the frequency grid is sufficiently dense tfeat th

. . differences between the optimizations in Equation 20 and

7= naxn inf ] v (18) 21 are negligible. The optimal selection of the frequencies
FeRHZ ™Y, a€RM, B:jR—CN . . . L. .

, , to include in this grid is an important research problem for

st LMI(w, F(jw), o, 6(jw),7) < —el Yw € R the development of software for many problems in control.

Alternatively, the frequency sweeping method in [5], [6hca

The LM in Equation 18 includes the constraint in Equa-at the expense of additional computation, be used to compute

tion 17 and any LMI constraints that are required to specif}g true upper bound on the optimal performance
the 1QC multipliers in Equation 13. The remainder of this The optimization in Equation 21 is a finite—di.mensional
section develops finite dimensional optimizations that lsan SDP. However it involvess, LMI constraints and(M +

. w

used to compute upper gnd lower bouquﬂn . P+ Nn, + 1) variables. The LMI constraints are coupled
A lower bound is obtained by enforcing the constraint ajy o ¢ the frequency independent variablesand . The
only one frequencyyyo: computation time to solve this problem with current SDP
N . algorithms would be significant for even small to moderate
7(jwo) = Fe(cnzxnyynoli]RM_’ ﬁeczﬂ (19) sized frequency grids, e.g., ~ 50.
st. LMI(wo, F,a,B,7) < —el A heuristic algorithm is used to quickly compute the
optimal solution. The basic idea is to solve the optimizatio
This optimization can be performed on a grid of frequencie@n a coarse frequency grid, check the solution on the dense
{wi}<, and them* := max;, y(jws) is a lower bound for frequency grid and then add new frequency points, as needed,
~*. This is a finite-dimensional SDP at each frequency an@ the coarse grid. The steps of the heuristic algorithm are:
these optimizations can be solved quickly since the problem 0) Let{w;};<, be a given dense frequency grid. et
are decoupled across frequency. There will generally be a 0 and.S; := {wi,wy_ }.
gap betweemy* and v*. One could attempt to improve 1) Solve Equation 21 enforcing the constraints on the
the lower bound by enforcing the constraint on more than  coarse gridS;. Stop if not feasible otherwise go to
one frequency. This increases the computational cost for th Step 2.

lower bound and is not pursued in this paper. 2) Compute the frequency dependent IQC variables on the
The upper bound is computed by restrictiigo lie in the dense grid{wy };~, by linearly interpolating between

space of chosen basis functions(jw) := Zf; 7 F(jw) the solution computed on the coarse grid.

where {F;(jw)}Z_, are the chosen (stable) basis functions 3) Evaluate the LMI constraint on the dense grid using

andr € R”. With this approximation, an upper bound for the optimala, 7, computed in Step 1 and the linearly

the robust filter design problem can be expressed as an SDP  interpolated, computed in Step 2. Stop if feasible

with an infinite number of constraints: otherwise letw* denote the frequency of maximal

violation of the LMI constraint.

vy (20) 4) Seti=i+1andS;1; = S;U{w*}. Return to Step 1.
If the algorithm terminates to due infeasibility in Step &rth
al . . there is no filter for which robust stability can be proven
s.tLLMI W’ZTiE(jw)’a’ﬂ(jw)"Y s el VweR via 1QCs. This simply means that robust stability of the
=t open loop systenP can not be proven with respect to the
7 is an upper bound of* due to the approximation df by  uncertainties. This termination condition will not occlittis
basis functions. To obtain a finite dimensional optimizatio assumed that the open loop system (without the filter) can be
the constraints are only enforced on a finite, but dense grjgtoven to be robustly stable using the given IQC multipliers

inf
a€RM | 3:jR—CN, reRP



If the algorithm terminates due to feasibility in Step 3 thersingle norm-bounded real parametére R with |§| < 1.
optimal IQC multipliers and filter have been computed on th&his represents uncertainty in the damping between the two
dense grid. The algorithm must terminate in a finite numbenasses. There is only one copy of this uncertainty since it
of iterations. In particular, a new frequency point is addeénters the model in [25], [26] via a rank one matrix. The
to the coarse grid at each iteration and the algorithm muebrm-bounded uncertaintysatisfies the 1QC defined by any
terminate ifS; is equal to{wy } ;<. The algorithm typically multiplier IT in the set:

terminates with the coarse grid containing many fewer goint

than the dense grid. I — {[ Hi(w)  jba(iw) | B(jw) > 0, Voo
This algorithm is similar to that proposed in [5], [6] for —jb2(jw) —Pi(jw) B
robust feedforward design with respect to LTI uncertamtie (27)

The key distinction lies in Step 3. In particular, [5], [6] whereg,, 3 : jw — R are arbitrary functions of frequency.

compute the optimal multipliers at each frequency in thq.he robust filter computed in [26] achieves a worst-cBise
dense grid using a upper bound calculation. This step alone ]grformance of 2.64

can be costly to perform on a dense grid for each iteration & .
yrop 9 A lower bound on the optimal performance was computed

the algorithm. The linear interpolation used in the alduorit . o : . )
: : P sing frequency-gridding method described in Section 1V-B
proposed in the current paper is sub-optimal but fast. Thzéhe frequency grid consisted of 250 logarithmically spaced

linear interpolation is typically less than 1 to 2 percenttad . .
total time. The sub-optimality of the linear interpolantssh points between 0.1 and 10 rad/sec. F'We 3 shows the lower
bounds versus frequency. The total time to compute the

not been a significant issue in test examples. The worst-casé

; : . _bounds at all 250 frequency points was 7.8 sec. The largest
performance is achieved on a small number of frequencies in

the test examples and sub-optimal multipliers are acc&ptat‘;’alue across frequency ig = 2.64 and hence the method

away from these frequencies. of [25], [26] achieves the optimal filter within the reported

Finally, it is noted that the optimal filter returned by thedccuracy.
algorithm is stable. Stability is assured simply by setagti

stable basis functions because stable transfer functams f 3Perf°rmance Lower Bound vs. Frequency
a subspace of all rational, proper transfer functions. i, fa

the search for filters can be performed over any subspace 2.5¢

simply by choosing the basis functions to lie within the -

desired subspace. Thus it would be quite easy to design S 2|

robust filters with a certain structure, e.g. decentralized & 15l

filters. A similar observation was made in [7] with regards 5

to a different robust filter design algorithm for systemshwit g 9l

polytopic uncertainty. It is also worth noting that a good -

basis functions can be computed by solving the nominal 0.5}

filter design problem, i.e. the optimal filter fak = 0. If

A contains only LTI uncertainties, then another good basis 100_1 160 10"

function can be computed using D-K iteration to find a sub- Frequency (rad/sec)
optimal solution to the related-synthesis problem.

Fig. 3. Lower bound on optimal -, filter performance;y(j
V. EXAMPLE g plimatio fiter p (5w

This section demonstrates the proposed algorithm on the

two-mass example considered in [25], [26]. The generalizefclij The method proposed in this paper uses the following basis

nctions for the filter:

plant P is:
) 0 0 0 1 0 0 0 s+01" s+1 s+10" s24+0.165+ 0.64
P=lg 1 o o |TH s v T ol
: The last basis function is a lightly damped second order
2 -2 4 -4 3.0 0 0 system with natural frequency at 0.8 rad/sec. This pasticul
(22) basis function was chosen because the lower bound plot (Fig-
v — [O 0 1 _1} " (23) ure 3) has a sharp peak near this frequency. The optimal filter
within the span of these bases functions was computed using
y=1[1 0 0 0jz+[0 1]d (24) the method described in Section IV-B. The frequency grid
Y [0 10 0] . (25) again consisted of 250 logarithmically spaced points betwe
0.1 and 10 rad/sec. The algorithm described in Section V-
w = v (26) B completed after 13 iterations. The total time to compute

] ) ] ) the optimal filter was 7.2 sec. The linear interpolation & th
The first entry ofd is a plant input disturbance and thefrequency-dependent IQC scalings took less than 0.1 sec of
second entry represents sensor noise. The uncertainty ighg total time. The optimal filter within the span of the Isasi



function is 2]

_ 1.0425” +15.99s" +14.225° +13.925” + 7.7645 +1.032 5,
T 854 11.26s" + 13.52s3 + 9.88s2 + 7.264s + 0.(6249)

F(s):

This filter achieves a worst-cadé., performance of 2.64 (4]
which is again the optimal performance. Figure 4 shows the
Bode plot for this filter. The inclusion of the lightly-damgbe
second order basis function is important. If this is remove
from the list of basis function then the optimal filter canyonl

achieve a worst-case gain 8R26. 6]

Bode Plot of Optimal Filter

4 : [7]
g (8]
=2 ]

g
reg [
0 L
107" 10° 10' [10]
Frequency (rad/sec)
4 [11]
=)
(0]
°
» , [12]
3 2
g
N [13]
0 L
107" 10° 10’ [14]
Frequency (rad/sec)
Fig. 4. Bode plot of optimal filter [15]
VI. CONCLUSIONS [16]
This paper considered the design of robifst filters for (17

continuous-time linear systems with uncertainties descti

by 1QCs. The synthesis problem was converted into a8l
infinite-dimensional optimization with frequency depente (19
LMI constraints. A frequency-gridding approach was used to
approximate this optimization by a large, finite-dimension
SDP. A heuristic algorithm was described to quickly solvé?°
the resulting optimization. A small example was provided tgy)
demonstrate the proposed algorithm. Future work will focus
on applying this procedure to develop robust fault detactio2?]
filters for aerospace applications. 23]
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