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Abstract— This paper considers the design of robustH∞

filters for continuous-time linear systems with uncertainties
described by integral quadratic constraints (IQCs). The syn-
thesis problem can be converted into an infinite-dimensional
optimization with frequency dependent linear matrix inequality
constraints on the filter and IQC multipliers. This optimiza tion
is approximated by a finite dimensional semidefinite program
by restricting the filter to be a linear combination of basis
functions and enforcing the constraints on a finite, but dense,
grid of frequencies. A heuristic algorithm is described to quickly
solve the resulting finite dimensional optimization. A small
example is provided to demonstrate the proposed algorithm.

I. I NTRODUCTION

Estimation is important for both signal processing and
feedback control. The well-known Kalman Filter [14], [15],
[13] provides an optimal minimum-variance estimator for
linear systems subject to Gaussian noise. The rise of robust
control techniques in the 1980s led to an interest in alterna-
tive filters, e.g. theH2 filter (a generalization of the Kalman
filter) and theH∞ filter ([28], [11]). These methods assume
the signals are generated by a known dynamic model and
robustness with respect to model uncertainty is an important
consideration. Numerous papers on robust filter design have
appeared [1], [20], [17], [33], [16], [7], [21], [4], [23], [8],
[9], [27], [30], [31], [29], [32], [25], [26].

This paper considers the robustH∞ filtering problem
for uncertain, continuous-time systems with the uncertainties
described by Integral Quadratic Constraints (IQCs). IQCs,in-
troduced in [18], provide a general framework for robustness
analysis of linear systems with respect to nonlinearities and
uncertainties. Robust filter design has been considered with
static IQC multipliers in [16], [23], [27] and with dynamic
multipliers in [27], [25], [26]. The current paper also con-
siders dynamic IQCs multipliers. The problem formulation
is equivalent to that in [25], [26] but the solution procedure
is distinct.

The design problem requires a search for the filter and the
IQC multiplier. For the case of LTI uncertainties, this can be
recast as aµ-synthesis problem and the coordinate-wise D-K
iteration has been applied to solve for the filter and uncer-
tainty multipliers [1]. The D-K iteration yields sub-optimal
solutions but is a standard method to handle the nonconvexity
that arises in robust control synthesis. In robust filter design
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problem, the filter enters the design interconnection in an
open loop (rather than a feedback) configuration and this
structure can be exploited. In [25], [26], the filter synthesis
problem is converted into a semi-definite program (SDP)
[3] using a special IQC factorization to enforce nominal
stability. The set of allowable IQC multipliers is, in general,
infinite dimensional. The approach in [25], [26] obtains a
finite dimensional optimization by restricting the multipliers
to be combinations of chosen basis functions.

A frequency-gridding approach is taken in this paper.
First, it is shown that IQC performance condition can be
turned into a frequency-dependent linear matrix inequality
(LMI) in the filter and multipliers. Next, a finite dimen-
sional optimization is obtained by enforcing the frequency-
dependent LMI on a dense frequency grid and restricting the
filter to be a linear combination of chosen basis functions.
The frequency-dependent IQC multipliers are allowed to be
arbitrary functions on the frequency grid. One drawback of
this approach is that some optimization variables are fre-
quency independent and this couples together all frequency-
dependent constraints. The resulting finite-dimensional opti-
mization is convex but with a large number of constraints
and variables. This paper proposes a heuristic method to
obtain a reasonably fast algorithm to solve this problem. The
proposed algorithm has similarities to frequency-gridding
approaches applied for robust feedforward design [10], [5],
[6] and for solving LMIs derived from the KYP lemma [19].

Finally, it is worth noting that the current paper minimizes
an upper bound on the worst-caseH∞ filter performance.
Specifically, the IQC performance condition used in this
paper is only a sufficient condition for the filter to achieve a
given level of performance over the set of allowable uncer-
tainties. The use of upper bounds on worst-case performance
is common in the literature but one notable exception is [31],
[29]. In [31], [29] it is observed that directly minimizing the
worst-case performance over the model uncertainty, rather
than an upper bound, is an infinite-dimensional convex
optimization in the filter. This is a useful insight but the
algorithms in [31], [29] are more computationally demanding
than the one proposed here. Moreover, the algorithms in [31],
[29] are developed for repeated real parameter uncertainties
and it does not seem possible to extend this to the classes
of uncertainties/nonlinearities that can be handled within the
IQC framework.

II. N OTATION

R and C denote the set of real and complex numbers,
respectively.RH∞ denotes the set of proper, rational func-



tions with real coefficients that are analytic in the closed
right half of the complex plane.Rm×n, Cm×n, andRH

m×n
∞

denote the sets ofm × n matrices whose elements are in
R, C, and RH∞, respectively. A single superscript index
is used to denote vectors, e.g.Rl denotes the set ofl × 1
vectors whose elements are inR. For a matrixM in Rm×n

or Cm×n, MT denotes the transpose andM∗ denotes the
complex conjugate transpose.

Ll
2[0,∞) is the space of functionsf : [0,∞) → Rl

satisfying‖f‖ < ∞ where

‖f‖ :=

[
∫

∞

0

f(t)T f(t)dt

]0.5

(1)

fT denotes the truncated function:

fT (t) :=

{

f(t) for t ≤ T

0 for t > T
(2)

The extended space, denotedL2e, is the set of functionsf
such thatfT ∈ L2 for all T ≥ 0.

III. I NTEGRAL QUADRATIC CONSTRAINTS

This section briefly reviews the IQC framework introduced
in [18]. Let Π : jR → C(l+m)×(l+m) be a measurable
Hermitian-valued function. Two signalsw ∈ Lm

2 [0,∞) and
v ∈ Ll

2[0,∞) satisfy the IQC defined byΠ if
∫

∞

−∞

[

v̂(jω)
ŵ(jω)

]∗

Π(jω)

[

v̂(jω)
ŵ(jω)

]

≥ 0 (3)

where v̂(jω) and ŵ(jω) are Fourier transforms ofv and
w, respectively.Π is called an “IQC multiplier” or simply
a “multiplier”. IQCs can be used to describe the relation-
ship between input-output signals of system components. A
bounded operator∆ : Ll

2e[0,∞) → Lm
2e[0,∞) satisfies the

IQC defined byΠ if Equation 3 holds for all(v, w) where
v ∈ Ll

2[0,∞) andw = ∆(v).
Consider the feedback interconnection specified by the

following equations:

v1 = Gv2 + f1 (4)

v2 = ∆(v1) + f2 (5)

wheref1 ∈ Ll
2e[0,∞) and f2 ∈ Lm

2e[0,∞) are exogenous
inputs. G is a causal, linear time-invariant operator on
Lm

2e[0,∞) with transfer functionG(s) ∈ RH
l×m
∞

. ∆ is a
causal operator onLl

2e[0,∞) with bounded gain.
Definition 1: The feedback interconnection ofG and ∆

is well-posedif the map (v1, v2) → (f1, f2) defined by
Equations 4 and 5 has a causal inverse onLm+l

2e [0,∞).
Definition 2: The feedback interconnection ofG and ∆

is stableif the interconnection is well-posed and if the map
(v1, v2) → (f1, f2) has a bounded inverse, i.e. there exists a
constantγ > 0 such that

∫ T

0

(vT
1 v1 + vT

2 v2)dt ≤ γ

∫ T

0

(fT
1 f1 + fT

2 f2)dt (6)

for any T ≥ 0 and for any solution of the feedback
interconnection.

The following theorem, from [18], formulates a stability
condition for the feedback interconnection in terms of IQCs
and a frequency-domain matrix inequality.

Theorem 1:Let G(s) ∈ RH
l×m
∞

and let∆ be a bounded
causal operator. Assume that:

i) for every τ ∈ [0, 1], the interconnection ofG andτ∆
is well-posed.

ii) for every τ ∈ [0, 1], the IQC defined byΠ is satisfied
by τ∆.

iii) ∃ε > 0 such that
[

G(jω)
I

]∗

Π(jω)

[

G(jω)
I

]

≤ −εI ∀ω ∈ R (7)

then the feedback interconnection ofG and∆ is stable.

The IQC framework can be extended to robust per-
formance analysis. Consider the feedback interconnection

shown in Figure 1 and partitionG :=

[

G11 G12

G21 G22

]

con-

formably with the pairs of input/output signals. Define:

M(G, Π, γ) :=

[

G11 G12

I 0

]∗

Π

[

G11 G12

I 0

]

+

[

G21 G22

0 I

]∗ [

I 0
0 −γ2I

] [

G21 G22

0 I

]

(8)

For any∆ satisfying the IQC defined byΠ, the feedback
interconnection shown in Figure 1 hasL2-gain fromd to e

less thanγ if there existsε > 0 such that:

M(G(jω), Π(jω), γ) ≤ −εI ∀ω ∈ R (9)

This result requires minor modifications to the definitions
of stability and well-posedness adapted to the LFT intercon-
nection in Figure 1. The proof is straightforward and details
can be found in Section 6.5 of [24]. More general quadratic
performance indices can also be considered. In this paper,
the focus will remain on theL2-gain.

v
- ∆

w

�
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�
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�

Fig. 1. Interconnection for robust performance assessment

The frequency domain inequality in Equation 9 is, in
general, a sufficient but not necessary condition for the worst-
caseL2 gain to be less thanγ. The bound on theL2 gain can
be improved by searching over any set of IQC multipliers
satisfied by∆. Specifically, if ∆ satisfies the IQCs defined
by {Πi}

N
i=1 then it satisfies the IQC defined by anyΠ in the



set

Π :=

{

N
∑

i=1

αiΠi : αi ≥ 0, i = 1, . . . , N

}

(10)

An improved bound on theL2 gain can be computed by
solving:

inf
Π∈Π

γ (11)

s.t. M(G(jω), Π(jω), γ) ≤ −εI ∀ω ∈ R

The KYP lemma [22] can be used to convert the frequency
domain inequality constraint into a LMI in the decision
variables. Thus this optimization can be recast as a finite-
dimensional SDP [3].

The form of Π in Equation 10 arises naturally in many
instances. For example, let∆ be the saturation nonlinearity.
Then ∆ satisfies the IQC defined by multiplier for the
[0,1] sector: Π1 :=

[

0 1
1 −2

]

. If H := 1
s+1 then ∆ also

satisfies the IQC defined byΠ2 :=
[

0 1+H
1+H −2−(H+H∗)

]

. Π2

corresponds to a Zames/Falb multiplier for monotonic, odd,
static nonlinearities [34].∆ also satisfies the IQC defined by
any Π ∈ Π := {α1Π1 + α2Π2 : α1, α2 ≥ 0}.

However, the form ofΠ in Equation 10 is not sufficiently
general to handle the class of multipliers for LTI uncertain-
ties. For example, let∆ denote the set of unit norm-bounded,
LTI uncertainties. Then∆ ∈ ∆ satisfies the IQC defined by
any multiplierΠ in the set:

Π :=

{[

β(jω)I 0
0 −β(jω)I

]

: β(jω) ≥ 0, ∀ω

}

(12)

This set involves an arbitrary function of frequency,β(jω),
subject to the frequency domain inequalityβ(jω) ≥ 0, ∀ω.
For this set of multipliers Equation 11 is an infinite dimen-
sional optimization. The standard approach in IQC analysis
is to use basis functions to represent such arbitrary functions
of frequency [12]. In other words,β(jω) =

∑M

i=1 βiφi(jω)
where{φi(jω)}M

i=1 are chosen basis functions. This is the
Ritz approximation method for solving infinite dimensional
optimizations [2]. With this approximation, the optimization
in Equation 11 can again be recast as a finite-dimensional
SDP.

The current paper will not approximate the multipliers us-
ing basis functions. The set of uncertainties∆ is allowed to
be block structured andΠ will also have block structure that
depends on this set of allowable uncertainties. Some blocks
of Π will depend on frequency-independent variables and
other blocks will depend on frequency dependent variables
that are subject to frequency dependent LMI constraints. A
general form for the set of multipliers is:

Π :=

{

Π(jω) :=

N
∑

i=1

αiΠi(jω) +

M
∑

i=1

βi(jω)ΠN+i(jω)

: LMI(ω, α, β(jω)) ≤ −εI ∀ω ∈ R

}

(13)

α ∈ R
N is a vector of frequency independent variables and

β(jω) : jR → CM is a vector of frequency dependent
variables. Any of the{Πi}

N+M
i=1 may either be functions of

frequency or constant. More explicit details on multipliers
for block structured uncertainty can be found in [12], [24].

IV. ROBUST FILTER DESIGN

A. Problem Formulation

Figure 2 shows the interconnection structure for the robust
filter design problem considered in this paper. The general-
ized plantP has two inputs and three outputs.d ∈ Lnd

2

denotes the input disturbances.y ∈ L
ny

2e andz ∈ Lnz

2e denote
the measurements and signals to be estimated, respectively.
Any noises in the measurements are included ind. v ∈ Lnv

2e

andw ∈ Lnw

2e are interconnection signals associated with the
plant uncertainty. The blocks ofP partitioned according to
these input/output signals are denoted as:

P :=





P11 P12

P21 P22

P31 P32



 (14)

The filterF ∈ RH
nz×ny

∞
uses the measurements to construct

an estimatêz.

v
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Fig. 2. Interconnection for robust filter design

Let ∆ denote a set of uncertainties / nonlinearities. LetΠ

denote a set of multipliers such that for any∆ ∈ ∆ and any
Π ∈ Π, ∆ satisfies the IQC defined byΠ. It is assumed that
Π is in the form of Equation 13. The problem considered in
this paper is to design a filter that minimizes the IQC upper
bound on the worst-case performance. In other words, the
objective is to solve the optimization:

γ∗ := inf
F∈RH

nz×ny
∞ , Π∈Π

γ (15)

s.t. M(GF (jω), Π(jω), γ) ≤ −εI ∀ω ∈ R

where:

GF :=

[

P11 P12

−FP21 + P31 −FP22 + P32

]

(16)

GF is the system contained in the dashed box of Figure 2.
GF maps the inputs(w, d) to the outputs(v, e). The opti-
mization in Equation 15 involves solving for the filter and
the IQC multipliers.



B. Filter Synthesis

The constraint in the robust filter design problem (Equa-
tion 15) contains one term that involves a product ofF (jω)
with itself. By Schur complements [3], the constraint is
equivalent to (suppressing the functional dependence onjω):




[

P11 P12

I 0

]

∗

Π

[

P11 P12

I 0

]

+

[

0 0
0 −γ2I

]

(·)
[

−FP21 + P31 −FP22 + P32

]

−I



 ≤ −εI

∀ω ∈ R (17)

The (.) term in the (1,2) block can be inferred from symme-
try. At each frequency this matrix inequality is jointly affine
in F (jω) andΠ(jω). Thus the robust filter design problem
can be expressed as an infinite-dimensional optimization with
LMI constraints in the multiplier variables and filter:

γ∗ := inf
F∈RH

nz×ny
∞ , α∈RM , β:jR→CN

γ (18)

s.t. LMI(ω, F (jω), α, β(jω), γ) ≤ −εI ∀ω ∈ R

The LMI in Equation 18 includes the constraint in Equa-
tion 17 and any LMI constraints that are required to specify
the IQC multipliers in Equation 13. The remainder of this
section develops finite dimensional optimizations that canbe
used to compute upper and lower bounds onγ∗.

A lower bound is obtained by enforcing the constraint at
only one frequency,ω0:

γ(jω0) := inf
F∈C

nz×ny , α∈RM , β∈CN

γ (19)

s.t. LMI(ω0, F, α, β, γ) ≤ −εI

This optimization can be performed on a grid of frequencies
{ωk}

nω

k=1 and thenγ∗ := maxk γ(jωk) is a lower bound for
γ∗. This is a finite-dimensional SDP at each frequency and
these optimizations can be solved quickly since the problems
are decoupled across frequency. There will generally be a
gap betweenγ∗ and γ∗. One could attempt to improve
the lower bound by enforcing the constraint on more than
one frequency. This increases the computational cost for the
lower bound and is not pursued in this paper.

The upper bound is computed by restrictingF to lie in the
space of chosen basis functions:F (jω) :=

∑P

i=1 τiFi(jω)
where{Fi(jω)}P

i=1 are the chosen (stable) basis functions
and τ ∈ RP . With this approximation, an upper bound for
the robust filter design problem can be expressed as an SDP
with an infinite number of constraints:

γ̄ := inf
α∈RM , β:jR→CN , τ∈RP

γ (20)

s.t. LMI

(

ω,

M
∑

i=1

τiFi(jω), α, β(jω), γ

)

≤ −εI ∀ω ∈ R

γ̄ is an upper bound onγ∗ due to the approximation ofF by
basis functions. To obtain a finite dimensional optimization,
the constraints are only enforced on a finite, but dense grid

of frequencies{ωk}
nω

k=1:

γ̄ ≈ inf
α∈RM , βk∈CN , τ∈RP

γ (21)

s.t. LMI

(

ωk,

M
∑

i=1

τiFi(jωk), α, βk, γ

)

≤ −εI

for k = 1, . . . , nω

The βk are the frequency-dependent variables in the IQC
multiplier defined atωk. The proposed approach uses basis
functions for the filter but allows the multipliers to be
arbitrary functions on the frequency grid. This can roughly
be viewed as dual to the approach taken in [25], [26]
where basis functions are chosen for the multipliers but the
filter is allowed to be an arbitrary, linear system. It will be
assumed that the frequency grid is sufficiently dense that the
differences between the optimizations in Equation 20 and
21 are negligible. The optimal selection of the frequencies
to include in this grid is an important research problem for
the development of software for many problems in control.
Alternatively, the frequency sweeping method in [5], [6] can,
at the expense of additional computation, be used to compute
a true upper bound on the optimal performance.

The optimization in Equation 21 is a finite-dimensional
SDP. However it involvesnω LMI constraints and(M +
P + Nnω + 1) variables. The LMI constraints are coupled
due to the frequency independent variablesα and τ . The
computation time to solve this problem with current SDP
algorithms would be significant for even small to moderate
sized frequency grids, e.g.nω ≈ 50.

A heuristic algorithm is used to quickly compute the
optimal solution. The basic idea is to solve the optimization
on a coarse frequency grid, check the solution on the dense
frequency grid and then add new frequency points, as needed,
to the coarse grid. The steps of the heuristic algorithm are:

0) Let {ωk}
nω

k=1 be a given dense frequency grid. Seti =
0 andSi := {ω1, ωnω

}.
1) Solve Equation 21 enforcing the constraints on the

coarse gridSi. Stop if not feasible otherwise go to
Step 2.

2) Compute the frequency dependent IQC variables on the
dense grid{ωk}

nω

k=1 by linearly interpolating between
the solution computed on the coarse grid.

3) Evaluate the LMI constraint on the dense grid using
the optimalα, τ, γ computed in Step 1 and the linearly
interpolatedβk computed in Step 2. Stop if feasible
otherwise letω∗ denote the frequency of maximal
violation of the LMI constraint.

4) Seti = i+1 andSi+1 = Si ∪{ω∗}. Return to Step 1.
If the algorithm terminates to due infeasibility in Step 1 then
there is no filter for which robust stability can be proven
via IQCs. This simply means that robust stability of the
open loop systemP can not be proven with respect to the
uncertainties. This termination condition will not occur if it is
assumed that the open loop system (without the filter) can be
proven to be robustly stable using the given IQC multipliers.



If the algorithm terminates due to feasibility in Step 3 then
optimal IQC multipliers and filter have been computed on the
dense grid. The algorithm must terminate in a finite number
of iterations. In particular, a new frequency point is added
to the coarse grid at each iteration and the algorithm must
terminate ifSi is equal to{ωk}

nω

k=1. The algorithm typically
terminates with the coarse grid containing many fewer points
than the dense grid.

This algorithm is similar to that proposed in [5], [6] for
robust feedforward design with respect to LTI uncertainties.
The key distinction lies in Step 3. In particular, [5], [6]
compute the optimal multipliers at each frequency in the
dense grid using aµ upper bound calculation. This step alone
can be costly to perform on a dense grid for each iteration of
the algorithm. The linear interpolation used in the algorithm
proposed in the current paper is sub-optimal but fast. The
linear interpolation is typically less than 1 to 2 percent ofthe
total time. The sub-optimality of the linear interpolants has
not been a significant issue in test examples. The worst-case
performance is achieved on a small number of frequencies in
the test examples and sub-optimal multipliers are acceptable
away from these frequencies.

Finally, it is noted that the optimal filter returned by the
algorithm is stable. Stability is assured simply by selecting
stable basis functions because stable transfer functions form
a subspace of all rational, proper transfer functions. In fact,
the search for filters can be performed over any subspace
simply by choosing the basis functions to lie within the
desired subspace. Thus it would be quite easy to design
robust filters with a certain structure, e.g. decentralized
filters. A similar observation was made in [7] with regards
to a different robust filter design algorithm for systems with
polytopic uncertainty. It is also worth noting that a good
basis functions can be computed by solving the nominal
filter design problem, i.e. the optimal filter for∆ = 0. If
∆ contains only LTI uncertainties, then another good basis
function can be computed using D-K iteration to find a sub-
optimal solution to the relatedµ-synthesis problem.

V. EXAMPLE

This section demonstrates the proposed algorithm on the
two-mass example considered in [25], [26]. The generalized
plant P is:

ẋ =









0 0 1 0
0 0 0 1
−2 1 −2 2
2 −2 4 −4









x +









0
0

−1.5
3.0









w +









0 0
0 0
1 0
0 0









d

(22)

v =
[

0 0 1 −1
]

x (23)

y =
[

1 0 0 0
]

x +
[

0 1
]

d (24)

z =
[

0 1 0 0
]

x (25)

w = δv (26)

The first entry ofd is a plant input disturbance and the
second entry represents sensor noise. The uncertainty is a

single norm-bounded real parameter,δ ∈ R with |δ| ≤ 1.
This represents uncertainty in the damping between the two
masses. There is only one copy of this uncertainty since it
enters the model in [25], [26] via a rank one matrix. The
norm-bounded uncertaintyδ satisfies the IQC defined by any
multiplier Π in the set:

Π :=

{[

β1(jω) jβ2(jω)
−jβ2(jω) −β1(jω)

]

: β1(jω) ≥ 0, ∀ω

}

(27)

whereβ1, β2 : jω → R are arbitrary functions of frequency.
The robust filter computed in [26] achieves a worst-caseH∞

performance of 2.64.
A lower bound on the optimal performance was computed

using frequency-gridding method described in Section IV-B.
The frequency grid consisted of 250 logarithmically spaced
points between 0.1 and 10 rad/sec. Figure 3 shows the lower
bounds versus frequency. The total time to compute the
bounds at all 250 frequency points was 7.8 sec. The largest
value across frequency isγ = 2.64 and hence the method
of [25], [26] achieves the optimal filter within the reported
accuracy.

Fig. 3. Lower bound on optimalH∞ filter performance,γ(jω)

The method proposed in this paper uses the following basis
functions for the filter:
{

1,
1

s + 0.1
,

1

s + 1
,

1

s + 10
,

1

s2 + 0.16s + 0.64
,

}

(28)

The last basis function is a lightly damped second order
system with natural frequency at 0.8 rad/sec. This particular
basis function was chosen because the lower bound plot (Fig-
ure 3) has a sharp peak near this frequency. The optimal filter
within the span of these bases functions was computed using
the method described in Section IV-B. The frequency grid
again consisted of 250 logarithmically spaced points between
0.1 and 10 rad/sec. The algorithm described in Section IV-
B completed after 13 iterations. The total time to compute
the optimal filter was 7.2 sec. The linear interpolation of the
frequency-dependent IQC scalings took less than 0.1 sec of
this total time. The optimal filter within the span of the basis



function is

F (s) :=
1.042s5 + 15.99s4 + 14.22s3 + 13.92s2 + 7.764s + 1.032

s5 + 11.26s4 + 13.52s3 + 9.88s2 + 7.264s + 0.64
(29)

This filter achieves a worst-caseH∞ performance of 2.64
which is again the optimal performance. Figure 4 shows the
Bode plot for this filter. The inclusion of the lightly-damped
second order basis function is important. If this is removed
from the list of basis function then the optimal filter can only
achieve a worst-case gain of3.26.

Fig. 4. Bode plot of optimal filter

VI. CONCLUSIONS

This paper considered the design of robustH∞ filters for
continuous-time linear systems with uncertainties described
by IQCs. The synthesis problem was converted into an
infinite-dimensional optimization with frequency dependent
LMI constraints. A frequency-gridding approach was used to
approximate this optimization by a large, finite-dimensional
SDP. A heuristic algorithm was described to quickly solve
the resulting optimization. A small example was provided to
demonstrate the proposed algorithm. Future work will focus
on applying this procedure to develop robust fault detection
filters for aerospace applications.
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