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Abstract— Geometric fault detection and isolation filters are  subset of the requirements. The geometric design approach,
known for having excellent fault isolation properties. Hovever,  for example, is known for its excellent fault isolation, fau
they are generally assumed to be sensitive to model uncemay  raconstryction and sensitivity properties under small eod
and noise. This paper proposes a robust model matching . . - o .
method to incorporate model uncertainty into the design of M9 uncertainty and n0|se..However |t_|s qssumed to b_e Sensi-
geometric fault detection filters. Several existing methosl for ~ tive as the model uncertainty and noise increase. This paper
robust filter synthesis are described to solve the robust mael  proposes a method that incorporate model uncertainty into
matching problem. It is then shown that the robust model the design. First, a geometric filter is designed on the namin
matching problem has an interesting self-optimality propety plant. Next a robust model matching problem is solved to

for multiplicative input uncertainty models. Finally, a simple ex- . .
ample is presented to study the effect of parametric uncertaty design a filter that robustly matches the performance of the

and unmodeled dynamics on the performance of a geometric geometriC f||ter over the set Of Uncertain plantS. Several
filter. existing methods for robust filter synthesis are descriloed t
solve the robust model matching problem. It is then shown
that the robust model matching problem has an interesting
self-optimality property for multiplicative input unceihty
sets. Specifically, the filter designed on the nominal plant
. ) ) X . . is the optimal filter in the robust model matching problem.
diagnosis, fault containment, and reconfiguration to cai Finally, a simple example is presented to study the effect

operation in face of failures. Filters to detect and isofatéts ¢ parametric uncertainty and unmodeled dynamics on the
from system measurements form a key component of falﬂrerformance of a geometric filter

tolerant systems. The basic requirements for fault detecti
and isolation (FDI) filters typically include the following
« Capability to isolate faults that occur simultaneously.
« Sensitivity to a particular fault and insensitivity to othe R and C denote the set of real and complex numbers,

I. INTRODUCTION

Fault tolerance is vital to ensuring the integrity and avail
ability of safety critical systems. A fault tolerant systemust
also include the logic and algorithms for fault detectiaylf

II. NOTATION

faults. respectivelyRH,, denotes the set of proper, rational func-
« Robustness to modeling uncertainty. tions with real coefficients that are analytic in the closed
. Good disturbance attenuation of external disturbancéight half of the complex plane&™*", C™*", andRH. "

and noises denote the sets of x n matrices whose elements areRnC,

One popular FDI filter design technique, originally pro-andRH, respectively. A single superscript index is used to
posed by Massoumnia and Willsky [17], is based on gedienote vectors, e.@R! denotes the set dfx 1 vectors whose
metric techniques. The original method was developed félements are ifiR. For a matrixA/ € C™*", M* denotes
systems with no disturbance or model uncertainty. As th&e complex conjugate transposg.M/) and o(M) denote
name suggests, the geometric filter design technique égploihe maximum and minimum singular valuds\/|| denotes
geometric properties of the system state-space. If thesfauthe matrix norm induced by the vector 2-norm. It is known
in the system have non-parallel signature directions théhat A || = a(M). For a vector € C", Re[v] denotes the
it is possible to design operators and output mixing mag&al part ofv. For G € RH.*", ||G| o := sup,, 6(G(jw)).
that project the faults into disjoint, mutually orthogonalFinally, letG € RH{ ("™ and A € RHZ" be given
subspaces. The filter spectrum can be tuned to obtain desi@ed partitionG := [&il G2 ] with Gy, € RHZ™ and
transient response to faults. The geometric filter desighize € RHE™. If I — G11A is invertible atw = oo, then
paradigm was further extended in subsequent works to magdgfineF,, (G, A) as the linear fractional transformation (LFT)
different classes of systems [6], [15], [14], [9], [4], [Z}{. obtained by closing\ around the upper channels 6f
andH., model matching approaches to FDI filter design are .
also popular [23], [16], [10], [25], [13]. Fu(G,A) = Ga2 + Ga1A(I = GuA) Gz (1)

The basic requirements for FDI filters are often in conflict

and a particular design approach can typically satisfy anly 1. GEOMETRICFDI FILTERS
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additive actuator faults: model uncertainty and the fault detection performance may
o not be robust. The next section discusses a model matching
@(t) = Ax(t) + Bu(t) + L1 f1(t) + Lo fa(t) @) approach for recovering the geometric filter performance in
y(t) = Cx(2) the presence of model uncertainty.

where L, and L, represent the faults directions in the state IV. ROBUST MODEL MATCHING
space. f; and f, are the fault signals. The fault signals

are zero if there is no fault but nonzero if the particula L . .
. r geometric filter design on uncertain plants. Then sdvera
fault occurs. Only actuator faults are considered here but. ~. . : .
existing methods for robust filter synthesis are described.

sensor faults can also be c_on&dered W't.h'n _the theory. T%e final subsection shows that the robust model matching
fundamental problem of residual generation is to syntleesiz

residual generators (filters) with outputs (i = 1,2) that prqblem h.as an mteres.tlng self-optimality property forkmu
. ’ o . tiplicative input uncertainty sets.

have the following decoupling property; is sensitive tof;

but insensitive tof;, ¢ # j. More precisely, iff; = 0 then A. Problem Formulation

lim; oo 74(t) = 0 and if f; 7 0 thenr; # 0. Let G,, denote an uncertain plant for which the filter will
The solution of this problem depends on €, A)- he gesigned. The standard linear fractional transformatio

invariant subspaces and certain unobservability subspaqe £ 1) framework [19] can be used to model the uncertainties.
[17]. A (C, A)-unobservability subspaceis a subspace such | ot ¢ ¢ RE®HHIXM+m) gnd A © RH™*" be givent

that there exist matriceS and H with the property thasS is

the maximal(A + GC) invariant subspace contained in Ker
HC. The family of (C, A)-unobservability subspaces con- M:={G, =F,(G,A): A€ A, [[Allc <1} (6)
taining a given set has a minimal element. Defing = Im It is assumed thaF,, (G, A) is well defined for allA € A

L; (¢ = 1,2) and denote bys* the smallest unobservability with [|Alle < 1. A is typically a set describing a block

supspace conta{nlngg. Then the fgndamental problem of structured sy_stem that can include (repeated) real pariemet
residual generation has a solution if and onhsifN L, =0

. and LTI dynamic system uncertainties. Nonlinear and/or
Lﬂ]d 'I:[het and't'or:‘gh.gd‘cl i (t)hensurel:)s thatbt.r|1_te faug to time-varying uncertainties can also be modeled using rateg
€ detected 1S not hidden n the unobservability su Spaﬁ%adratic constraints [18]. The restriction tiate a square
of the detection filter. In fact, the fault direction will be

q led f th t of the fault directi . th system is only for notational simplicity.
ecoupied from the rest of the fault directions sSIince they EachG, € M is a system that relates the faults and plant

are contamed_ in the unabservability subspace of the rakid nputs to the signals available to the fault detection filter
generator. This result can be extended to LPV systems [5

This section considers a robust model matching problem

Define the set of models

The residual generator associated with fault directign Yl _ o f @)
can be described by an observer of the form: u “lu
w(t) = Nw(t) — Gy(t) + Fu(t) (3) The objective is to design a filteF' with inputs [}}] and
r(t) = Muw(t) — Hy(t) output residuals such that the residuals have “good” fault

decoupling properties for all mode(s, € M.

wherew and y are the known input and measured output A robust model matching problem is now described to
signals of the original LTI systemw is the state of the meet this objective. The nominal plant in the gettis given
residual generator andg is the residual. by A =0, i.e. Gy := F,(G,0) is the nominal plant. First,

Denote by P the projection operatoP : X — X/S*. design a geometric filtef, to solve the fundamental problem
The state matrices can be determined as follows [H]. of residual generation on the nominal pla#$. The model
is a solution of the equation KelfC' = Ker C + S*, and matching method attempts to design a filférsuch that the
M is the unique solution ofi/ P = HC'. Consider a gain performance on the uncertain plaff, robustly matches the
matrix G chosen such thatd + GC)S* C S§* and define designed behavior of,Gy. Mathematically, the proposed
A= P(A+GC)PT. Ais not necessarily Hurwitz. To obtain design problem is:

quadratically stable filters one can sét= A+ GM, where _ (k) X (mtm) m
G = X~'K and X, K are determined from the linear _Froblem lilet G € RH » A C RHZT™ and

matrix inequality (LMI): F, € RHX* be given. Therobust model matching problem

is:
0= ATX + XA+ MTKT + KM 4) :
S min  max ||[FoGo — FGu|l (8)
0=X=X (5) FERMH s GueM
Then setG = PG+ GH and F — PB. The interconnection for this robust model matching prob-

Using this approach there are as many filters as faults t8m is shown in shown in Figure 1. The reference model is
detect, and their state dimensions are equal to the dimensi@ven by FoGo. The nominal residual responsg will have
of X/S*. The filter poles can be tuned by imposing con- | . _ . . o
. in the LMI resulting in perfect reconstruction afift G and F were used in the previous section to denote gain matrices in
S_tra'ms In the - ; ulting | p_ ) uctl . the geometric filter. In this sectiot’ and I’ will denote systems in the
signalsf;. One issue is that the filter design does not consid@fodel matching design.



the desired decoupling properties given by the fundamentde filter synthesis problem is converted into an infinite-
problem of residual generation. The optimization in Equadimensional (convex) semi-definite program (SDP) [7]. The
tion 8 designs a filteF’ that most closely matches, in a worst-set of allowable IQC multipliers is infinite dimensional aad
case sense, the desired residual generation beh@gy. In  finite dimensional optimization is obtained by restrictithg
this paper the focus is on fault detection filters designdéagus multipliers to be a combination of chosen basis functions.
the geometric approach but the model matching problem cam, [21], the robust filter design problem is turned into
in principle, be used to robustly match the behavior of ang frequency-dependent, infinite dimensional linear matrix
filter Fy designed on the nominal systefy. It is worth to  inequality (LMI) in the filter and multipliers. Next, a fi-
note, that other methods dealing with the uncertain systenite dimensional optimization is obtained by enforcing the
directly like [8], obtain different FDI solution for a diffent frequency-dependent LMI on a dense frequency grid and
problem, which might lead to better overall performance. restricting the filter to be a linear combination of chosen
basis functions. The frequency-dependent IQC multipliers
are allowed to be arbitrary functions on the frequency
A Gu grid. To summarize, the two approaches use roughly dual
y E j| f methods to convert the robust filter design problem to a finite
, LJ a { } dimensional convex optimization: In [21], basis functi@me
F |« < used for the filter but the multipliers (scalings) are allowe
to be arbitrary functions on the frequency grid. In [20] sasi
- functions are chosen for the multipliers but the filter is
— J0 FoGo allowed to be an arbitrary, linear system.

The various methods to solve the robust filter design
problem have benefits and drawbacks in terms of computa-
tional complexity and ease of formulating the problem (e.g.
picking basis functions for the filter or for the uncertainty
scalings). The next section shows that the robust model
B. Filter Synthesis matching problem has an interesting self-optimality prope

for multiplicative input uncertainty sets. Specificallyy

There are several approaches to solve the robust mogigklf is the optimal filter for this uncertainty structure.
matching problem. Sun and Packard observed that robust

filter design (Equation 8) is an infinite-dimensional convesc. Multiplicative Input Uncertainty

optimization in the filter [22]. They developed an algorithm This section considers the robust model matching problem
to compute the globally optimal robust filter for the speciator input multiplicative uncertainty. The uncertain systés
case whereA only models repeated real uncertainties [22]given by G, := Go(I + wA) wherew € RH,, is a weight
It does not seem possible to extend this algorithm to setRat specifies the level of uncertainty at each frequency by
A that include dynamic uncertainties, nonlinearities and/guw(jw)|. |w(jw)| = 1 corresponds to 100% input uncer-
time-varying operators. tainty at frequencyw and hence weights typically satisfy
The standard approach to handle more complicated uncéjiv|| ., < 1. Input multiplicative uncertainty is a commonly
tainty sets is to replaceraxc,em || FoGo — FGull With  used uncertainty model because the effect of uncertainty
an upper-bound. For example, whex contains only LTI can be quickly assessed by choosing simple weightand
uncertainty the maximization ove¥! can be replaced with it is sufficiently general since other uncertainty struetur
the 1 upper bound which involves a minimization ovBr can be recast into input multiplicative form. For example, a
scales [19]. The design problem can then be recastas areasonable uncertainty model is obtained by choosing be
synthesis problem involving a search for the filter and tha first order system with small magnitude at low frequencies
D scales.u-synthesis is, in general, a nonconvex problenand magnitude close to one at high frequencies, to represent
and the coordinate-wise D-K iteration has been applied that we have fairly good model of the system around steady
solve for the filter and uncertainty multipliers [1]. The D-state, while at high frequencies the system model is less
K iteration yields sub-optimal solutions but is a standaréccurate. Alternatively, the Matlab functiaicover [3] can
method to handle the nonconvexity that arises in robusie used to compute @ so that the uncertainty seit
control synthesis. contains a given, finite set of LTI systems. The weight can
In robust filter design problem, the filter enters the desiggenerally be chosen as a full matrix but the result in this
interconnection in an open loop (rather than a feedbackgction is restricted to weights of the forar(s)I.
configuration and this structure can be exploited. There The design interconnection for the robust model matching
are two different approaches to convert thesynthesis problem with input multiplicative uncertainty is shown in
problem into an infinite dimensional convex optimizationFigure 2.G, again denotes the nominal system dridis a
problem ([20] and [21]). Both approaches use the morfilter that has been designed to achieve some desired perfor-
general 1IQC framework to model the uncertainty and obtaimance on the nominal plant. For this uncertainty structouee t
an upper bound on the worst-case performance. In [20fpbust model matching problem can be equivalently stated as

A

Fig. 1. Robust model matching



Problem 2: Let [, € RH™*", G € RH"** andw € nominal filtersF,, designed with the geometric method. The
RH,, be given. Thaobust model matching problens: result only depends on the formulation of the robust model
matching problem and the specific structure of the input

Fe%ﬁZXnAGRH&Qﬁ(MxQ G = FG(I +wA)lle (9) multiplicative uncertainty.
V. EXAMPLE
Gu wl — A Consider the fault detection example from [11], [24]. The
‘_‘ nominal fault system=, has the form of Equation 2 with
" r e a, i < state space matrices given by:
[—0.8 0 0 1 1
- A=| 0 —-05 06|,B=1|1 0 (12)
S L FoGo |« L0 06 -05 0 1
PN Y P B I 13
Fig. 2. Robust model matching with multiplicative input entinty L= 0 P2 1 T 1100 (13)

The next theorem presents the main result of this sectiofhe following FDI filter F; was designed to generate fault

. _ i residuals for this system using the geometric method:
Theorem 1:If |Jw||c < 1 thenFE is the optimal filter for

. —1.10 0.48 0 0
the robust model matching problem. W(t) = [—0.64 —-3.90 0 0 ] w(t)
Proof: The robust model matching problem can be 9 9 0390 L8
equivalently written as: 926 034 1.00 0
, _ + [1.47 0.84 } y(t) + [ G 00.71} u(t)  (14)
min  max max || (FoG — FG(I + A)) (jw)| 7.73 —4.16 0 1.00
FeRHZX™ w Aeruk Xk t _o )
AW <Tw (o) {:28} = [0%3° 66 —so1) wt) + [ Sor 200 y(t)
The min-max is always greater than the max-min and hence (15)
a lower bound on the model matching problem is obtainefihe Bode magnitude plots @G|, from faults f to residuals
by: r is shown in Figure 3. The geometric filter demonstrates the
msx  min max | (FoG — FG(I + A)) (jw)|| deswgd decoupling properties. The trapsferfqncﬂonmffg
W  FERHTX™  AcpukXk tor; (i = 1,2) have low pass characteristics with steady state
[AGe) | <lw(Gw)l (10) gain of 1. The response of to f; (j # 4) is extremely small.
Next, the constraints thaf and A be stable are dropped: Input: 10 Input:
1
?_'.-4 0.8
max | min max FoG)(jw) — FGjw)(I + A g oo '
ax | min - max - [(BG)Gw) - PGEI+ M| § |
1Al hw(Gw)l B 10° 10" o 10° 10"
(11)
The max overA is unchanged by dropping the stabil o1 !
constraint but the min oveF is potentially lower once wi ga , , 22
drop the stability constraint. Thus the result of Equatidn e o4
is no greater than the optimal value for Equation 10. o ! R ! ]
Next, apply Lemma 2 in the appendix withll := 1 Frequendy (radisec) 1 Frequency (radisec)
Fy(jw), B := G(jw), and a := |w(jw)|. By this lemma
and the assumptiofjw||.c < 1, the optimization in the Fig. 3. Bode magnitude plot of nominal response fréno r

brackets of Equation 11 has an optimal cost equal to _ . _
lw(jw)|||(FoG)(jw)| at eachw and the optimal value is  The robust model matching approach described in Sec-
achieved byF = Fy(jw). tion IV applies to uncertainty structures that can be for-
Thus the optimal cost for the robust model matching probnulated within the LFT framework. The remainder of the
lem is lower bounded bywF,G||~. This cost is achieved section considers the effect of parametric uncertainty and

by the choiceF' = F;, and henceFy, is the optimal filter. m  unmodeled dynamics.

) o ~ First, consider the effect of parametric uncertainty in the
Roughly, this resultimplies that the robust model matchingant state matrix:

filter design is self optimal for this input multiplicative

uncertainty set. The uncertainty degrades the performance -0.8 0 0

but it does so in a way that apparently cannot be exploited 4= | 0 —0.5(1+4d1) 0.6(1+42) |, (16)
by any other filter. Note that this result is not specific to 0 —06(1+02) —0.5(1+61)



where|d;| < 0.1 and |d2| < 0.1. Let M denote the set of 0
models described by this uncertaintyt can be described by

an LFT G, = F,(G, A) as in Equation 6. The performance

of the filter F, on anyG,, € M will deviate, in general,

from the nominal. The dashed curve in Figure 4 shows the §
worst-case performance éf: 025

—PerfLB |
- - -WC Perf| |

F — FoGylloo 17
GI?Q}AH 0Go — Fo G| (17)

10" 10° 10"
Frequency (rad/sec)

Perfect matching ofF,G, would correspond to a gain
of zero. The gain of the reference systefgG, is ap-

proximately 1.0 at low frequencies (Figure 3). Thus the
performance off, degrades by approximately 33% over the
uncertainty set. One of the filter synthesis methods demsgrib
in Section IV-B could be applied to improve the robust
matching of the nominal performandgG,. However, it is

possible to compute a lower bound on the optimal worst-ca
performance achieved by any filter [12], [21]. The solid @irv

in Figure 4 shows the lower bound on the best achievable™ . filter that robustl iches th ; £ th
filter performance. The nominal filteFy is very close to eS|gnta_ If'?tr atro tl;]s y rr:a(; €s etper olrmfmcg N ?
achieving the optimal performance and hence a robust fiItgF.oTe ne tlhe(rj ofver be tslflt ° unt(fier an p ar:js. rt(ta)vzra
synthesis will not yield significant improvements on theSXISUNg MEtnods Tor robust TiTter synthesis were describe

solve the robust model matching problem. It was then shown
worst-case performance. ) . )

that the robust model matching problem has an interesting
self-optimality property for multiplicative input unceihty
sets. Finally, a simple example was presented to study the
effect of parametric uncertainty and unmodeled dynamics on
the performance of a geometric filter.

Fig. 5. Bode plot of optimal filter

VI. CONCLUSIONS

This paper proposed a method incorporate model uncer-
é@inty into the design of geometric fault detection andasol
tion filters. First, a geometric filter is designed on the noahi
ant. Next a robust model matching problem is solved to

—PerfLB
== =WC Perf| 4
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Next consider the effect of input multiplicative uncertgin
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APPENDIX

Lemma 1:Let ¢1,c2 € R be non-negative constants. If
u,v € C" and Re[u*v] > 0 then||ciu|| < ||cru + cov]|.

Lemma 2:Let « € R be a strictly positive constant and
let A € C™*" and B € C"** be given matrices. Define
J:C™*" - R as:

J(X):=  max |AB—XB-XBA| (19)
AECk*k 5(A)<a
Then
. [ of|AB| ifa<1
pin J(X) —{ IAB| ifa>1 (20)

The minimal cost is achieved b¥* = A if @« < 1 and
X*=0if a>1.

Proof: Letu € C¥ andv € C™ be the input/output
vectors associated with the maximum singular valuel &,

i.e.u andv satisfyABu = 6(AB)v, |lul| = 1, and|v|| = 1.

Assume o« > 1 and pick any X € C™*", If
Re[(X Bu)*v] > 0 then choose\y = —al. J(X) can be

Iim Proceedings of the IFAC Symp. SAFEPRO-

lower-bounded as:

J(X) > ||AB— XB — XBA||
=||AB+ (o« — 1)XB]|
2 [[(AB + (a = 1)XB)ul
> |l6(AB)v + (o — 1) X Bul|
> 5(AB)
The first inequality follows from the definition of (X) in
Equation 19 while the equality follows from the definition of

Ag. The next two inequalities follow from the definition of
the matrix norm (maximum singular value) and the choices

R. S. MangoubiRobust Estimation and Failure Detection — A Conciseof v andv. The final inequality follows from Lemma 1. If

Re[(X Bu)*v] < 0 then similar steps can be used to again
show that/(X) > 7(AB) with the choiceAy = +al. Thus
J(X) > 6(AB) and the lower bound is achieved By = 0.

Next assumex < 1. Pick any X € C™*" and define
Y := —-A+ X. If Re[(YBu)*v] > 0 then choose\g = al.
Similar to the steps abovd,(X) can be lower-bounded as:

J(X) > [|aAB + (a + 1)Y B|
> [lag(AB)v + (o + 1)Y Bul|
> ad(AB)

The first inequality follows from the choice ok, and the
definition of Y. The next inequality again follow from the
choices ofu andv while the final inequality follows from
Lemma 1. If Re[(YBu)*v] < 0 then similar steps can
be used to show thaf(X) > ad(AB) with the choice
Ag = —al. ThusJ(X) > as(AB) and the lower bound is
achieved byX = A.
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