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Adaptive control has the potential to improve performance and reliabil-

ity in aircraft systems. Implementation of adaptive control on commercial

and military aircraft requires verification and validation of the control sys-

tem’s robustness to modeling error, uncertainty, and time delay. Currently,

there is a lack of tools available to rigorously analyze the robustness of

adaptive controllers due to their inherently nonlinear dynamics. This ar-

ticle addresses the application of nonlinear robustness analysis tools to an

adaptive flight control system. First, a model reference adaptive controller

is derived for a linear aircraft short-period model. The resulting closed-loop

system is nonlinear and governed by polynomial dynamics. Sum-of-squares

polynomial optimization is applied to the closed-loop system to assess its

robustness to time delay. Time delay margins are computed for various

combinations of design parameters in the adaptive law, as well as in the

presence of parametric model uncertainty.

I. Introduction

Adaptive control has the potential to improve performance and reliability in aircraft.

However, typical adaptive control architectures are inherently nonlinear, which presents a

set of new challenges. There is currently a lack of tools available to rigorously analyze

the robustness and performance of such systems. The inability to verify robustness and

performance is a significant roadblock to the implementation of adaptive control on civilian

and military aircraft.
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Many nonlinear systems, including the adaptive control system considered in this article,

are governed by polynomial dynamics. The primary objective of this paper is to demon-

strate the suitability of sum-of-squares (SOS) polynomial optimization for the analysis of

such adaptive flight control systems. There has recently been significant research on SOS

optimization problems which have been used to analyze the performance and robustness of

systems described by polynomial dynamics.1–3 Computational algorithms have been devel-

oped for estimating regions of attraction, reachability sets, input-output gains, robustness

with respect to uncertainty, and time delay margins.4–20 Moreover, there is freely available

software to solve SOS optimizations.21–23

This article demonstrates that SOS polynomial optimization can be applied to assess the

robustness of an adaptive flight control system to time delay. An important and meaningful

robustness metric for nonlinear systems is the time delay margin. SOS optimization is used

to calculate lower bounds on this robustness metric, and Monte Carlo simulations are used to

calculate upper bounds. This approach was previously applied to a flight control system with

model reference adaptive control (MRAC).24–26 This article extends that work by refining

the optimization algorithms and analysis.

An MRAC is derived for the linear short-period dynamics of an aircraft in Section II.

Section III briefly outlines the principles of SOS optimization. Section IV details the SOS

optimization for time delayed systems and formulates a time delayed version of the closed-

loop MRAC system. Section V summarizes the results of the time delay margin analysis,

and Section VI provides concluding remarks.

II. Aircraft Model and Controller

The X-15 was an experimental hypersonic rocket propelled aircraft flown in the 1960s by

NASA. One of the goals of the X-15 program was to flight test an implementation of adaptive

control. An excellent source for more detail and information on the X-15’s adaptive control

program is found in Reference 27. As a result of this program, the model of the X-15

dynamics have served as a benchmark platform for adaptive control research and analysis.

This section describes a linear model of the X-15 short-period dynamics implemented with

a model reference adaptive controller. The aircraft model and controller are taken from

Reference 28. This particular implementation of adaptive control was previously studied

and analyzed for robustness using various techniques.24–26,28
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A. Short-Period Aircraft Model

A short-period model of the X-15 longitudinal dynamics is given by Equation 1.

ẋ = Aλx+Bu

y = Cx (1)

The states of the system are angle-of-attack α (deg) and pitch rate q (deg/sec), given by

x = [α, q]>. The input to the system is elevator deflection u = δelev (deg), and the output

is the angle-of-attack y = α. The subscript λ on the state matrix Aλ denotes parametric

uncertainty. The state, input, and output matrices for the X-15 short-period model are

defined in Equations 2 - 4.

Aλ =

 −0.2950 1.0000

−13.0798λα −0.2084λq

 (2)

B =

 0

−9.4725

 (3)

C =
[
1 0

]
(4)

The aircraft model is denoted Pλ, indicating that it is an uncertain system. The terms

λα and λq model parametric uncertainty in two aerodynamic coefficients.29 Defining an

appropriate parameter space for the uncertainty is required for analysis. 75 % parametric

uncertainty is considered by allowing the λ terms to vary on the interval [.25, 1.75]. The

short-period dynamics remain stable throughout this uncertainty envelope.

The nominal state matrix is denoted Anom and corresponds to λα = λq = 1. Eigenvalue

decomposition reveals that the nominal short-period mode has a damping ratio ζ = 0.07 at

a frequency ωn = 3.63 rad/sec. Hence, the short-period dynamics are lightly damped. One

of the goals of the control design is to attenuate the oscillations corresponding to this mode.

B. Model Reference Adaptive Control

A model reference adaptive controller is applied to the X-15 short-period model. The MRAC

is nonlinear and has four main components: a reference model, an adaptive law, and two

constant gains. The closed-loop system interconnection is shown in Figure 1.
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Figure 1. System interconnection for aircraft model with MRAC.

The interconnection shows that the control signal u is a summation of three signals.

These signals originate from the state feedback gain Kx, the reference feedforward gain Kr,

and the adaptive law. The resulting control signal u is the input to the aircraft model Pλ.

Accordingly, the control law is defined by Equation 5.

u(t) = Kxx(t) +Krr(t) + uad(t) (5)

The state feedback gain Kx is designed first. Its objective is stability augmentation to

increase damping in the short-period mode of the nominal model. The controller is designed

using the LQR method with only the aircraft states, and minimizes the cost function J in

Equation 6.

J =

∫
x(t)TR1 x(t) + u(t)TR2 u(t) dt (6)

For the cost function J , the parameter weights R1 and R2 are selected as I2 and 1, respec-

tively. The resulting matrix Kx is shown in Equation 7.

Kx =
[
0.0577 0.9843

]
(7)

The inner-loop created by the stability augmentation system is overdamped with eigen-

values at -2.14 and -7.69. The nominal inner-loop transfer function Gil(s) is given by Equa-

tion 8.

Gil(s) = C[ sI2 − (Anom +BKx) ]−1B (8)

The feedforward gain Kr is designed such that the output of the nominal model y tracks the
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input r at low frequency, and is defined with Equation 9.

Kr = G−1il (0) = [ −C(Anom +BKx)
−1B ]−1 = −1.7354 (9)

Finally, the control signal u is augmented with uad, which corresponds to the adaptive

law. This is the central feature of the controller. The adaptive law is defined in Equation 10.

uad(t) = θT (t)x(t) (10)

In this relationship, θ is a vector of adaptation parameters. The adaptation parameters

are states of a virtual dynamic system, called the parameter update law and is defined in

Equation 11.

θ̇(t) = −κx(t)eT (t)PB − σθ(t) (11)

The error signal e is defined as the difference between the aircraft state x and the reference

model state xm. The reference model is equivalent to the nominal aircraft model in feedback

with Kx and with Kr as a feedforward gain. In other words, the reference model is the

transfer function Gil(s)Kr. The structure of the reference model is given in Equation 12.

ẋm = (Anom +BKx)xm +BKrr

:= Amxm +Bmr

ym = Cxm (12)

The signal e is a characterization of the uncertain aircraft model’s deviation from the

nominal model. This deviation is the main driver in the parameter update law. If the

aircraft model has no uncertainty, then x and xm are identically equal to each other. In this

case, θ decays as a function of time since the error is zero. Hence, adaptation is driven by

uncertainty in the aircraft model.

There are two tuning parameters in the parameter update law. κ is the adaptation gain,

and σ is the sigma modification gain. The adaptation gain determines how quickly the θ

dynamics evolve. The sigma modification gain adds robustness to the system by ensuring

boundedness of the θ parameters.

The symmetric matrix variable P is also a control design parameter. It is calculated by

solving the Lyapunov equation ATmP +PAm = −Q, where Q = 2I2. The Lyapunov function

V = xTPx can be used to prove stability for the MRAC closed-loop system when σ = 0.

Further, Barbalat’s lemma can show convergence of e to the origin. However, this analysis

is no longer valid with the introduction of the sigma modification. The value of P used in
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the control design is shown in Equation 13.

P =

1.8136 0.0341

0.0341 0.1085

 (13)

The resulting closed-loop MRAC system is nonlinear. The adaptation parameters esti-

mate uncertainty in the aircraft model, and feedback is used to drive the closed-loop dy-

namics towards the nominal condition. It is crucial to note that the closed-loop dynamics

are polynomial, which is a requirement for SOS optimization. The nonlinearities are poly-

nomial and only appear in the adaptive law (Equation 10) and in the parameter update law

(Equation 11). The closed-loop state equations are summarized by Equations 14 - 16.

ẋ = (Aλ +BKx)x+BθTx+BKrr (14)

ẋm = Amxm +Bmr (15)

θ̇ = −κx(x− xm)TPB − σθ (16)

The following sections are focused on developing an approach that can be used to verify

the robustness of this closed-loop system to time delay.

III. Sum-of-Squares Analysis

The underlying mathematical theory behind the time delay margin analysis in this article

is related to properties of sum-of-squares (SOS) polynomials. This section provides a brief

review of SOS polynomials and the optimizations that exploit their properties. Background

and more detailed information can be found in References 1–3.

In general, a function g(x) is a sum-of-squares polynomial if there exist polynomial func-

tions f1, ..., fn such that g(x) =
∑n

i=1 fi(x)2. For example, g(x) = x21 − 4x1x2 + 8x22 can be

represented by f1 = x1−2x2 and f2 = 2x2 as a sum of squared terms. A key property of SOS

polynomials is that they are globally positive semidefinite. To check whether a polynomial

is SOS, suppose that g(x) is a polynomial of degree less than or equal to 2d. Any such

polynomial can be written in its vectorial decomposition, shown in Equation 17.

g(x) = c>w(x) (17)

In this form, w(x) is a vector of monomials in x of degree less than or equal to 2d, and c is

a unique vector of coefficients. For example, the polynomial g(x) = x21− 4x1x2 + 8x22 can be

represented by c = [1, −4, 8]> and w(x) = [x21, x1x2, x
2
2]
>. On the other hand, the Gram
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matrix representation of a polynomial is given by Equation 18.

g(x) = z>(x) Q z(x) (18)

In the Gram matrix representation, z(x) is a vector of monomials in x of degree less than

or equal to d, and Q is a symmetric matrix. The polynomial g(x) = x21 − 4x1x2 + 8x22 can

be represented in the Gram matrix form by z(x) = [x1, x2]
> and Q = [1, −2; −2, 8]. In

general, a particular Gram matrix representation is not unique.

To parameterize all possible Gram matrix representations, a linear operator L is defined.

Given any matrix Q, the polynomial z>(x) Q z(x) can be formed and expressed uniquely

in vector form as c>w(x). Thus, given any symmetric matrix Q, the unique polynomial

coefficients vector c can be computed. Define L as the operator mapping any symmetric

matrix Q to a vector c, i.e. L(Q) = c. A matrix representation of L can be found since both

its domain and range are finite dimensional. The transformation corresponding to L enables

the parameterization of a family of symmetric matrices Q, shown in Equation 19, yielding

Gram matrix representations of g(x).

Q = Q0 +
s∑
i=1

piNi, (19)

In this parametrization, Q0 is any symmetric matrix corresponding to a particular Gram

matrix representation of g(x). The set {N1, . . . Ns} is a basis of the null space of L, i.e.

L(Ni) = 0. p is a vector of scalar multipliers. Any value of p in Equation 19 yields a valid

Gram matrix representation of g(x). A key mathematical result is that g(x) is SOS if and

only if it has a Gram matrix representation with a positive semidefinite matrix Q, denoted

by Q � 0.1,30 Consequently, g(x) is SOS if and only if there exists a multiplier p for which

Q0 +
∑s

i=1 piNi � 0. This is a Linear Matrix Inequality (LMI) feasibility constraint that

corresponds to an SOS constraint.

Many useful optimization problems can be formulated with SOS polynomials. An SOS

program is an optimization problem with a linear cost and SOS constraints on the deci-

sion variables.21 SOS programs can be converted to semidefinite programs (SDPs) using

the connection between SOS polynomials and positive semidefinite matrices. SOSOPT,23

SOSTOOLS,21 and Yalmip22 are freely available MATLAB toolboxes for solving SOS opti-

mizations. In particular, SOSOPT is used for the analysis in this article. SOSOPT allows

the user to specify SOS constraints using an included polynomial toolbox. It converts the

SOS optimization into an SDP, which is then solved with SeDuMi.31,32 Finally, the solution

of the SDP is converted back to a polynomial solution.

SOS polynomials are globally positive semidefinite, which is a property that can be
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exploited for the analysis of nonlinear systems. For example, SOS optimization can be

used to construct a Lyapunov function that certifies the stability of a system. Lyapunov

based stability analysis is generally centered around finding a positive definite function V

whose derivative, with respect to time, is negative semidefinite. If the Lyapunov function

candidate is restricted to be polynomial, then stability certificates can be obtained using an

SOS optimization. This approach is ideally suited for control systems governed by polynomial

dynamics, such as the MRAC system. For problems involving non-polynomial dynamics, the

dynamics must be approximated as polynomials.

A significant limitation of SOS optimization is the rapid increase in the order of the

resulting SDP as a function of the number of variables and the polynomial degree. For

a generic degree 2d polynomial with n variables, the Gram matrix representation involves

lz =
(
n+d
d

)
monomials in the vector z(x). An SOS constraint is enforced via the positive

semidefinite constraint on Q, which is an lz× lz Gram matrix. For example, Q has dimension

lz = 495 for a generic degree 8 polynomial in 8 variables and the null space of L has dimension

s = 109890. The size of this matrix constraint is near the limits of current SDP solvers. The

problem structure can be exploited,33 but this computational growth is a generic trend in

SOS optimizations. For analysis of polynomial systems, this roughly limits the approach to

systems with fewer than 8-10 states and cubic degree models. Polynomial models of higher

degree can be handled if there are fewer states.

Various types of nonlinear analysis problems have be formulated and analyzed in recent

literature as SOS optimizations. Some of these include optimizations estimating regions of

attraction, reachability sets, local input-output gains, input-output gains with other signal

norms, robustness with respect to parametric uncertainty, and time delay margin.4–20 The

analysis in this article focuses on estimating the time delay margin for the MRAC system.

SOS optimization is applicable because the MRAC closed-loop system is governed by poly-

nomial dynamics.

IV. Time Delay Margin Analysis

An approach to calculating time delay margins for polynomial systems using SOS op-

timization was proposed in Reference 19, and refined in Reference 20. The approach in

Reference 19 was used to analyze the MRAC system in References 24–26. The analysis in

this article applies the refined approach in Reference 20 to improve upon the previous time

delay margin results for the MRAC system.

In this section, a set of Lyapunov stability conditions is derived. These conditions can be

used to prove stability of nonlinear systems with time delay. The conditions are subsequently

relaxed, which allows them to be verified numerically via SOS optimization. Finally, the
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MRAC closed-loop dynamics are formulated as a time delayed system, which can be analyzed

for robustness with SOS optimization.

A. Stability Analysis for Nonlinear Time Delayed Systems

For the subsequent derivation, the time delayed closed-loop dynamics are restricted to the

form in Equation 20.

ẋ(t) = f(x(t), x(t− τ)) (20)

In this model, x(t) ∈ Rn is the current state vector, x(t−τ) ∈ Rn is the delayed state vector,

and the origin is assumed to be an equilibrium point, i.e f(0, 0) = 0. Implicitly, this system

is infinite dimensional. The current derivative depends explicitly on the current state and the

delayed state. However, knowledge of the entire state time history on the time delay interval

is required for predicting future states. This infinite dimensional state is denoted φt, where

φt is the state at time t, which consists of the solution x defined in the entire interval [t−τ, t].
Many real systems can be modeled this way, such as systems with controller computation,

communication, or transport delay. The largest τ for which the equilibrium is stable is the

time delay margin. The largest τ for which stability can be numerically certified is a lower

bound on that margin.

A Lyapunov function candidate is proposed in Equation 21, which maps the infinite

dimensional vector φt into a real number.19

V (φt) = V0(x(t)) +

∫ r

0

V1(τ, x(t), x(t− τ)) dτ +

∫ r

0

∫ t

t−τ
V2(x(ξ)) dξ, dτ (21)

One of the conditions of the Lyapunov stability theorem is that V (φt) be positive definite.

Positive definiteness of each term in V (φt) is sufficient but not necessary. Given at least one

positive definite term, the others can be positive semidefinite. V0 is constrained to be positive

definite by ensuring that it is greater than the function ψ = x(t)Tx(t). This allows for slack

in the remaining terms. The kernels V1 and V2 of the integral terms are constrained to be

positive semi-definite. Indeed, the integral of a positive semi-definite function is positive

semi-definite itself.

Another condition of the Lyapunov stability theorem is that the time derivative V̇ be

negative semidefinite. It is lengthy, but straight-forward, to differentiate a Lyapunov can-

didate V of the form given in Equation 21. Details are provided in Reference 25. The

resulting simplified form is shown in Equation 22. The kernel of this integral is constrained
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to be negative semidefinite to certify stability of the time delayed system.

d

dt
V =

∫ r

0

1

r

dVo
dx(t)

f +
1

r
V1(r, x(t), x(t− r))− 1

r
V1(0, x(t), x(t))

+
∂V1
∂x(t)

f − ∂V1
∂τ

+ V2(x(t))− V2(x(t− τ)) dτ (22)

A set of sufficient conditions that prove local stability of the time delayed system in

Equation 20 is formulated in Lemma 1. For notational simplicity, the variables x(t), x(t−τ),

and x(t − r) are replaced with x, y, and z, respectively. Conditions 1-3 ensure that V is

positive definite and Condition 4 ensures that V̇ is negative semidefinite.

Lemma 1 Assume the origin is an equilibrium point for the system in Equation 20 and let

ψ(x) be a given positive definite function. If there exist functions V0, V1, and V2 such that:

1) V0(x)− ψ(x) ≥ 0 ∀x

2) V1(τ, x, y) ≥ 0 ∀x, ∀y, ∀τ ∈ [0, r]

3) V2(x) ≥ 0 ∀x

4) 1
r
dVo
dx
f(x, y) + 1

r
V1(r, x, z)− 1

r
V1(0, x, x) + ∂V1

∂
f(x, y)− ∂V1

∂τ
+ V2(x)

− V2(y) ≤ 0 ∀x, ∀y, ∀z, ∀τ ∈ [0, r]

then the origin is a locally stable equilibrium for time delays τ ≤ r.

The stability conditions in Lemma 1 apply to general nonlinear systems with time delay

of the form in Equation 20. With several assumptions and constraint relaxations, SOS opti-

mization can be used to construct the Lyapunov function and certify the stability conditions.

The next subsection details these assumptions and the constraint relaxation process.

B. SOS Stability Analysis for Polynomial Time Delayed Systems

SOS optimization is limited to constraints on polynomial functions. Hence, the general

nonlinear structure of the Lyapunov stability conditions described in Lemma 1 cannot be

implemented directly. However, if the system dynamics are limited to polynomials and the

constraints are relaxed to SOS constraints, then SOS optimization can be used to construct

the Lyapunov function and certify the stability conditions. SOS analysis can thus be used

to calculate a lower bound on the time delay margin for the system.

Conditions 2 and 4 in Lemma 1 impose positive semidefinite constraints on the interval

τ ∈ [0, r]. This is an infinite collection of positive semidefinite constraints, i.e. one con-

straint for each τ on the interval. Hence, Conditions 2 and 4 cannot be directly enforced
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as SOS constraints. As a remedy, Conditions 2 and 4 are relaxed using a variant of the

S-procedure. A special polynomial function h(τ) = τ(τ − r) is defined. This function is

negative semidefinite on the interval τ ∈ [0, r], and positive definite elsewhere. In particular,

Condition 2 is relaxed to an SOS constraint on the following function: V1(τ, x, y) + p1h(τ).

p1 is required to be SOS through a separate constraint. Note that enforcing V1 + p1h to be

an SOS polynomial ensures that it is globally non-negative. By construction of p1 and h,

this implies that Condition 2 is satisfied for all τ ∈ [0, r]. Condition 4 is similarly relaxed

by augmenting a term p2h, where p2 is also enforced to be SOS. The functions p1 and p2 are

SOS multiplier functions that chosen by the optimization.

In general, certifying global stability for nonlinear systems is conservative. As a result,

the analysis in this article is restricted to proving local stability. This is accomplished by

enforcing the positive definite constraint on V and the negative semidefinite constraint on

V̇ only on a local region in the state space. This local region is described with a multi-

dimensional box. If the Lyapunov conditions hold inside a multi-dimensional box containing

the origin, then there exists a local region of attraction. In particular, the largest level set of

the Lyapunov function fully contained in the box is an invariant set. Hence, every trajectory

originating from within that level set remains within the level set. It is crucial to note that

although the stability conditions are satisfied for the entire box, only the largest level set of

the Lyapunov function can be interpreted as a region of attraction for the system.

The magnitude of the box describing the local region is defined by |xi| ≤ ζi, where ζi

is a fixed number. Each xi represents an individual state, and to allow flexibility, each

direction is constrained independently in terms of ζi. Consider functions of the form shown

in Equations 23 - 25.

h1i = (xi − ζi) (xi + ζi) (23)

h2i = (yi − ζi) (yi + ζi) (24)

h3i = (zi − ζi) (zi + ζi) (25)

These functions are negative semidefinite in the local region, i.e. inside the box, and pos-

itive definite elsewhere. Since x, y, and z are treated as separate sets of state variables in

Conditions 1 - 4 in Lemma 1, three sets of hji functions are required. Each state variable set

is denoted with the j index. The i index is reserved for the individual state in a particular

variable set. The hji functions are used to relax the positive definite constraint on V and the

negative semidefinite constraint on V̇ by modifying Conditions 1 and 4 through a variant of

the S-procedure. In particular, Condition 1 is relaxed to an SOS constraint on the following

function: V0(x) − ψ(x) +
∑n

i=1 q1ih1i. The functions q1i are SOS multiplier functions that

chosen by the optimization. Note that enforcing V0 − ψ +
∑n

i=1 q1ih1i to be an SOS poly-
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nomial ensures that it is globally non-negative. By construction of q1i and h1i, this implies

that Condition 1 is satisfied for all |xi| ≤ ζi. Condition 4 is similarly relaxed by augmenting

a term
∑n

i=1(q1ih1i + q2ih2i + q3ih3i). The resulting SOS constraints ensure that Conditions

1 - 4 are satisfied in the local region.

Finally, Conditions 2 and 4 are augmented with polynomial functions s1 and s2, respec-

tively. These functions are used to improve the calculation of lower bounds on time delay

margin. Conditions 2 and 4 are formulated as constraints on integral kernels. To ensure

that the inclusion of functions s1 and s2 have no impact on the Lyapunov function, equality

constraints are enforced on the integrals of s1 and s2, shown in Equation 26.∫ r

0

s1(x, τ) dτ =

∫ r

0

s2(x, z, τ) dτ = 0 (26)

The resulting stability conditions are complicated algebraically, but can be verified with

an SOS program. In this paper, the Matlab toolbox SOSOPT23 is used for the optimization

along with SeDuMi.31 SOS conditions for local stability of polynomial systems with time

delay up to size r are summarized in Lemma 2.

Lemma 2 Assume the origin is an equilibrium point for a polynomial system of the form in

Equation 20 and let ψ(x) be a positive definite function. If there exist polynomial functions

V0, V1, V2, pi, qji, and si such that:

1) V0(x)− ψ(x) +
∑n

i=1 q1ih1i + s1 is SOS

2) V1(τ, x, y) + p1h(τ) + r1 is SOS

3) V2(x) is SOS

4) −r ∂V1
∂x
f(x, y)− dVo

dx
f(x, y) + r ∂V1

∂τ
− rV2(x) + rV2(y)− V1(r, x, z)

+ V1(0, x, x) + p2h(τ) +
∑n

i=1(q1ih1i + q2ih2i + q3ih3i) + s2 is SOS

5)
∫ r
0
s1(x, τ) = 0

6)
∫ r
0
s2(x, z, τ) = 0

7) pi, qji, and si are SOS

then the origin is a locally stable equilibrium for time delays τ ≤ r.

The SOS conditions in Lemma 2 can be directly implemented as an SOS program. The

conditions certify that all trajectories originating from the largest level set of the Lyapunov

function contained in the local box are stable for all time delays up to size r. The remaining

task is to formulate the MRAC closed-loop dynamics as a time delayed polynomial system.
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C. Time Delayed MRAC Closed-Loop Dynamics

A pure time delay of magnitude τ seconds is introduced in the closed-loop system dynamics

between the controller and aircraft model. This time delay can be interpreted physically as

a computation, sampling, or network delay. A single time delay is considered in the dynamic

model of the closed-loop system for simplicity.

The SOS conditions Lemma 2 apply to systems of the form in Equation 20. A key point

is that the polynomial closed-loop system must be autonomous. Hence, the input signal r

in the MRAC closed-loop system is neglected to satisfy this condition. Neglecting the input

signal may appear limiting for a nonlinear system, since the choice of input and its size

can generally lead to degradation of stability margins. In the case of the MRAC system,

however, analysis with the particular input choice r = 0 still leads to insightful results. If

the autonomous system does not have sufficiently large stability margins, the time-varying

system cannot meet robustness requirements either.

The absence of the input signal r alters the MRAC system dynamics. The effect of the

feedforward gain Kr is completely eliminated. The reference model state xm is also zero for

all time. This implies that the error signal e is always equivalent to the true aircraft state

x, which alters the parameter update law. The parameter update law, in the absence of the

reference signal, is shown in Equation 27. Note that the adaptive term is governed by the

quadratic term xxT , instead of xeT .

θ̇ = −κxxTPB − σθ (27)

The simplified system dynamics are represented by an updated interconnection shown

in Figure 2. Although the system dynamics are different from the original MRAC, the

new dynamics remain polynomial. Hence, the robustness of the closed-loop system can be

analyzed with the proposed SOS optimization.

Adaptive
Law

-uad e u - Pλ- -y

x

-

Kx

6

6

e−sτ

Figure 2. Simplified system interconnection neglecting input reference signal.

The SOS optimization certifies a set of local stability conditions for a box centered at the

origin in the MRAC closed-loop system state space. Simulations of the nominal, undelayed

system are used to guide the definition of this box in the locally stable region. For the
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controller design, adaptation gain and sigma modification values of 1 are used. Simulations

are initialized with the state [θ1(0), θ2(0), α(0), q(0)]T = [0, 0, αo, qo]
T , where αo and qo are

sampled along the rectangle formed by the local region box in α− q space. The results from

simulations show that the locally stable region is at least ± 2 deg on α and ± 5 deg/sec on

q. The locally stable region in the adaptation parameter space is at least ± 0.8 and ± 1.4 in

θ1 and θ2. However, to allow the consideration of adaptation rates greater than 1, a larger

box in the adaptation parameter space is used. Simulations of the system with increased

adaptation rate are used to guide this expansion, and a larger box defined by ± 1.6 and ± 4.5

in θ1 and θ2 is implemented. Together, four state space constraints form a four-dimensional

box that is fully contained in the undelayed nonlinear system locally stable region. Note

that simulations are only necessary to gain insight into the size of a physically meaningful

box in state space of the closed-loop system.

SOS optimization is used to construct a Lyapunov function that is valid inside the box

in the MRAC closed-loop system state space. However, this Lyapunov function does not

prove that the entire box is a locally stable region. It is only guaranteed that V is positive

definite, and that V̇ is negative semidefinite in the box. The guaranteed locally stable region

is characterized by the largest level set fully contained in the box, and for time delays up to

size r.

V. Results

The performance and robustness of a flight control law must be verified prior to im-

plementation on military and commercial aircraft. One important step in certifying the

robustness of a flight control law is to ensure that the closed-loop system meets a minimum

time delay margin requirement. SOS optimization is used to find a lower bound on the time

delay margin for the MRAC system. Monte Carlo simulations provide an upper bound.

Since the exact margin is unknown, both the upper and lower bounds are needed for anal-

ysis. The SOS lower bound is meaningful if it lies above a required minimum value of time

delay margin. In this case, the lower bound certifies that the flight control system meets the

time delay margin requirement. Conversely, the Monte Carlo upper bound is meaningful if

it falls below the requirement. In this case, the upper bound demonstrates that the time

delay margin requirement is not satisfied. It cannot be determined if the minimum time

delay margin is satisfied if the bounds straddle the requirement. In this case, however, the

bounds can provide qualitative insight into trends in the time delay margin evaluated over

a certain parameter space.

A reasonable minimum time delay margin requirement for the MRAC closed-loop system

can be inferred from the open-loop aircraft model. The open-loop bandwidth is 5.6 rad/sec.
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A typical performance and robustness phase margin requirement at the system bandwidth

is 45 deg.34 At 5.6 rad/sec, this requirement translates to a time delay margin of about

140 msec. Thus, a reasonable minimum time delay margin requirement for the MRAC

closed-loop system is also 140 msec.

The parameter update law in the MRAC is tuned by adjusting adaptation rate and

sigma modification. Tuning the parameter update law determines the adaptive contribution

to the MRAC control signal. If the adaptive component is turned off, the MRAC becomes a

linear system. Hence, the full closed-loop system is linear, and a precise time delay margin

can be calculated. This time delay margin is calculated using the loop transfer function

L(s) = KxP (s), in which the aircraft model is assumed to be nominal. With adaptation

turned off, the time delay margin for the system is around 151 msec. This calculated margin

exceeds the minimum requirement of 140 msec.

The calculation of time delay margin is desired for the MRAC closed-loop system with

active adaptation. Trends in the time delay margin are found due to variations in the MRAC

tuning parameters as well as for uncertainty in the aircraft model. The time delay margin

results are interpreted in terms of trends in the upper and lower bounds, and the satisfaction

of the minimum time delay margin requirement.

Subsection A focuses on the effect of varying adaptation rate. In this analysis, sigma

modification is held constant to isolate the effect of changing adaptation rate. Subsection

B focuses on the effect of varying sigma modification. In this analysis, adaptation rate is

held constant to isolate the effect of changing sigma modification. The effect of uncertainty

in the aircraft model is also examined. Changes in the aircraft dynamics are analyzed, and

time delay margins are calculated over the uncertainty parameter space in Subsection C.

Subsection D describes some of the computational limitations of time delay analysis using

SOS optimizations..

A. Adaptation Rate

The effect of varying adaptation rate on the robustness of the MRAC closed-loop system is

explored by analyzing the time delay margin. The sigma modification gain is constant at 1

for this analysis. An upper bound for the time delay margin is calculated using Monte Carlo

simulations. In this process, random initial conditions are sampled along the boundary of the

multi-dimensional box for increasing values of time delay. The upper bound is found with

the lowest time delay that results in a divergent trajectory. The lower bound is calculated

with SOS optimization.

The SOS lower bound proves that the origin is stable and, moreover, that there is an

invariant set in the multi-dimensional local region. Since V̇ is negative semidefinite over the

box, this invariant set is guaranteed to at least touch the boundary of the box. However,
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since the invariant set does not necessarily contain the entire box, it is possible for there to

exist a divergent trajectory emanating from inside the box. Thus it is possible for the SOS

optimization to satisfy the Lyapunov stability conditions over the local box for a certain

time delay τ and for the Monte Carlo sampling to find a divergent trajectory inside the

box. Therefore, the upper and lower bounds are not precise complements of each other.

Upper and lower bound time delay margin trends due to variations in adaptation rate are

summarized in Figure 3.

Figure 3. Time delay margin bounds as functions of adaptation rate.

The upper bound results confirm that decreasing adaptation rate κ leads to convergence of

the closed-loop MRAC system to the linear inner-loop. This result is intuitive as decreasing κ

effectively disables the adaptive law. For higher adaptation gains, the upper bound decreases.

This result is also intuitive as higher bandwidth in controllers generally leads to a decrease

in robustness to time delay. For values of κ larger than 0.01, the upper bound indicates that

the minimum time delay margin requirement of 140 msec is no longer satisfied.

Two sets of SOS lower bounds are shown in Figure 3. The lowest bound, marked with

squares, corresponds to solving the SOS optimization in Lemma 2 using second order polyno-

mials. Solving this quadratic SOS program amounts to a reasonably large numerical problem

with around 100 decision variables. On an average laptop with a dual-core processor and

4GB of RAM, a bisection algorithm with 9 iterations takes around 15 minutes to resolve a

time delay margin value to a 1 msec accuracy. This lower bound is conservative compared

to the upper bound. For low adaptation rates, the SOS optimization is able to numerically
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certify that the adaptation rate is at least 94 msec. Although there is a significant gap

between the bounds, the trend in decaying time delay margin is apparent.

The less conservative lower bound, marked with diamonds, corresponds to solving the

SOS optimization in Lemma 2 by taking advantage of fourth order polynomials. For this

calculation, the integral kernel portion V1 of the Lyapunov function includes monomials up

to degree 4. All other components remain quadratic. The use of higher order polynomials

results in a less conservative lower bound on the time delay margin. However, the SOS

program for the quartic case is significantly larger, with around 1500 decision variables.

Including 4th order terms in V1 increases the numerical size of the optimization more than

tenfold. The quartic optimization can no longer be solved on an average laptop. Instead,

a more powerful quad-core desktop with 6GB of RAM is used and takes around 3 hours to

resolve a single iteration in the bisection sequence. More details on computational difficulties

are provided in Subsection D on limitations of the SOS approach. The quartic SOS results

decrease the gap between the upper and lower bounds. For the case of low adaptation rate,

the lower bound certifies that the time delay margin is at least 110 msec.

Both lower bounds exhibit the same trend as the upper bound. The gap between the

upper and lower bounds is significant for low adaptation rates, although it is reduced by

considering higher order polynomials. The trend in the true time delay margin is apparent

by considering both upper and lower bounds. Together, the bounds show that the time

delay margin is highly sensitive to changes in the adaptation rate when κ ∈ [0.01, 10]. This

is a region of interest for control because the adaptive law has a beneficial influence over the

aircraft dynamics on this interval.25 Although the MRAC does not satisfy the robustness

requirements, the relationship between adaptation rate and time delay margin is revealed.

Such insight cannot be drawn without the existence of both upper and lower bounds.

B. Sigma Modification

Time delay margin upper and lower bounds are calculated for varying sigma modification

values. An adaptation rate of κ = 1 is held constant. The results in Figure 4 summarize the

effect of varying sigma modification on the lower and upper bounds of time delay margin.

The upper bound in Figure 4 suggests that robustness to time delay increases with sigma

modification. Further, it shows that the closed-loop system converges to the linear inner-loop

for values of sigma larger than 1000. At this value, the adaptation is effectively turned off.

It is impossible to design an MRAC that meets the 140 msec delay margin requirement with

sigma modification less than 300. However, selecting such a high value greatly reduces the

benefits of adaptation.

Two sets of SOS lower bounds are computed, similar to the case for varying adaptation

rate. The quadratic results are shown by the more conservative lower bound marked with
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Figure 4. Time delay margin bounds as functions of sigma modification.

diamonds. The less conservative quartic results are marked with squares. Both lower bounds

results exhibit a similar increasing trend to the upper bound. The bounds show a steep

increasing trend for values of sigma between 10 and 100, and level out beyond 1000. Neither

lower bound is able to show that the minimum time delay margin requirement is met for

any value of sigma modification. However, they provides evidence that sigma modification

cannot increase robustness without sacrificing performance in the adaptation.

The bounds in Figure 4 provide significant insight into the qualitative trend of the true

time delay margin despite the lower bound being conservative. The bounds imply that the

time delay margin is constant for very low and very high values of sigma modification. They

also indicate the range of values for which the time delay margin is most sensitive to changes

in sigma modification. Knowledge of such sensitivities is crucial in control design. This

type of insight cannot be drawn from the upper bound alone since it does not provide any

analytically rigorous results. However, in conjunction with a guaranteed lower bound, the

qualitative trends can be interpreted with more confidence.

C. Aircraft Model Uncertainty

The use of adaptive control is motivated by the need to account for uncertainty in the

aircraft model without sacrificing performance. The goal of MRAC is to ensure nominal

aircraft performance in the presence of variations in the system dynamics. Uncertainty is
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represented through the λ scaling parameters in the state matrix of the aircraft model. Each

parameter varies on the interval [0.25, 1.75] to encompass 75% uncertainty. A family of linear

inner-loop transfer functions (neglecting feedforward gain Kr) from elevator input to angle-

of-attack output is calculated for this interval by sampling the parameter space. Figure 5

shows the frequency response of this family of transfer functions to illustrate the effect of

uncertainty on the aircraft dynamics.

Figure 5. Inner-loop frequency response illustrating aircraft model uncertainty.

The results in Figure 5 suggest that uncertainty in the aircraft model is limited to changes

in the low frequency characteristics of the inner-loop system. The nominal model is high-

lighted with the darker line on the plot. Deviations alter the DC gain of the system. The

bandwidth of the system varies slightly, but this fluctuation does not affect the high fre-

quency asymptote. This implies that the modes of the system do not vary independently

due to uncertainty.

The dynamics of the closed-loop MRAC system are more sensitive to changes in λα than

in λq. In the interest of computation time, λq is held fixed at its nominal value for this

analysis. Time delay margins are calculated in the presence of 75 % uncertainty on λα to

gain insight into its effect on robustness. An adaptation rate of 1 and a sigma modification

value of 1 are selected for the adaptive law, supplying robustness without sacrificing perfor-

mance in adaptation. Upper and lower bounds on the time delay margin are calculated with

Monte Carlo simulations and SOS optimization, respectively. The results are summarized

in Figure 6.
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Figure 6. Time delay margin bounds as functions of aircraft model uncertainty.

The upper bound shown in Figure 6 shows that time delay margin is not sensitive to

changes in the aircraft model due to parametric uncertainty. The lower bound is significantly

more conservative, but confirms the same trend in the lack of sensitivity. The lower bound

is computed using quadratic polynomials.

D. Limitations

A limitation of the SOS optimization for calculating time delay margin is a shortage of

available memory and computation power. Due to the structure of the Lyapunov function,

the dimension of the system of equations that must be analyzed is three times the dynamic

order of the original system. Two extra sets of state variables are required to handle the

time delay, resulting in a total of 12 states. The computational load of the SOS analysis

grows with both the state order and the polynomial degree of the model. Hence, scaling the

problem to larger systems is difficult, if not impossible, with current numerical algorithms

and solvers.

The size of the SOS program with quartic polynomials is near the limit of currently avail-

able computation power. Extending this approach to more realistic, higher order systems

will require new computational tools, including advances in SDP solvers and/or algorithms

specifically tailored to SOS optimizations. In some cases with quartic Lyapunov functions,

SeDuMi exhibits numerical issues in converging to a feasible result near the expected bound-
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ary of the lower bound. As a result, the lower bound results for the quartic case are less

continuous and exhibit jagged segments. However, even when SeDuMi exhibits numerical

problems, the validity of the final result can easily be verified by checking that the con-

structed Lyapunov function satisfies the conditions in Lemma 2. Thus, it can be ensured

that the results represent a true, however possibly sub-optimal, lower bound on the com-

puted metric. The numerical issues prevent, in some cases, the computation of an optimal

lower bound.

The solver’s ability to satisfy the SOS constraints is also sensitive to the dynamics of

the system. State space and/or time scalings can be used to pre-condition the problem and

reduce numerical issues. For the quartic SOS results presented in the previous sections, the

dynamics were scaled spatially through a coordinate transformation normalizing the states

according to the local region box. The dynamics were also scaled in time by a factor of

ten to improve the numerical results. The use of state space and time transformations for

numerical conditioning is common in commercial software35 and needs further investigation

for SOS analysis. Overall, the accuracy and efficiency of the SOS approach stands to benefit

greatly from improvements in the numerical solvers of the optimization.

VI. Conclusion

This article used polynomial optimization techniques to calculate bounds on the time

delay margin for an adaptive flight control system. These techniques were applied to a

short-period aircraft model with model reference adaptive control. The results provide math-

ematically proven lower bounds on the time delay margin. The results also provide rigorous

evidence for trends in the delay margin due to variations in the controller design. Although

conservative, the results capture the time delay margin between upper and lower bounds

that are relevant to engineering practice. Future work must focus on improving the numeri-

cal solvers and algorithms used in SOS optimizations to reduce the gap between upper and

lower bounds.
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