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Abstract—Wind turbines are currently operated at their peak
power extraction efficiency without consideration of the aero-
dynamic coupling between neighboring turbines. This mode of
operation leads to inefficient, sub-optimal power capture at the
wind farm level. By explicitly accounting for the aerodynamic
wake interactions between neighboring wind turbines within
a farm, we aim to characterize optimal control policies that
maximize the power captured by a collection of wind turbines
operating in quasi-steady wind flow conditions. In this paper, we
consider two wake interaction models, termed near-field and far-
field, describing wake propagation under densely and sparsely
spaced turbine arrays, respectively. Under the near-field model,
we derive a closed form expression for the optimal control policy
maximizing power capture for a one-dimensional array of wind
turbines. Moreover, we show that the optimal control policy is
both static and independent of the free stream wind velocity,
being thus amenable to a decentralized implementation. We
also formulate and solve numerically the problem of jointly
optimizing over the control policy and placement of turbines in
a one dimensional 3-turbine array under the far-field model.

Index Terms—Wind Energy, Optimal Control.

I. INTRODUCTION

Concerns over energy security and global warming have
manifested in a dramatic growth in the rate of installed
wind power capacity in the United States [1], and world-
wide [7], over the last decade. However, because of the
signficant capital cost of wind turbine infrastructure and the
attendant variability in power supply, wind integration today
has relied heavily on subsidies and extra-market support to
sustain its economic viability. Common examples include
investment and production credits, feed-in tariffs, mandated
purchases, and variability cost exemption – the last of which
is commonly socialized amongst the load serving entities
(LSE) within a common control area. The practice of pushing
the cost of additional reserves, needed to firm wind, on
to the LSEs will become financially unsupportable as the
penetration of wind increases under the current operating
paradigm. In fact, a recent study by NREL predicts that
regulating reserve requirements in the PJM interconnection
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will increase, on average, by 1500 MW under a 20% percent
wind energy penetration scenario [6].

As a result, new policies and market-based solutions,
placing greater responsibility on wind power producers, are
being developed to facilitate the integration of wind at levels
of increased penetration approaching 10-20%. For example,
the Dispatchable Intermittent Resource program initiated by
the Midwest Independent System Operator treats wind farms
as dispatchable generators required to operate within certain
limits outside of which they face penalties for deviation [18].
Additionally, the California Independent System operator
is developing a new Flexible Ramping product aimed at
compensating inter-interval ramps in net demand (≈ load
minus non-dispatchable resources) – the cost of which will
be allocated to those parties responsible for its procurement
[25]. Both of these programs essentially impose a variability
cost on the wind power producer. This creates an incentive to
the wind farm to firm its output, which manifests in a trade-
off between power maximization and variability mitigation.
Clearly, improving the viability of wind in this changing
regulatory landscape will require technical innovations that
enable a balance of these two objectives.

In this paper, we focus on the problem of wind farm
power maximization, as this is essential to maximizing the
revenue derivable from production tax credits and feed-in
tarrifs under the current regulatory environment. Tradition-
ally, wind farms are controlled in a decentralized fashion,
where each turbine is operated to maximize power extraction
locally, without consideration of aerodynamic interactions
between neighboring turbines within a farm. Essentially, this
amounts to a greedy control policy where each turbine i
is operated at its peak efficiency according to Betz’ Law
[5]. In practice however, the energy extracted from the
free stream flow at a leading turbine will generate a wake
with reduced energy content, thereby mitigating the power
extractable by nearby downstream turbines. Many papers [2],
[4], [9], [12], [13], [16], [15], [17], [19], [22], [20], [21],
[24] have recently shown that maximizing power capture
at the individual turbine level leads to sub-optimal power
capture at the farm level. Clearly, optimized placement of
and increased spatial separation between turbines can limit
aerodynamic interactions and thus improve the farm level
power capture under the greedy policy – a topic which has
received significant attention in recent years [23].

There have been several papers in the recent literature that
have explored this question from different angles. In [9],
Johnson et al. present several simulation based results demon-



strating sub-optimality in power capture when individual
turbines are operated at their peak efficiencies. Marden et al.
[16], [15] dispense with the challenge of explicitly modeling
aerodynamic interactions between neighboring turbines and
rely instead on a game-theoretic learning approach to solve
the control problem. The approach does not require an
explicit model of the aerodynamic interactions. However, the
achievable performance may be limited in practice if the
wind velocity varies more rapidly than the time required to
converge to the optimal policy. In [13], the authors present
a novel control-oriented model to characterize wake interac-
tions between neighboring turbines and demonstrate through
simulation the improvement in farm-level power capture
when coordinating the control actions of the individual tur-
bines. In [23], Tzanos et al. propose the use of a randomized
algorithm to optimize the placement of wind turbines within
a fixed area to maximize total power capture. While the
authors’ proposed algorithm improves upon the performance
of conventional genetic algorithms used for turbine siting,
the problem formulation assumes a fixed control policy and
hence does not explore the gains achievable through the co-
optimization of turbine placement and control.

In the present paper, we build on the problem formulation
and numerical results of [9] by deriving a closed form
expression for the optimal control policy maximizing power
capture for a one-dimensional array of densely spaced wind
turbines. Under quasi-steady conditions, the optimal control
policy is shown to be static and independent of the free
stream wind velocity, being thus amenable to a decentralized
implementation. We also formulate and solve numerically
the problem of jointly optimizing over the control policy
and turbine placement to maximize power capture of a one
dimensional 3-turbine array. We do not consider the problem
of load mitigation in this paper, as this is left for future work.

In Section II, we present a model for power capture at
an individual turbine based on actuator disk theory and
describe a general wake generation and interaction model to
characterize the aerodynamic coupling between neighboring
turbines within a farm. Modeling of turbine wake interactions
remains an active research area and hence two different
wake models, named near-field and far-field, are described.
In Sections III and IV, we present results characterizing an
optimal control policy that results in farm level power max-
imization under the near-field and far-field wake interaction
models, respectively. Finally, we close with conclusions and
suggestions for future research directions in Section V. The
majority of proofs are omitted due to space constraints – with
the exception of the primary results, whose proofs are located
in the appendix.

II. PROBLEM FORMULATION

This section presents the wind farm model used in this
paper. Consider a one dimensional array of N identical
wind turbines as shown in Figure 1. Turbine i is located
downstream of turbine 1 by a distance xi. The air flow

velocity upstream of turbine 1 is assumed to be uniform with
speed defined as v∞. It is further assumed that all turbines are
perfectly aligned with the direction of the upstream airflow,
such that the air flow is orthogonal to each turbine’s plane of
rotation. The power generated by the wind farm depends on
the free-stream wind speed and the control actions of each
turbine. In the following subsections, we describe the model
of the wind farm power generation process.

Fig. 1. One-dimensional array of turbines.

A. Turbine Power Capture

The power captured by turbine i is given by

Pi(ai, vi) =
1

2
ρAv3iCP (ai) (1)

where ρ is the air density, A is the area swept by the turbine
blades, and vi is the average “inlet” wind speed for turbine
i [5], [14]. The non-dimensional power coefficient CP is the
fraction of the available wind power captured by the turbine.
CP depends on the macroscopic aerodynamic properties of
the turbine. A simple expression for the power coefficient
can be derived using actuator disk theory [5], [14] as follows.
Define the axial induction factor, ai, as the relative decrease
in velocity from the inlet to the rotor plane, i.e. ai := (vi −
vrotor,i)/vi. The dependence of the power coefficient on the
induction factor is given by actuator disk theory as:

CP (ai) = 4ai(1− ai)2 (2)

The induction factor is treated as the turbine control input in
this model. Equation 2 leads to Betz’ Law: the efficiency
for a turbine is bounded by CP (ai) ≤ 16

27 ≈ 0.59 with
the bound achieved by operating at ai = 1

3 . A key point
is that the induction factor ai = 1

3 maximizes power
capture for a single turbine, but need not be optimal for
an array of turbines due to the aerodynamic interactions
between neighboring turbines. The axial thrust force also
depends on the induction factor: T (ai, vi) = 1

2ρAv
2
iCT (ai)

where CT (ai) = 4ai(1 − ai) is the non-dimensional thrust
coefficient. Thus the axial induction factor affects both the
captured power as well as the thrust loads on the turbine.

Equations 1 and 2 form a simplified model of the power
capture characteristics for a single turbine. The actual control
inputs on a utility scale turbine are the blade pitch angles
and generator torque. In addition, higher fidelity models,
e.g. the FAST simulation package developed by the National
Renewable Energy Laboratory [10], include more detailed



models of the aerodynamic forces and structural (tower,
blade, gearbox) flexibilities. As noted above, this paper treats
the axial induction factor ai as the turbine control input. The
induction factor computed for each turbine would need to be
converted to blade pitch angles and generator torques for an
implementation on an actual turbine.

B. Wake Interaction Model

The actions of a single turbine disrupt the freestream
velocity and lead to wake effects downstream of the turbine.
Consider the effect of turbine 1 on the flow at a downstream
distance x and spanwise distance s behind the turbine. The
velocity at location (x, s) is given by:

v(x, s, a1) = v∞ (1− δv(x, s, a1)) , (3)

where δv(x, s, a1) is the relative velocity deficit with respect
to the free-stream velocity v∞ induced by the control action,
a1, of turbine 1. As a concrete example, the Park Model [8],
[11], [9], [16], [2] defines the relative velocity deficit as:

δv(x, s, ai) :=

{
2ai

(
D

D+2krx

)2
if s ≤ D+2krx

2

0 else
, (4)

where D is the turbine rotor diameter and kr is a roughness
constant that determines the wake expansion. An alternative
model for the relative velocity deficit uses a power law and
Gaussian wake dependence on the downstream and spanwise
directions, respectively [4], [20], [21].

The average inlet speed at turbine 2 is affected by operating
in the wake of turbine 1. A simple coupling relation between
turbines 1 and 2 can be derived for a wide class of relative
velocity deficit functions δv(x, s, a1). Assume the relative
velocity deficit behind turbine 1 is a linear function of the
induction factor: δv(x, s, a1) = κ(x, s)a1 for some function
κ(x, s). Turbine 2 is located downstream of turbine 1 by a
distance x2. The average inlet velocity for turbine 2 is:

v2 =
1

A

∫
A

v∞(1− δv(x2, s, a1))dA (5)

Defining κ1,2 := 1
A

∫
A
κ(x2, s)dA yields

v2 = v∞(1− κ1,2 · a1), (6)

where κ1,2 is the coupling constant that relates the control
action of turbine 1 to the decrease in average wind speed
incident at turbine 2. This is a quasi-steady state model
with a linear relation between the induction factor and
the downstream inlet velocity. The coupling constant κ1,2
aggregates all of the information about the array geometry
(separation distance) and relative velocity deficit model for
the wake. The integral in the coupling constant averages the
relative velocity deficit over the rotor plane of turbine 2. A
weighted integral over the rotor plane would lead to the same
form as in Equation 6. Finally, a reasonable characteristic for
a wake model is that the far downstream velocity converges
to the free-stream velocity, i.e. δv(x, s, a1)→ 0 as x→∞.

It follows immediately that κ1,2 → 0 as x2 →∞ for velocity
deficit models with this “far-field” behavior.

The coupling relation in Equation 6 can be extended to the
case of more than two turbines. Two specific models will be
used in this paper. First, a far-field model is defined as

vi = v∞

1−
i−1∑
j=1

κj,i · aj

 , (7)

for i = 2, . . . , N and v1 = v∞. This model assumes a linear
superposition of wake velocity deficits. One drawback of
this model is that it can result in unrealistic negative inlet
velocities for some induction factors and coupling constants.
Nonlinear relations, e.g. a Euclidean norm relation, have
also been proposed [16] for superposition of multiple wakes.
Equation 7 is termed a far-field model, because it satisfies
vi → v∞ as xi − xi−1 → ∞. Specifically, vi → v∞
if the relative velocity deficit model satisfies kj,i → 0
(j = 1, . . . , i − 1) as the spacing between turbines i and
i− 1 increases.

A near-field model will also be considered in this paper:

vi = vi−1 (1− κi−1,iai−1) , (8)

for i = 2, . . . , N and v1 = v∞. In this model, the control
action of turbine i− 1 only directly affects the inlet velocity
of turbine i. However, the control action of turbine i − 1
indirectly affects all downstream turbines (i, i + 1, . . . , N)
through the one-step velocity deficit relation defined in
Equation 8. This near-field model satisfies vi → vi−1 as
turbine i moves farther downstream from turbine i − 1,
i.e. the freestream velocity is not recovered far downstream.
Although the far-field model is the more common model in
the literature, the near-field model may prove to be more
appropriate for closely spaced turbines. This is a conjecture
that needs to be verified with empirical analysis.

C. Power Maximization

The joint axial induction factor for the turbine array is
a = (a1, · · · , aN ) ∈ A where the allowable set of induction
factors is A = [0, 13 ]

N . The total power extracted from the
array of turbines operating under a joint axial induction factor
a ∈ A is given by

J(a, v∞) =

N∑
i=1

Pi(ai, vi) (9)

Note that the power generated by turbine i depends on the
actions of all upstream turbines via the inlet velocity vi :=
vi(v∞, a1, . . . , ai−1). A joint axial induction factor a◦ is said
to be optimal if it satisfies

a◦ ∈ argmax
a∈A

J(a, v∞). (10)

Here, we assume that the supremum of J is achieved.
Computing an optimal solution is nontrivial as the objective
function J is, in general, not concave in a. Moreover, in



solving problem (10), we seek optimal induction factors
parameterized as explicit functions of their corresponding
inlet conditions. With a slight abuse of notation we denote
this dependence by ai = ai(vi).

III. RESULTS: NEAR-FIELD

In this section, we explore the problem of maximizing
power capture under the near-field wake interaction model in
Equation 8. Given this spatially causal relationship character-
izing the dependence structure between inlet velocities across
turbines, it is straightforward to show that the principle of op-
timality [3] is satisfied by problem (10), i.e. given an optimal
policy a◦ = (a◦1, · · · , a◦N ) parameterized by the inlet wind
speed v1 = v∞, it holds that (a◦i , · · · , a◦N ) is also optimal
for the sub-problem parameterized by the intermediary inlet
wind speed, vi. We thus consider a dynamic programming
(DP) approach to enumerating an optimal policy.

In the customary DP fashion, define the inlet speed vi and
induction factor ai as the state and control input, respectively,
of turbine i. The state transition function is given by the
near-field relation (8). For any policy a ∈ A, the cost-to-go
at turbine i with inlet speed vi = v is defined as

Ji(a, v) =

N∑
j=i

Pj(aj , vj). (11)

Let Ai denote the allowable induction factors for turbine i.
This notation is defined for generality, but in many cases the
allowable induction factors will simply be Ai = [0, 13 ]. It
follows that the value function for a given inlet speed vi = v
at turbine i is defined as

J◦i (v) = max
a∈A(i)

Ji(a, v), (12)

where A(i) =
∏N

j=iAj is the set of allowable induction
factors for turbines i through N .

Lemma III.1 (Bellman equation). The value function sat-
isfies the following backward iteration. Given an inlet wind
speed vN = v at the terminal turbine N ,

J◦N (v) = max
a∈AN

PN (a, v) (13)

and for 1 ≤ i ≤ N − 1 with inlet wind speed vi = v at
turbine i,

J◦i (v) = max
a∈Ai

{
Pi(a, v) + J◦i+1(v(1− a κi,i+1))

}
.

(14)

The proof of Lemma III.1 follows directly from the principle
of optimality. This has a DP “cost-to-go” interpretation that
can be restated as: the maximal power produced by turbines
i through N is obtained by maximizing the sum of the
power produced by turbine i and the power produced by
the remaining turbines operating optimially in the wake of
turbine i. Further refinement of the value function yields the
following simplified form, which reveals state independence

of the optimal policy. Without loss of generality, assume
identical swept rotor areas, Ai = A for all turbines i.

Lemma III.2 (State independent decisions). The value func-
tion satisfies the following backward iteration for 1 ≤ i ≤ N .

J◦i (v) = cv3 max
a∈Ai

{
a(1− a)2 + (1− a κi,i+1)

3φi+1

}
,

(15)
where

φi = (1− a◦i κi,i+1)
3φi+1 + a◦i (1− a◦i )2 (16)

and φN+1 = 0, κN,N+1 = 0, and c = 2ρA.

Remark III.3. Lemma III.2 characterizes the value function
as a simple recursive procedure to compute the optimal policy
a◦, which is shown to be independent of the system state, i.e.
it is independent of the turbine inlet velocity v.

Theorem III.4 (Optimal policy). For 1 ≤ i ≤ N , let φ =
φi+1 and κ = κi.

a◦i =
1

3

(
2− 3φκ2 −

√
1− 12φκ2 + 9φκ+ 3φκ3

1− φκ3

)
(17)

where φi+1 satisfies the backward iteration specified by (16).

Theorem III.5 (Optimal policy, κi,i+1 = 2). For 1 ≤ i ≤ N ,
let κi = 2.

(a) The optimal policy is given by

a◦i =
1

2(N − i) + 3
. (18)

(b) The power extracted by the ith turbine under the optimal
policy a◦ is given by

Pi(a
◦
i , vi) =

1

2
ρAv3∞16

(N − i+ 1)2

(2N + 1)3
.

(c) The total power extracted by the wind farm under a◦ is

J(a◦, v∞) =
1

2
ρAv3∞

8N(N + 1)

3(2N + 1)2
,

whose limit as the number of turbines goes to infinity, is

J∞ := lim
N→∞

J(a◦, v∞) =
1

2
ρAv3∞

2

3
.

Theorem III.5 provides a closed form expression for the
numerical results corresponding to the two-turbine example
presented in [9].

Remark III.6 (Improvement on the greedy policy). Accord-
ing to Theorem III.5, the peak aggregate power capture
efficiency of an infinite array of densely spaced turbines is
given by of C◦P = 2/3. Under the greedy policy (ai = 1/3
for all i), one can readily show that the power captured by
an N -turbine array is given by

J(a, v∞) =
1

2
ρAv3∞

(
16

26

)(
1−

(
1

27

)N
)
,



whose limit yields an aggregate power capture efficiency of
CP = 16/26. Thus, operating the wind turbine array under
the optimal policy a◦ yields an improvement of

C◦P − CP

CP

= 8.33%.

IV. RESULTS: FAR-FIELD

This section focuses on a three turbine array using the far-
field model. This builds on the prior examination of the three
turbine array in [9]. Assume the turbine locations (x2, x3) are
given. Under the far-field model described in Section II, the
power generated by the three turbine array is

P (a1, a2, a3) =
1

2
ρA
(
v31CP (a1) + v2(a1)

3CP (a2) (19)

+v3(a1, a2)
3CP (a3)

)
The far-field wake interaction model (Equation 7) gives the
turbine inlet velocities:

v1 = v∞ (20)
v2(a1) = v∞(1− κ1,2a1) (21)

v3(a1, a2) = v∞(1− κ1,3a1 − κ2,3a2) (22)

The joint axial induction factor for the three turbine array is
a = (a1, a2, a3) ∈ A := [0, 13 ]

3. The objective is to find the
optimal joint induction factor that satisfies

a◦ ∈ argmax
a∈A

P (a1, a2, a3). (23)

The induction factor a = 1
3 maximizes the power capture for

a single turbine operating in isolation. However, operating
each turbine in the array at this induction factor, i.e. ai =
1
3 , does not yield the maximal combined power from the
array [9]. In particular, maximizing the power capture of the
leading turbines in the array leaves less energy to be captured
by the trailing turbines. Thus the joint power produced by
the array P (a1, a2, a3) can be increased by operating some
turbines away from the peak efficiency induction factor.

If all wake interaction coupling constants κi,j are zero then
it can be shown that the Hessian ∇2P is strictly negative
definite on A. It follows by continuity that P is a concave
function for sufficiently small coupling constants. For general
coupling constants, however, P is not a concave function.
Hence the optimization in Equation 23 may have multiple
local optima. One concrete statement is that ao3 = 1

3 is
required for global optimality. In other words, the last turbine
in the array should maximize its power capture because there
are no subsequent turbines operating in its wake.

The power maximization problem was solved for the
three turbine array by gridding on the space of induction
factors. As noted above, turbine 3 must operate at peak
efficiency (ao3 = 1

3 ) and hence the gridding was performed
on a two-dimensional space (a1, a2) ∈ [0, 13 ]

2. The calcu-
lations were performed assuming equally spaced turbines:
x2 − x1 = x3 − x2 := x. In addition, the Park Model
(Equation 4) was used to compute the coupling constants.

The integrations needed to compute the coupling constants
simplify considerably because the relative velocity deficit is
constant within the wake region for the Park Model. The
coupling constants become κ1,2 = κ2,3 = 2 D2

(D+2krx)2
and

κ1,3 = 2 D2

(D+4krx)2
. Finally, the rotor diameter and roughness

constants were chosen as D = 100m and kr = 0.075.
Figure 2 shows the optimal induction factor for turbine 2,
a◦2, as a function of the turbine separation distance, x. As
discussed above, the optimal input for turbine 2 is not equal
to the peak efficiency for a single turbine, a◦2 6= 1

3 . As the
turbine separation increases the wake interactions decrease
and the optimal induction factor for turbine 2 converges to
the peak efficiency point, a◦2 → 1

3 as x → ∞. Note that
for separations less than 2 rotor diameters the optimal point
corresponds to shutting down turbine 2, a◦2 = 0. In other
words there is no benefit to installing densely spaced turbines,
according to the Park wake model. It would be interesting to
verify this result with a high fidelity simulation.

Fig. 2. Optimal induction factor for turbine 2 vs. turbine spacing.

A natural question follows: given a fixed length budget
L for a one dimensional array, how should the turbines
be spaced to maximize the total power generated by the
array? This optimization is related to the real-world task
of micro-siting of turbines, with the additional complexity
of optimizing over both the operating induction factors and
the turbine placement. To simplify the problem, notice that
turbines 1 and 3 must be separated by the given distance
L, i.e. x3 = L. This follows because the coupling constants
are inversely related to separation distance and decreasing
any coupling constant (all else being equal) will increase the
generated power. Let P (a, x2) denote the power generated
by the three turbine array at the joint induction factor
a ∈ A := [0, 13 ]

3 and with turbine 2 located at x2. The
problem is to co-optimize over the joint induction factor, a,
and turbine 2 location, x2, for a given array length L.

(a◦, x◦2) ∈ arg max
a∈A,0<x2<L

P (a, x2) (24)

The coupling constants are computed using the Park Model
with D = 100m and kr = 0.075. The location of x2



enters the optimization via the calculation of the coupling
constants κ1,2 and κ2,3. This optimization was solved on
a grid of (a1, a2, x2) with a◦3 = 1

3 . Figure 3 shows the
optimal power versus the array length. The optimal power
on the vertical axis is normalized by 3

2ρAv
3
∞CP (

1
3 ). This

normalization factor is the power captured by three turbines
in isolation operating at their peak efficiency. As expected,
the normalized optimal power shown in Figure 3 converges
to one as array length tends to infinity. For finite lengths, the
three turbine array generates less energy (for any placement
and induction factor) than three turbines operating at peak
efficiency in isolation. Using the Park wake model, one still
experiences 20% loss in power at an array length of 20 rotor
diameters. This roughly corresponds to a 10 rotor diameter
spacing between the turbines. Figure 4 shows the optimal
placement of turbine 2 versus the array length. The optimal
placement is specified as a fraction of the array length, i.e.
the vertical axis is x◦2(L)/L. This plot shows some numerical
artifacts of the gridding procedure. Qualitatively, the plot
shows that the second turbine should be placed slightly closer
to turbine 3 than to turbine 1. At very low array lengths
L, the placement of turbine 2 becomes immaterial, because
according to Figure 2, the optimal solution is a◦2 = 0 for
L < 175 m.

Fig. 3. Optimal power (normalized) vs. array length.

V. CONCLUSION

In this paper, we’ve explored the problem of farm-level
power maximization under two different quasi-steady state
wake interaction models. First, the principle of optimality
was used to derive a closed-form expression for the optimal
turbine control policy using a near-field model. Second, the
joint optimization over the control policy and turbine place-
ment was numerically solved for a three turbine array under
a far-field wake model. Development of simplified, control-
oriented models of the turbine interactions within a wind
farm is still an ongoing endeavor. Thus these results should
be validated on higher fidelity wind farm models. Finally, as
this paper focused exclusively on power maximization, future
work will also consider the problem of load reduction.

Fig. 4. Optimal power (normalized) vs. array length.

APPENDIX

A. Proof of Lemma III.2

The result is proven by induction. The base case, i = N ,
follows directly from inspection of the terminal value func-
tion (13). For the inductive step, assume Equation (15) holds
for stage i. Direct application of the induction hypothesis to
the Bellman equation (14) at stage i− 1 gives us

J◦i−1(v) = max
a∈Ai−1

{
cv3a(1− a)2 + cv3(1− aκi−1,i)3φi

}
,

= cv3 max
a∈Ai−1

{
a(1− a)2 + (1− aκi−1,i)3φi

}
,

where φi = (1− a◦i κi,i+1)
3φi+1 + a◦i (1− a◦i )2. �

B. Proof of Theorem III.5

Part (a). The result is proven by induction on the state-
ments

a◦i =
1

2(N − i) + 3
, (25)

φi =
1

6

(
1− 1

(2(N − i+ 1) + 1)2

)
. (26)

First notice that under the assumption, κi,i+1 = 2 for all i,
the expression for a◦i in Theorem III.4 simplifies to

a◦i =
1

3

(
2− 12φi+1 −

√
1− 6φi+1

1− 8φi+1

)
, (27)

where φi = (1− 2a◦i )
3φi+1 + a◦i (1− a◦i )2.

Base step. The base case, i = N , follows directly from the
boundary condition φN+1 = 0.

Induction step. Now, assume that Equations (25) and (26)
hold for stage i + 1. Direct substitution of the closed form
expression for φi+1 into Equation (27) yields

a◦i =

2
(2(N−i)+1)2 −

1
(2(N−i)+1)

4
(2(N−i)+1)2 − 1

.



Straightforward algebraic manipulations reveal the desired
form a◦i = 1/(2(N − i) + 3). Similarly, substitution of
the explicit expressions for (a◦i , φi+1) into the difference
equation for φi yields, after simple algebraic manipulations,
the desired form of φi – thus, completing the inductive step.

Parts (b)-(c). Recall Equation (1) for the definition of power
extracted at a single turbine i as a function of the inlet
velocity vi and induction factor ai. Direct substitution of the
optimal policy a◦i into the power efficiency coefficient Cp

yields

Cp(a
◦
i ) = 16

(N − i+ 1)2

(2(N − i) + 3)3
.

Iterating Equation (8) for the inlet velocity vi back to the
boundary condition v1 = v∞ and substituting for the optimal
policy gives

vi = v∞

i−1∏
k=1

(1− 2ak)

= v∞

i−1∏
k=1

2(N − k) + 1

2(N − k) + 3
= v∞

2(N − i+ 1) + 1

2(N − 1) + 3
,

where the last equality follows from cancellation of inter-
mediate terms in the product. Using these expressions, one
can write the total power extracted by N turbines under the
optimal policy a◦ as

J(a◦, v∞)

8ρAv3∞
=

N∑
i=1

(
2(N − i) + 3

2N + 1

)3
(N − i+ 1)2

(2(N − i) + 3)3

=

N∑
i=1

(N − i+ 1)2

(2N + 1)3
,

which can be expanded as

J(a◦, v∞)

8ρAv3∞
=
N(N + 1)2

(2N + 1)3
+

1

(2N + 1)3

N∑
i=1

i2 − 2(N + 1)i.

Using closed form expressions for the summation of the first
N natural numbers (e.g., 1+2+· · ·+N = N(N+1)/2 ) and
their squares (e.g., 12+22+· · ·+N2 = N(N+1)(2N+1)/6),
it is straightforward to show that

J(a◦, v∞)

8ρAv3∞
=

N(N + 1)

6(2N + 1)2
,

whose limit yields the desired result. �
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