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Air data system fault modeling and detection
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Abstract

Air data probes collect essential measurements of aircraft airspeed, alti-
tude, and attitude, and erroneous measurements jeopardize an aircraft and
its passengers. To mitigate erroneous measurements, sensor hardware redun-
dancy is typically combined with a voting system. Redundancy, however,
may result in unacceptable increases in system weight and cost. This pa-
per investigates a model-based alternative to hardware redundancy which
requires an accurate mathematical representation of faulted and unfaulted
air data probes. This paper models the most common air data probe fault
modes—blockages due to debris, ice, or water—using physical air data relation-
ships and experimental wind tunnel data. These models are used to design
robust, model-based fault detection filters for the NASA GTM aircraft. Two
linear H,, filters are synthesized to detect faults, reject exogenous distur-
bances, and provide robustness to model errors. The filters are designed us-

ing linearized aircraft models at one flight condition. Detection performance
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is evaluated using experimentally-derived fault models with the nonlinear
aircraft simulations in the presence of actuator uncertainty.
Keywords: aerospace engineering, air data systems, fault detection, fault

tolerance, pressure measurements, robust estimation, sensor failures

1. Introduction

New methods of system monitoring, fault detection, and fault diagnosis
can enhance the safety and reliability of increasingly advanced technological
systems. These performance demands are particularly important for systems
in which a malfunction can result in significant equipment damage, costly
environmental harms, injuries, or deaths. These systems, known as safety-
critical or life-critical systems, require the highest resilience to malfunction
that engineers can achieve. Such processes are traditionally found in energy
infrastructure, medical devices, transportation, and weapons systems.

The unique operational missions associated with each platform engender
different responses to system failure. The development of fault-tolerant sys-
tems is of increasing interest within a multitude of fields. Fault-tolerance is
one approach for avoiding operational failures when faults occur. The system
may operate safely despite the presence of a fault by executing a reconfig-
ured control strategy. Detection and isolation of faults are key components
for fault-tolerant systems.

Stringent safety requirements have driven aircraft system design for decades.
The system availability and integrity requirements for commercial flight con-
trol electronics are typically no more than 1079 catastrophic failures per flight

hour (Bleeg, 1988; Collinson, 2003). The typical industry design solution is



based extensively on physical redundancy at all levels of the design. For
example, the Boeing 777 has 14 spoilers, 2 outboard ailerons, 2 flaperons, 2
elevators, one rudder and leading/trailing edge flaps (Yeh, 1996, 1998). Each
of these surfaces is driven by two or more actuators, all connected to different
hydraulic systems. The inertial and air data sensors have a similar level of

redundancy and are critical for flight safety.

1.1. Historical Failures due to Air Data Faults

Air data sensor suites provide a variety of critical measurements for the
aircraft control systems and pilots. Total and static pressure measurements—
combined with total air temperature—are used to compute altitude, vertical
speed, and airspeed. Angle of attack and sideslip sensors provide measure-
ments of the aircraft orientation relative to its net velocity vector. Aircraft
dynamics can vary significantly when flying at different attitudes, airspeeds,
and altitudes, and accurate air data measurements allow for proper aircraft
operation. FErroneous measurements, however, can induce dangerous ma-
neuvers with sometimes catastrophic consequences. Thus, the integrity and
reliability of air data is paramount for safe flight.

This paper focuses on characterization of faults affecting air data pressure
sensors. A typical commercial aircraft employs three pitot-static probes, such
as those shown in Figure 1, to determine airspeed and altitude. The probes
have ports (holes) at the tip to capture and stagnate air in order to measure
total pressure. Static pressure ports are on the sides of the probes, oriented
perpendicular to the airflow. The static and total pressure channels exit at
the bottom of the probe and connect to pressure transducers. These probes

are mounted on the fuselage, pointing into the airflow, and are typically
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placed near the nose of the aircraft.

Failures of these probes have resulted in numerous fatal accidents of com-
mercial, military, and general aviation aircraft. To address these failures,
sensor hardware redundancy is typically combined with voting systems to
detect and discard erroneous measurements. The redundancy-dependant
control architectures, e.g. multiple air data systems, used in the aircraft
industry achieve extraordinarily high levels of availability and integrity, yet
catastrophic failures do occur. Two recent examples of notable air data sys-

tem failures are:

Figure 1: Examples of pitot-static probes

e B-2 Spirit bomber crash — 2008 In February 2008, a USAF B-2 Spirit
bomber collected erroneous air data measurements that led to a crash
and total loss of the $1.4 Billion aircraft in Guam (ACC News Service,
2008). According to investigators, moisture in the aircraft’s pressure

transducer units during air data calibration distorted the information



in the bomber’s air data system, causing the flight control computers
to calculate an inaccurate airspeed and a negative angle of attack upon
takeoff. This led to an, “uncommanded 30 degree nose-high pitch-up

on takeoff, causing the aircraft to stall and its subsequent crash.”

e Air France/Airbus A330 Flight 447 crash — 2009 In June 2009, Air
France Flight 447 plummeted over 11 km in only 3.5 minutes and
crashed mysteriously over the Atlantic Ocean en route to Paris (Bu-
reau d’Enquétes et d’Analyses, 2011). The flight data recorders were
recovered after a nearly two-year hunt. The recovered data appeared
to indicate that the pilots had conflicting air speed data in the min-
utes leading up to the crash. The aircraft climbed to 11.5 km when
“the stall warning was triggered and the airplane stalled,” according to
the investigators’ report. Investigators suspect that the aircraft’s pitot

probes malfunctioned due to ice at high altitude.

1.2. Motivation for Model-based Analytical Redundancy

The use of physical redundancy dramatically increases system size, com-
plexity, weight, and power consumption. Moreover, design, development, and
unit production of such systems is expensive. There is an increasing demand
for high-integrity, yet low cost, fault tolerant aerospace systems (e.g. un-
manned aerial vehicles and fly-by-wire capabilites) in lower-end business and
general aviation aircraft. Supplanting physical redundancy with analytical
redundancy that still maintains reliability can reduce costs and facilitate the
development of such vehicles.

If a sufficiently accurate model of the system is available, model-based

methods can be used to estimate system states and outputs. Model-based



redundancy approaches rely upon an accurate mathematical model of the
underlying physical relationships present within a system. By representing
common fault modes in this manner, simulations of fault manifestations are
performed and a fault detection scheme can be constructed.

The fault detection problem usually comprises a method to compute resid-
uals and a process to declare faults based on the residuals. It is desired that
the generated residual be a good representation of the fault of interest while
being insensitive to process and measurement noises. Generation of residuals
depends on the information available about the system. A keen understand-
ing of faulted system performance from an accurate mathematical model can
be used to optimize performance of a fault detection filter to meet particular
specifications that other approaches may be ill-suited to meet. See (Gertler,
1998; Isermann, 2005; Ding, 2008b) for a detailed treatment of model based
and model-free fault detection methods.

This paper focuses on the development of accurate fault models and
model-based fault detection and isolation for air data systems. The air data
probe fault models are derived from experimental wind tunnel tests per-
formed at a variety of flight conditions. The H,, model-based framework is

used to design an analytical fault detection filter for an air data system.

1.3. Outline

This paper has the following structure: Section 2 describes the basic air
data relationships, pitot-static probe operation, and common faults affecting
these probes. Mathematical blockage fault models of the air data systems are
derived from first principles and experimental tests. An aircraft platform is

chosen for study, and models for the aircraft, controls, and additional sensor



systems are discussed in Section 3. Section 4 describes the H., methods used
to design two robust fault detection filters. Fault detection simulation results
and analysis for four blockage fault modes are given in Section 5. Finally,

Section 6 discusses conclusions and directions for future research.

2. Air Data Sensors

This section describes the physical relationships used to create air data
measurements, the structure and operation of a typical pitot-static air data
probe, common fault modes, and experimental data associated with individ-
ual fault conditions. This information is used to construct fault models that

are important to the development of fault detection algorithms.

2.1. Air Data Relationships

The basic relationships between air data measurements and aircraft states
are derived in (Collinson, 2003). For altitudes in the troposphere (up to =
11 km), the static pressure p; is related to altitude h by:

=3 G)7)

where Ty := 288.15K is the absolute temperature at sea level, L := 6.49%
is the troposphere lapse rate, g := 9.81%; is the standard gravity at sea level,
Ds, = 101.325k Pa is the static pressure at sea level, and R := 287,694[( is the
specific gas constant for dry air.

For compressible air and subsonic speeds, the static and total (pitot)

pressures, p, and p;, are related to the calibrated (indicated) airspeed V.



(m/s) by:

B 2/7
V. = A 5<u+1> iy (2)
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where Ag := 340.29 m/s is the speed of sound at sea level. The calibrated
airspeed is equal to the true airspeed at sea level but the two airspeeds differ
at altitudes above sea level. A more accurate model at high altitudes would
include a model of the total air temperature sensor used to compute true
airspeed (Goodrich, 2002). The more simplistic air data model, Equations 1
and 2, is used in this paper; hence, the air data models are only valid at
low altitudes. The flight regime considered in this paper is restricted to low
altitudes less than 1 km. Thus, Equations 1 and 2 provide a sufficiently

accurate model for such analysis.

2.2. Pitot-Static Probe Operation

A fully operational pitot-static probe, as shown in Figure 2, measures
static pressure, p, and total pressure, p;, using independent pressure lines
and transducers. The probe captures freestream airflow via the pitot inlet
port, and the moving air stagnates within the channels inside the probe.
The total pressure is measured at the pitot pressure output. A static pres-
sure measurement is obtained via small-diameter static ports that are flush
with the fuselage of the probe. Static pressure is measured by a pressure
transducer at the static pressure output. Dynamic pressure, pgy, = pr — s,
is a calculated quantity (Collinson, 2003; Goodrich, 2002).

Air entering the probe can contain significant moisture. This moisture
must be removed from the probe in order to prevent excessive accumulation

of water that can lead to blockage faults. In a fully-operational probe, gravity
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Figure 2: Pitot-static probe

moves water inside the probe to a small drain hole. The pressure differential
between the pitot inlet (total pressure) and drain hole (static pressure) forces
water out of the the drain hole. This hole is quite small in comparison to
the pitot opening, hence there is minimal pressure loss at the pitot pressure

output due to the drain hole.

2.3. Industry Standards

The accuracy specifications of air data systems are driven primarily by
vehicle operational requirements. Commercial and general aviation aircraft
are subject to Federal Aviation Administration (FAA) regulations in the
United States and European Aviation Safety Agency (EASA) regulations in
the European Union.

Certification for Reduced Vertical Separation Minima (RVSM) compli-

ance requires particular avionics systems that each have their own specifica-



tions. EASA requires airplanes operated in RVSM airspace to be equipped
with:

1. Two independent altitude measurement systems;
An altitude alerting system:;

An automatic altitude control system; and

- W N

A secondary surveillance radar (SSR) transponder with altitude report-
ing system that can be connected to the altitude measurement system

in use for altitude keeping.

The United States maintains similar standards (Federal Aviation Admin-
istration, 2009). To ensure that aircraft can safely operate in close proximity,
the maximum allowable altimetry system error is 245 feet (approx. 75 m).
Thus, based on Equation 1, a static pressure fault as large as + 0.1 psi (.069
kPa) would lead to an altitude error of nearly 200 feet (over 60 m), close to
the maximum error allowed for an air data system. These standards provide
insight into the significance of pressure errors of a given size; the fault detec-
tion algorithms in this paper are tested against realistically severe air data

system faults.

2.4. Fault Modes and Modeling

This section details common fault modes for pitot-static probes, their po-
tential causes, and their effects on air data measurements. There are three
broad classifications of faults affecting in air data probes: blockage faults,
airflow disruption faults, and heater-related faults. Some faults induce the

same qualitative measurement errors across all flight conditions, while other
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faults will manifest themselves differently depending upon aircraft maneu-
vering. This paper primarily examines common blockage fault modes, and
models of those fault modes are used for fault detection filter synthesis and
simulation. A description of the different fault modes and their manifes-
tations in air data follows. Other fault modes, such as airflow disruption
faults and heater-related faults require advanced modeling beyond the focus
of this paper, yet remain relevant problems in the aerospace industry. A
brief overview of the effects and challenges associated with these faults is

also provided.

Blockage Faults

Pitot-static probes are exposed to the elements making them vulnerable
to blockage faults. The impact of blockage faults on the aircraft depends
on the location of the blockage(s) and the aircraft maneuvers. Pneumatic
lines within the probes transmit the static and total pressures to pressure
transducers. Faults in the pneumatic lines can significantly alter air data
measurements.

Blockage faults can occur as a result of a variety of causes:

Exterior Icing (unpowered heater, failed heater, conditions exceed anti-

icing capabilities)

Water or ice accumulation in pressure line

Insects (e.g. Mud Dauber Wasp)

Bird Strike

Debris
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e Protective cover left in place

An overview of common blockage faults is now provided.

Drain Hole Blockage. With a blocked drain hole and an open pitot inlet
(Figure 3), the air data measurements will be slightly erroneous. The air
data transducers are calibrated to account for the pitot pressure losses that
occur with a nominally-performing (i.e. open) drain hole. In the event that
the hole experiences a blockage, the calibration induces a small error, i.e. a
small false increase in airspeed. Moreover, and perhaps more seriously, the
probe has a high probability of collecting water which can enter the pressure
lines and corrupt measurements. The static pressure measurement, and hence

the altitude measurement, will be unaffected by a drain hole blockage.

Transducer calibrations for

pressure loss at drain hole

induce small positive error

in total pressure measurement
N L

Figure 3: Pitot-static probe with drain hole blockage

\

A pitot-static probe with a blocked drain hole was tested in a subsonic
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wind tunnel on an airspeed versus angle-of-attack grid to simulate fault effects
at varying flight conditions. Tests were performed on an evenly-spaced grid of
25 to 200 knots airspeed and -15 to 15 degrees angle of attack. The pressure
data was measured at 25 knot and 5 degree increments.

The air pressure measurements were examined in nondimensional form;
the error between the test probe measurement p,,.e and a calibrated tunnel
reference probe measurement p,.s is nondimensionalized by the tunnel dy-
namic pressure ¢. as shown in Equation 3. Note that the tunnel dynamic
pressure measurement is gathered by the tunnel reference probe, not the test

probe.

pSND - ) ptND -

e dc

Nondimensionalizing in this way allows for an understanding of the quality

. (psp'r‘obe - psref) . (ptprobe - ptref) (3)

of a set of air data measurements that spans a broad flight regime.

These wind tunnel experimentations allow for comparisons of nominal
and faulted static and total pressure measurements across airspeed sweeps for
each angle of attack. The residuals, or errors, associated with this fault mode
are shown in Figures 4. The mean errors for this fault mode over the entire
airspeed sweep is shown for each angle of attack in Figure 5. Based on the
experimental results in figures 4-5, it is clear that a drain hole blockage has
little to no impact on the static pressure measurement indicated by the probe.
This is true across different airspeeds and angles of attack. At negative angles
of attack, however, the geometry of the probe is such that the static port
captures a component of the dynamic pressure; this is reflected in elevated
static pressure indicated by the probe relative to the tunnel reference static

pressure. This effect diminishes as the angle of attack increases, and for v >
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Figure 4: Air data measurement errors for a drain hole blockage.

0, this behavior is no longer evident in the experimental results. The effect of
angle of attack upon the total pressure measurement error is less significant
than the small effect it has upon the static pressure measurement error.
Thus, in most flight scenarios, angle of attack is not an important predictor
of drain hole blockage effects. The airspeed at which the total pressure
measurement error magnitude is minimized is approximately 65 m/s, and the
error magnitude begins increasing again as airspeeds increase. A commercial
airliner would easily exceed the airspeeds examined in these experiments,
however for the vehicle platform considered in this research (described in the
following chapter), these airspeeds are appropriate.

The drain hole blockage experimental results also indicate that there is
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Figure 5: Mean errors at each angle of attack for airspeed sweeps.

a small false increase in the total pressure measured by the faulted probe.
Since the static pressure measurement in a faulted probes remains nearly
correct, the increase in the total pressure measurement would erroneously
indicate an increased airspeed. The overall effect of this fault, as evidenced by
Figure 5, is consistent throughout the envelope tested. The fault magnitude
is exacerbated, however, for large magnitude, negative angles of attack due
to the geometry of tested probe. These results provide some insight into
the effects of drain hole blockages, but specific probes can be more or less
impacted by faults depending on the probe design. For this particular fault
mode, the pressure measurements can be thought of as an additive positive

step on the true value of the total pressure only. The air data system should
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record static pressure values that are accurate. This indicates that selective
step faults are strong candidates for simulating this real fault scenario.

It should also be noted that for drain hole blockages — as well as other
blockage faults — partial blockages can induce similar effects upon the air

data measurements as the corresponding full-blockage fault.

Pitot Inlet Blockage. A blocked pitot inlet and an open drain hole (Figure 6)
result in the drain hole becoming a static port. Hence, the total pressure out-
put will match the static pressure output. A pitot inlet blockage, however,
is not evident at the beginning of a takeoff roll because the pilots and air-
craft avionics are not anticipating a dynamic pressure indicative of a moving

aircraft.

%

Pressure Outputs are equi

Figure 6: Pitot-static probe with pitot inlet blockage

Drain hole effectively
becomes a static port
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Pitot Inlet and Drain Hole Blockages. A pitot inlet blockage combined with a
drain hole blockage (Figure 7), presents a more complex set of effects. In this
case, the pitot pressure channel becomes a closed system, and the pressure
therefore remains constant during all aircraft maneuvers. The indicated air-
speed will be misleading in a variety of ways depending upon the particular
aircraft maneuver.

When the aircraft climbs with both the pitot inlet and drain hole blocked,
the static pressure correctly decreases while the dynamic pressure incorrectly
increases. In a descent, the static pressure correctly increases while the dy-
namic pressure incorrectly decreases. For an aircraft increasing or decreas-
ing in airspeed, the dynamic pressure incorrectly remains constant. Table
1 describes the effects of a drain hole blockage combined with a pitot inlet

blockage on the airspeed and altitude measurements.

Pitot channel becomes closed
system and pressure becomes
stuck at previous value

Figure 7: Pitot-static probe with combined pitot inlet and drain hole Blockage
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Table 1: Blockage fault effects for pitot-static probes

Blockage Maneuver V Measurement h Measurement Figure
Drain All False increase Correct Fig. 3
Pitot Inlet All Stuck at zero Correct Fig. 6
Climb False increase Correct
Drain and Descent False decrease Correct Fig. 7
Pitot Inlet
Increasing V' Falsely constant Correct
Decreasing V' Falsely constant Correct
Climb False decrease Falsely
Static Port Descent False increase constant; Fig. 8
altitude
I ingV C t
ncreasing orrec rate stuck
Decreasing V' Correct at zero
Water in Probe All Various Various Fig. 9

Static Port Blockage. A blocked static port (Figure 8) directly impacts the

altitude measurement and adversely impacts the dynamic pressure (and thus

indicated airspeed) in a manner similar to a pitot inlet blockage. When the

aircraft climbs, the static pressure incorrectly remains constant while the

dynamic pressure incorrectly decreases. In a descent, the static pressure in-

correctly remains constant while the dynamic pressure incorrectly increases.

When increasing or decreasing in airspeed while maintaining a particular al-

titude, the static and dynamic pressure are correct. Table 1 describes the

effects of a static port blockage on the airspeed and altitude measurements.
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Static pressure channel

becomes closed system and
pressure becomes stuck
at previous value
e | I

Figure 8: Pitot-static probe with static port blockage

Water in Probe or Pressure Lines. The presence of water within an air data
probe or its attached pressure lines (Figure ??) can lead to significant fluctu-
ations in pressure measurements. A meniscus formed within a pressure line
will cause increased pneumatic lag due to the weight of the water present
in the line. The magnitude of the pressure fluctuations and the associated
pneumatic lag is influenced by the mass and location of the water in the line.
Unlike with port blockages, the potential effects of this fault on the altitude
and airspeed measurements are not as clearly defined.

A summary of blockage fault effects is presented in Table 1. When a fault
does not impact the validity of a particular measurement, the corresponding
table entry indicates that the measurement is ‘Correct.” Aircraft maneuvers
mentioned in Table 1 are assumed to be independent (i.e., a change in air-

speed occurs while the aircraft maintains constant altitude, and vice versa).
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Meniscus may form;
pressure fluctuations
may occur due to water
movement in channel

N &
Z

Blocked drain hole
causes accumulation
of water in channel

Figure 9: Pitot-static probe with water blockages

Pneumatic Line Leakage. Air pressure is conveyed to the pressure transduc-
ers via pneumatic lines attached to the air data probe. Leakages in the
pneumatic lines corrupt pressure measurements. The particular effects of
such a fault depend upon which system is leaking (pitot or static), leakage
severity, and the ambient pressure in the location of the leak. Leaks could
occur in a pressurized cabin compartment or in an unpressurized bay; the
ambient pressure in the location of the leak influences the magnitude and

direction of any errors in the air data measurements.

Airflow Disruption Faults
Pitot-static probes are placed in locations on an aircraft fuselage which
are expected to experience laminar airflow that is unlikely to be fouled in-

flight by moving control surfaces or by the fuselage itself. While this provides
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for maximum sensor accuracy, airflow disruptions that do occur may still ad-
versely impact measurements collected by the air data probes. The most
common example of such airflow disruptions can occur with aircraft icing.
Icing-related blockage faults internal to pitot-static probes were previously
discussed; ice accretion on the fuselage or the exterior of the probe can sig-
nificantly disrupt airflow in the vicinity of the static ports. Depending on the
flow disruption, the measured static pressure could be greater or smaller than
the actual static pressure. In such a case, provided that the a clean airflow
is available for the pitot inlet, the pitot pressure measurement is unlikely to

be significantly impacted.

Heater Faults

Pitot-static probes contain heaters embedded within their surfaces which
discourage ice accretion on the surface of the probe and melt ice crystals
which may have entered the pitot inlet, allowing for proper drainage and
preventing blockages. Heater elements can completely fail (in which they
short circuit and no longer provide any heat) or experience slow-acting faults
such as resistance drift. Changing resistances of the heater element cause
fluctuations in heat output. Abnormal heating fluctuations can cause vary-
ing temperatures in the air volumes in the pneumatic lines and can affect the
pressure measurements. Unlike blockage faults, heater faults can manifest
themselves more slowly, and often gradually, since internal probe temper-
atures will not change abruptly. When ice accretion occurs on the probe
and/or fuselage due to heater failure, however, air data systems additionally

become susceptible to blockage and airflow disruption faults.
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Faults Studied and Future Modeling Work

The focus of this paper is full and partial blockage fault detection. Block-
age faults tend to be fast-acting and cannot necessarily be predicted via reg-
ular monitoring and maintenance (although consistent probe cleaning min-
imizes risk). Blockage faults also tend to lead to either ’stuck-at’ values
for pressure measurements or a bias in the measurement that is largely un-
changed at a given flight condition. This behavior makes blockage faults
easier to model and simulate. There are instances, however, where a par-
tial blockage or the presence of water in the pressure lines could lead to
time-varying adverse effects on the air data measurements. Faults relating
to airflow disruptions (e.g. from icing) or heater faults involve more complex
studies of icing aerodynamics and heater element construction and control.
In order to investigate fault-tolerance approaches for these failure scenarios,
higher fidelity models of the air data probes are necessary. Extensive consid-
eration of these fault modes is beyond the scope of this paper, but heater and
airflow disruption effects are strong candidates for future model development.

Blockage faults in the air data system will be modeled as additive step
changes in the static pressure measurement, total pressure measurement, and
both measurements simultaneously in the subsequent section. Additionally,
time-varying effects from water blockages or other fault scenarios will be
modeled as additive sinusoidal changes in the pressure measurements. These
models will be integrated into a high fidelity 6 degree-of-freedom simulation

model of a subscale commercial aircraft testbed for performance evaluation.
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Pressure Measurement Processor Model

The pressure transducers are modeled by inverting the functions in Equa-
tions 1-2 to obtain values of static and total pressure from the aircraft altitude
and airspeed. This yields the expected values for the pressures based upon
the aircraft state assuming a standard atmosphere model. To model sensor
noise and faults in the pressure measurements, the nominal pressure signals
are corrupted by white noise and faults are added to the pressure signals to
yield pressure measurements.

Pressure transducer measurements are processed onboard the aircraft to
yield derived altitude and airspeed measurements for feedback to the control
loops and to the pilot. Equations 1-2 are applied in the simulation to produce
altitude and airspeed measurements from pressure measurements. In this
paper, all pressure signals have units of kPa. The air data system architecture

model is depicted in Figure 10.

n
p Transducers per o

Bt ! A,

—;> Ds (h) ; hm (psm ) — >
i| Physics-Based 5 Air Data

v Pressure Model : Conversion v

_;" pt(w h) ; Vm(ptm - psm)_@

npt? fpt

Figure 10: Air data sensor architecture

The aircraft test bed to be described in the subsequent section operates
at low airspeeds and low altitudes. Choosing a flight condition within the air-

craft flight envelope and linearizing the air data conversion equations about
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that state reveals insight into appropriate magnitudes for injected faults.
Equation 4 shows linearized air data model at 38.5 m/s airspeed and 152 m

altitude.

Shom —4016 0 | |dp, n
5V —3771 3771 |dp,

From Equation 4, a fault (error) of magnitude .069 kPa ( 0.01 psi) in p
would yield an h,, error of -5.82 m and -1.45 m/s in V;,,. A fault of the same
size in p; will result in a V;,, error of 1.45 m/s. Equation 4 shows that faults
injected on p, and p; both influence V,,. If the faults are simultaneous in

both p, and p; and of equal magnitude and sign, V,,, will be unaffected.

3. Aircraft Model

This section describes the aircraft model used as a platform for fault
detection filter design and simulation. The platform considered for this re-
search is the NASA Generic Transport Model (GTM), a remote-controlled,
5.5 percent dynamically-scaled commercial aircraft (Murch & Foster, 2007).
The aircraft weighs approximately 25 kg and can reach airspeeds of up to 90
m/s. A high fidelity 6 degree-of-freedom nonlinear model of the GTM (Cox,
2010) was developed by NASA with the aerodynamic coefficients provided as
look-up tables. The nonlinear simulation captures key flight dynamics char-
acteristics of the GTM aircraft and the commercial transport aircraft after

which it is designed and provides a useful starting point for this analysis.

3.1. Generic Transport Model Longitudinal Dynamics
This section describes the longitudinal dynamics of the GTM aircraft.

GTM aircraft geometric and mass parameters — as well as relevant constants —
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are provided in Table 2. The longitudinal dynamics of the GTM are described

Table 2: Aircraft and environment parameters

Parameter Value
Wing Area, S 0.548 m?
Mean Aerodynamic Chord, ¢ 0.279 m
Mass, m 26.2 kg
Pitch Axis Moment of Inertia, I,  6.311 kg-m?
Air Density, p 1.225 kg/m?
Gravity Constant, g 9.807 m/s?

by a standard five-state longitudinal model (Stevens & Lewis, 1992):

V:i(—D—mgsin(@—a)—I—Tzcosoz—l—Tzsina) (5)
m
1
o'zzW(—Lergcos(@—a)—szinoz+Tzcosoz)+q (6)
) M+T,
g= AT )
vy
0=q (8)
h=Vsin(0— ) 9)

where V' is air speed (m/s), « is angle of attack (deg), ¢ is pitch rate (deg/s),
0 is pitch angle (deg), and h is altitude (m). The control inputs are the
elevator deflection de., (deg) and engine throttle dy, (percent).

The drag force D (N), lift force L. (N), and aerodynamic pitching moment
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M (N-m) are given by:

D = ﬁSCD(OQ 56[61}7 (j) (10)
L= qSCL(aydelean) (11)
M = qSECm(av 56l6”07 qA) (12)
where ¢ = %pV2 is the actual (not a measured quantity, unlike pgyn)
freestream dynamic pressure (kPa) and ¢ := ;%¢ is the normalized pitch

rate (unitless). Cp, Cr, and C,, are unitless aerodynamic coefficients com-
puted from look-up tables provided by NASA (Cunningham et al., 2008).
The aerodynamic coefficients are provided in the airframe body axes, i.e.
the raw data is provided for C,, C,, and C,,. This notation refers to stan-
dard aircraft body axis conventions (Stevens & Lewis, 1992). x is directed to
the front along the longitudinal axis of the aircraft and z is directed down. X
and Z represent the aerodynamic forces along the x and z axes, respectively.
The body-axis look-up tables C'x and C'; were transformed into lift and drag
coordinates via a rotation of angle o about the lateral axis.

The GTM has two engines, one on the port side and the other on the star-
board side of the airframe. Equal thrust settings for both engines is assumed.
The thrust from a single engine T' (N) is a function of the throttle setting
dun, (percent). T'(d;) is specified as a ninth-order polynomial in NASA’s high
fidelity GTM simulation model. T, (N) and T, (Ibs) denote the projection of
the total engine thrust along the body x-axis and body-z axis, respectively.

T, (N-m) denotes the pitching moment due to both engines. T,, T, and T,,
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are given by:

T () = nencT (0) cos(ez) cos(es) (13)
Tz(dﬁh) = TLENgT((Sth) Sil’l(EQ) COS(Eg) (14)
Tm(éth) — rsz(dth) - rxTz(dth) (15)

ngng = 2 is the number of engines. ¢, = 1.98 deg and €3 = 2.23 deg are
angles that specify the rotation from engine axes to the airplane body axes.
r, = 0.128 m and r, = 0.102 m specify the moment arm of the thrust.

The elevator and throttle actuator dynamics are modeled as linear sys-

tems. These models presented in the Appendix.

3.2. Aircraft Trim and Model Linearization
A steady, level reference flight condition is chosen within the GTM flight
envelope, around which a linear, time-invariant model of the vehicle is de-

rived. The GTM is trimmed at the following condition:

Vv 38.58 m/s
« 5.63 deg
- - Oth 33.098 %
Xx=|q| =1 0deg/s |, u=|_ = (16)
Oclew 0.072 deg
0 5.63 deg
h 152.4 m

The nonlinear GTM equations of motion are linearized about this trim con-
dition to yield a 8-state system G with two inputs and five outputs. The
additional three states are due to the inclusion of the aircraft actuators in
the system. The associated state-space matrices are presented in the Ap-
pendix. This resulting linear model is used for control law development,

initial filter synthesis, and simulation.

27



3.8. Control Law

Model-based fault detection approaches often use an open-loop model
for detection algorithm design. This fails to account for closed-loop system
behaviors which can be important to ascertain the capabilities of model-
based techniques while operating on a closed-loop system (Pandita et al.,
2011). Developing a simple control law serves that purpose.

The control law developed for this research is an altitude-hold, airspeed-
hold autopilot with stability augmentation. The stability augmentation sys-
tem is designed using H., techniques and the pitch angle, airspeed, and alti-
tude trackers are designed using classical PI control. The controller takes
measurements of the five longitudinal aircraft states — velocity, angle-of-
attack, pitch rate, pitch angle, altitude — and controls controls the elevator
and throttle. Further details about controller design methodology and per-
formance parameters are presented in (Freeman et al., 2011; Freeman, 2011),
and the particular state-space matrices for the controller can be found in the

Appendix of this paper.

3.4. Attitude Sensors

Sensors for angle of attack, pitch rate, and pitch angle are modeled as
unity with additive white noise and bias on the true states. Equations 17-19
describe the state measurements used for control and fault detection; n,,

ng, and ng represent the component of the respective measurement signal
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occurring due to sensor noise.

O = @+ Ny, (17)
Om = ¢+ Ny (18)
Qm =0 + ng (19)

Attitude sensor dynamics are neglected in the NASA GTM and are similarly
not considered in this paper to keep the attitude sensor modeling simple
yet still capture the most significant noise effects. The attitude sensor noise
parameters are derived from sensor data on the NASA GTM T2 aircraft
and are presented in Table 3 (Cox, 2010). These noise levels are applied to

Table 3: Attitude sensor parameters

Noise Signal Standard Deviation Bias Scale Factor
Ng 0.1031 deg 0.0 deg 1
ng 0.14737 deg/s -0.0115 deg/s 1
Ny 0.105 deg 0.0 deg 1

signals in the nonlinear simulation. All FDI simulation results presented in

this paper include sensor noise.

4. Fault Detection: H,-synthesis

The H..-synthesis framework is used to design filters to estimate distur-
bances, e.g. faults, at the plant input. H,, methods offer advantages over
traditional Kalman filtering, including superior performance in the presence

of model uncertainty and the ability to filter process noise and exogenous
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disturbances without necessarily having a statistical model of those inputs

(Simon, 2006).

4.1. Hy Problem Formulation

The H,, filtering problem is formulated as a variant of a standard H,
optimal control problem. For this application, the fault detection problem is
formulated in the H, filtering framework.

A H, filter is synthesized based on the linearized GTM model described
in Section 3.2 to estimate faults associated with the static and total pressure
measurements. The effects of potential unmodeled dynamics are negelcted

in this formulation. The closed-loop flight control system, including the

Mps
f
genGTM et
pi | Control | 4 o g » Air Data [~
Law g . Model |V |:

Attitude Senso

Figure 11: Interconnection for generalized plant genGTM

linearized aircraft dynamics, autopilot, attitude sensors and air data sen-

30



sors, is shown in Figure 11. The generalized plant, genGT M, has the fol-

T

lowing inputs: the autopilot reference signals r = [chd hcmd} , the atti-
T

tude measurement noises, n = [na ng ng} , and the injected pitot faults

- T

f = [ Io. fpt} . The errors € are the difference between the injected faults

and estimated faults f = [ . fpt} T.

Two different filter architectures are considered. In the first design, the
generalized GTM plant measured outputs y1 = [Psm Diy O em]T
are made available to the fault detection filter. The second design utilizes
control commands in addition to these measurements with the augmented
filter input yrr = [psm Pt Qm Gm O Ou é}izevr'

The air data fault models are included within the generalized GTM plant
to generate faulted airspeed or altitude measurements. These faulted mea-
surements result in an error between the autopilot reference command and
the state measurements, and the error induces control action, affecting the
unfaulted state measurements as well. The desired filter takes these mea-
surements as inputs and correctly estimates the size of a fault affecting an
air data sensor. This is accomplished using H, filtering.

The objective of the H., filter synthesis is to generate a stable filter F'
which minimizes norm between the disturbances and the errors. Because
this formulation has a generalized plant that is already closed-loop, the filter
can take advantage of the expected closed-loop system dynamics to generate
fault estimates. These estimates are more accurate than estimates that would
result from the common open-loop synthesis approach that does not model
the dynamics associated with the expected operation of a controlled system

in the field. Note that the pitot noise enters the system in the same manner
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as pitot faults (see Figure 10). As a result, F' tracks the sensor noise as
well as the faults. Algorithms for processing the estimated fault information
generated by I’ can compensate for this noise.

Weighting functions are used to describe the expected frequency content
of the inputs and the desired frequency content of the errors, the normalized
inputs [r n f} ' and outputs e. Figure 12 shows the desired interconnection
of the filter with the generalized plant genGTM with signal weights and filter
F'. Input and output signals with tildes represent their respectize noymalized

Ds
signals in physical units. -

Pgen Ps Dt

q

n: : B | -
genGTM y yi= |al;yn=
i ' q 0
i 0 St
56[61}

Figure 12: Interconnection for H, filter synthesis

For fault detection, the disturbances are the autopilot reference signals
r and the attitude measurement noises n. The filter seeks to track the in-
jected faults f with the fault estimates f while rejecting attitude measurement
noise n and reference commands r. Similar Hy and H,, model-matching ap-
proaches to FDI filter design have been applied in (Varga, 2003, 2009; Marcos
et al., 2005; Ding, 2008a; Zolghadri et al., 2006; Mazarsand et al., 2008).
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4.2. Signal Weighting Methodology

In signal-based H,, control design, the size of signals entering and exit-
ing the system across frequencies are an important part of the optimization.
Weighting functions can be used to describe the expected or known fre-
quency content of exogenous signals. Additionally, the designer may desire
error signals to have particular frequency content; weighting the error sig-
nals introduces those specifications into the problem formulation. Weights
are also used for uncertainty modeling in order to reflect model accuracy
across frequencies; system models are often more or less accurate in particu-
lar frequency ranges, and it is prudent to introduce uncertainty wherever the
model dynamics are less accurate. For this application, weighting functions
are initially applied to the exogenous inputs: reference commands, sensor
noises, and faults. Additionally, the fault estimate errors are represented as
performance weights.

Autopilot reference commands are expected to have little high-frequency
content; thus, the most important consideration in choosing a reference com-
mand weighting function is normalizing the relative size of the altitude and
input signals. This ensures that the weighted generalized plant properly re-
flects the relationship between the two reference command channels rather
than reflecting a difference in units. A constant weighting function W,.s is
used such that the H..-synthesis algorithm is not unduly sensitive to either
reference command.

The weighting function W, represents the attitude sensor noise signals.
Two considerations drive the selection W,,,;s. First, for mid-grade inertial

sensors that may be utilized on a small UAV, the sensor noise magnitude is
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often greater at high frequencies while the noise magnitude is reduced at low
to intermediate frequencies. Second, the standard deviations of the noise in
each channel of the inertial sensor measurements differ(Table 3). A dynamic
weighting function is adopted, and the entries in W,,;, are selected to reflect
the differing measured noise levels in each sensor measurement as well as to
embed information about expected sensor noise levels across frequency.
Next, Wqu represents the air data pressure fault inputs. The function is
chosen such that the DC gain represents large faults (-20 dB). This value is
selected based upon the aerospace industry standards and experimental data
described in Sections 2.3-2.4. The weight is small for frequencies greater than
5 rad/s to penalize tracking of high frequency faults. The aircraft dynamics
roll off near this frequency; hence, higher frequency faults do not manifest
themselves within attitude sensor measurements. Finally, the error weight-
ing function W,,,,, represents the inverse of the allowable tracking error at
each frequency. Normally, the error weight would be large at low frequency
to ensure close tracking. Tracking at high frequency is less desirable and
error weightings will roll off to some small high frequency gain. The partic-
ular nature of this problem, however, is such that the usual error weighting
methodology cannot be adopted for the generalized GTM filter synthesis.
Equation 20 shows the DC gain of P, the partition of genGTM from f to

y.
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-0.0370 0.0370
~0.0370 0.0370
Prgluo—o = | —49.984 49.984 (20)
0 0
—49.984 49.984

Note that the matrix representing the DC gain is rank deficient. Thus,
faults in the direction f = [1 1]T are indistinguishable from an unfaulted
conditon. The unobservability of this fault direction at DC has a simple
physical explanation. As shown by Equation 4, a simultaneous and equal
fault in both pitot probes has no effect on the airspeed measurement. A fault
in the f = [1 1|7 direction only causes a bias in the altitude measurement.
The model for the longitudinal dynamics is unaffected by a constant offset
in altitude. Thus, a fault in the f = [1 1] direction will cause the closed
loop system to adjust to a biased value of altitude but all measurements will
appear, in steady state, to converge back to their original trim conditions.

This rank deficiency places limits on the fault detection performance at
low frequencies. For a filter I’ to ensure perfect fault tracking at low fre-
quency, F' must be a pseudoinverse of P, over that frequency range. In
particular, a filter F' that would make the tracking error arbitarily small at
low frequency cannot be synthesized by hinfsyn (Balas et al., 2010) because
the partition is rank-deficient and its pseudoinverse does not exist.

To circumvent this problem, W, is chosen such that the DC gain is
small (-40 dB) and begins to roll up at very low frequency. For frequen-

cies greater than 1072, the traditional approach of rolling off to a small
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high frequency gain (-60 dB) is applied. This penalizes fault estimation
performance at extremely low frequencies as well as high frequencies; such
an architecture allows for improved filter performance at intermediate fre-
quencies given the inherent system limitations. Additional detail regarding
the weighting methodology and particular weights selected can be found in

(Freeman, 2011).

4.3. FDI Filters

The weighted interconnection shown in Figure 12 is used to generate the
weighted generalized plant Pp,. The filter I is synthesized with a H-
norm of 0.1045. Hence, the filter meets the desired objective encoded by
the selected weighted functions. As described in Section 4.1, two filters with
different architectures are synthesized. Filter I includes the air data mea-
surements and attitude measurements as inputs. Filter F;; has an augmented
input vector that also includes the control commands. The performance of

the two filters will be analyzed and compared in the subsequent section.

5. H,, Fault Detection Results

This section examines the fault detection filters synthesized in Section 4
and assess fault detection performance for a variety of fault scenarios. The
filters are integrated with the sensor models and GTM and are simulated

while incorporating sensor noise and modeled input uncertainty.

5.1. Frequency Domain Comparison

The FDI filters F; and FI; share five common inputs. The frequency

responses from those common inputs to the fault estimates are quite similar
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for the attitude measurement inputs. The frequency responses differ, how-

ever, from the pressure measurements to fault estimates. Figure 13 compares

these magnitude responses for both filters. The five-input filter F; has a sig-
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Figure 13: Bode Magnitude from pressure measurements to fault estimates

nificantly higher gain from the pressure measurements to the corresponding

fault estimates than Fj; exhibits. The nine-input filter is able to incorporate

information about the autopilot reference commands and control positions to

synthesize a fault estimate. The H.-synthesis algorithm led to the filter F};

relying less upon potentially corrupted pressure measurements to estimate

their accuracy than F; depends upon the pressure measurements. One can

infer that pitot sensor noise will be more strongly attenuated by Fj; than Iy,
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and the resulting fault estimate signals can be expected to exhibit less noise

effects.

5.2. Fault Detection Simulations

This subsection details the fault detection performance simulations con-
ducted for a variety of fault modes. The first fault considered is a partial
blockage of the static pressure port while the pitot inlet and drain hole remain
unfaulted. This fault is modeled as a small step fault on the static pressure
in the closed-loop nonlinear GTM model, based upon the industry standards
and experimental results described in Sections 2.3-2.4. The total pressure
measurement is unfaulted. Fault detection performance is also evaluated for
a simulated drain hole blockage. This fault is modeled as an additive step
on the total pressure in the nonlinear GTM models while the static pressure
measurement remains unfaulted.

The performance of the synthesized filters are similarly examined for a
simultaneous fault in p, and p; in the closed-loop nonlinear GTM. This rep-
resents a combination of the previous faults that may occur due to severe
debris effects, ice accretion, or other causes. Finally, it is useful to under-
stand the ability of the filter to detect time-varying faults. As described in
Section 2, fouled airflow or liquid in the pneumatic lines can lead to time-
varying pressure measurement errors. While these fault modes are not yet
well-understood, analyzing performance for sinusoidal faults provides some
insight to filter capabilities and limitations. The effects of high frequency
content in the measurements are mitigated by the controller and the roll-
off of the aircraft dynamics. Measurement frequency content that is slower

than 1 rad/s, however, can induce significant control action. Two sinusoidal
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faults in this frequency domain are injected and detection performance is
compared.

A simple representation of certain air data blockages can be obtained by
injecting step faults into the static and total pressure measurements. The
performance of the synthesized filter under these scenarios is examined. The
filter should yield estimates that track the generalized fault inputs reason-
ably quickly with minimal steady-state error. False positives are undesirable.
Any fault detection system implemented with the goal of control reconfigura-
tion must be sufficiently fast as to allow for reconfiguration before undesired

aircraft maneuvers become unsafe.

Static Port Partial Blockage Detection

A simulation is conducted in which a step fault of magnitude 0.01 psi—
representing a partially blocked static port—is injected into the static pressure
measurement signal in the nonlinear GTM. Recall that the nonlinear GTM
simulation includes the control algoritm, fault models, sensor noise, actua-
tor uncertainty, and exogenous disturbances. This fault represents a partial
blockage of a static port. Fault detection performance is examined using
the both the measurements filter (F7) and subsequently the augmented filter
(Fr1).

The simulation has a duration of 20 seconds and includes attitude and
pitot sensor noise. For ideal detection performance, the fault estimate f
should track the fault signal f in the faulted static pressure channel (a true
positive detection) and additionally indicate no fault in the unfaulted total
pressure channel (a true negative detection).

At time t = 1 second, the blockage is initiated, and a comparison of
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fault detection performance for both filters is shown in Figure 14.  The
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filters detect the static pressure fault in the nonlinear model rapidly, rising
to correctly estimate the fault magnitude within 1.5 seconds in the case of

the original filter design. Figure 15 shows the fault estimate response in the

seconds immediately ensuing the blockage. The fault estimates generated by
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both filters rapidly rise and track the static pressure measurement fault with
good accuracy in a short time frame.

Note that the estimates fluctuate throughout the simulation period. These
fluctuations are the result of the GTM transient dynamic response to the
static port blockage. Figure 16 shows the control action and longitudinal
aircraft state responses throughout the simulation. It takes nearly a minute
for the GTM to retrim about a new flight condition after the blockage fault
is applied to the system. Over longer time periods, the filters will not yield
errorless fault tracking due to the rank deficiency described in Section 4.2.
The slowest filter pole has a frequency on the order of 1075 rad/s, hence the
fault estimation error will grow quite slowly. The fault estimate will even-
tually decay to zero in the faulted channel and drift away from zero in the
unfaulted channel. Measures to combat this estimate drifting phenomenon
must be designed into any algorithm that can be implemented on an opera-
tional system.

The fault estimates in both channels are noisy due to attitude and air
data sensor noise. In these simulations, notice that the fault estimate in the
total pressure fault channel will generally exhibit slightly higher noise levels
relative to the static pressure fault estimate. As stated in Section 4.2, atti-
tude sensor noise couples to the total pressure fault estimate more strongly
than to the static pressure fault estimate. Hence, the filters rely on these
measurements to detect the presence of a fault in the airspeed measurement
more than it does for the altitude measurement. Since the attitude mea-
surements are fed into the airspeed-hold autopilot, the total pressure fault

estimate noise levels are larger. While the H, filters are designed to minimize
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Figure 16: Aircraft state and control response: p, step fault, nonlinear GTM
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the effect of sensor noise on the fault estimates by penalizing high frequency
filter outputs, noise in the estimates cannot be entirely eliminated. The aug-
mented filter F7;, however, has a lower gain from its measurement inputs
to fault estimates than I;. With increased measurement signal attenuation,

the resulting fault estimates exhibit lower noise levels.

Drain Hole Blockage Detection

The same simulations are conducted with a total pressure fault rather
than a static pressure fault, representing the presence of a drain hole block-
age. Figure 17 shows that the filters indicate a true positive detection in the
total pressure channel with some residual noise for the reasons explained pre-
viously. Note that there is a larger error in the total pressure fault estimates
in the presence of a drain hole blockage than for static pressure estimates in
the presence of a static port blockage. This error diminishes as the GTM
transient response dissipates. Additionally, both filters correctly indicate a

true negative detection in the static pressure measurement channel.

Multiple Fault Detection

A more severe fault scenario is considered in this subsection. The two
previous faults are modeled as occurring concurrently by simultaneously in-
jecting a fault of equal magnitude injected into the static and total pressure
channels. This scenario is unique because the faults will not change the air-
speed measurement due to a constant dynamic pressure calculated by the air
data system. A compound fault has limited effect on the air data measure-
ments, hence it is interesting to examine the ability of the filters to detect

such a condition. Again, 0.01 psi step faults are injected into both the static
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Figure 17: Fault estimation: p; step, nonlinear GTM

and total pressure measurements at time ¢ = 1 during a 20 second simulation.

Figure 18 shows the fault estimates for the simultaneous fault in the non-
linear GTM. The simultaneous fault results in a bias in the altitude measure-
ment while the indicated airspeed is correct. In this fault scenario, all of the
control inputs and aircraft states— except the altitude measurement—converge
back to the original trim condition. The only effect of the simultaneous fault
is that the aircraft converges to an offset altitude. Despite this limited man-
ifestation of the fault in the state measurements, the filters achieve true
positive detections in both pressure measurement channels. The filters use
the attitude state measurements to track the fault by compensating for the

dynamic response of the aircraft to the step changes in the measurements.

Time-Varying Fault Detection
It is possible that loose, partial port blockages or fluid in the pneumatic

lines could cause time-varying fluctuations in the air data measurements.
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Therefore, a full analysis must include investigations into the ability of the
fault detection algorithm to succeed in the event of a fault with frequency
content.

High frequency variations in the pressure measurements do not adversely
impact the GTM aircraft in controlled flight since the closed-loop aircraft
dynamics roll off at moderate frequencies. Low-frequency fluctuations, how-
ever, could pose a problem as they are not attenuated.

Sinusoidal faults are introduced into the nonlinear GTM simulation to
examine the ability of the filters to detect time-varying faults. The amplitude
of the injected sinusoids is 0.01 psi — as with the step faults — and the first
frequency considered is 0.03 radians per second. The faults are injected at
t = 0 and run for 60 seconds in order to capture data over a larger fraction of
the fault period. Figure 19 shows the fault estimate tracking for the nonlinear
GTM model with a static pressure measurement fault. The filters track the
slow sinusoidal fault well and properly indicate nominal operation for the

unfaulted total pressure measurement channel. Hence, the results suggest
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that a liquid blockage within an air data probe or fouled airflow could be
detected if the time-varying effects of that fault are low frequency. The
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Figure 19: Fault estimation: ps; 0.03 rad/s sinusoidal fault, nonlinear GTM

filters have rapidly and accurately estimated injected steady-state faults and
slowly time-varying faults, so detection capability of a higher frequency fault
is considered. The previous simulation is run with a fault frequency of 0.3
radians per second — an order of magnitude faster — and all other parameters
left the same. Figure 20 shows the fault estimates begin to drift away from
the true fault.

With time, the estimates become sufficiently inaccurate to suggest a false
positive fault identification in the total pressure channel. In this example, the
augmented filter performance is comparable to the original filter performance
throughout the duration of the fault. The performance degradation associ-
ated with this fault scenario can be understood by examining the aircraft
control action and state history throughout the duration of the simulation,
shown in Figure 21. This fault induces significant throttle control action,

yielding large changes in attitude, airspeed, and altitude of the aircraft. As a
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result of this maneuvering, the aircraft is not operating at the flight condition
for which the filters were designed, and fault detection performance suffers.

This example illustrates the degraded performance of the filter for time-
varying faults of increasing frequencies. Moreover, it shows some limitations

of a linear fault detection approach and filter design applied to a nonlinear

system.

5.3. Summary

These experiments demonstrate that for partial static port blockages,
drain hole blockages, and a combination of those faults modeled based on
experimental air data results, the fault detection filters can rapidly yield
true positive and true negative detections in a nonlinear simulation. Time-
varying fault effects of fault modes such as airflow disruptions and liquid
water blockages can also be characterized if the effects are of sufficiently
low frequency. For all simulations, the most significant difference between
the performance of I} and Fj; is that Ij;—the filter which uses the aircraft

sensor measurements, reference commands, and control positions—provides
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Figure 21: Aircraft state and control response: p, sinusoidal fault, nonlinear GTM

slightly improved noise attenuation in its fault estimates. Overall speed and
accuracy of response are comparable, indicating that supplying the filter with

additional information does not yield significant performance gains.

6. Conclusion

This paper developed a low order model of an air data system and block-
age faults based upon first-principles knowledge of industry-standard devices
and experimental results. Simple faults were emphasized, but faults involving

more complex heating mechanisms and slow-acting sensor drift pose difficult
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challenges for air data system reliability. In order to provide true fault toler-
ance for air data systems, Further enhancements to air data probe modeling
must be made in order to better detect and identify sensor faults.

Modeling of blockage faults, however, has enabled a model-based fault
tolerance approach that has yielded significant results. Models of blocked
air data probes were integrated with the nonlinear longitudinal model of the
NASA GTM aircraft in order to provide a fault detection research platform.
Using this platform, this paper detailed a method to detect faults using H.,
robust filters. Two filter architectures were considered, and their fault de-
tection performance was first compared in simulations of the GTM aircraft
affected by the following fault modes: static port blockage, drain hole block-
age, and a combined static port and drain hole blockage. In each case, both
filter architectures rapidly detected the presence of a fault and accurately es-
timated the fault magnitude. Next, time-varying fault effects of fault modes
such as airflow disruptions and liquid water blockages were simulated with
the GTM. For sufficiently low-frequency faults, the filters yielded estimates
that accurately characterized the faults. Higher frequency faults were not
estimated as accurately and resulted in significant false positive detection
by both filters. Such faults induced significant aircraft maneuvering away
from the trim condition for which the filters were designed. This indicates
the necessity for improving detection capabilities for time-varying air data
faults that are slower than the aircraft bandwidth and that induce significant
control action.

Another important goal is to enhance the fault detection algorithms so

that estimates are more accurate at flight conditions other than the con-
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dition for which the filter was designed. This paper has considered fault
detection performance for small maneuvers over a small segment of the flight
envelope. Extending these results to a broad flight envelope is an important
next step. At these ‘off-design’ conditions, FDI filters should maintain their
responsiveness and accuracy in order to achieve significant improvements in

fault-tolerance.
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Appendix A. Design Data

This appendix provides the actuator models, linear GTM models, and

controller models used for filter design and simulation described in this paper.

Appendiz A.1. Actuator Models
The actuator dynamics are modeled as linear systems. The elevator actu-

ator, Actge,, for the longitudinal GTM is a 5Hz bandwidth, first-order sys-
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tem with a 10 ms delay and is shown in Equation A.1. The engine dynamics,

Actyy,, are modeled as the second order system shown in Equation A.2.

Acteer = €

ACtth =

—0.01s

31.42

s+ 31.42

—0.147s + 0.731

Appendiz A.2. GTM State-space Matrices

specified in Equation 16, yielding the two input, five output, and eight state

system shown in Equation A.3.

—0.150
—2.367
—39.443

—1.309

x = Agx + Byu

y = Cyx + Dgu
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52 4+ 1.365+ 0.731

—0.012
0.001
—0.153

1.336
1.000

0.063
—0.003
0.757

—0.731
0
0

(A1)

(A.2)

The nonlinear GTM dynamics are linearized about the trim condition

(A.3)

—0.200
—1.865
—310.207
0

0

0

0

—31.416
(A.4)

The state-space matrices used in this model are presented in Equations A.4-

AT




0 0
00
00
0 0
B, = (A.5)
0 0
1 0
0 0
0 4
Cg - [ Is Osx3 ] (A-6>
Dy = [ 0552 } (A7)

This resulting linear model is used for control law development, initial

filter synthesis, and simulation.

Appendiz A.3. Control Law State-Space Matrices

The altitude-hold and airspeed-hold autopilots with stability augmenta-
tion can be represented by the single state-space model with seven inputs,

two outputs, and nine states:

X, = AXe + Bou

y = Cx,+ D.u (A.8)

where x. is the vector of controller states, u is the vector of inputs to the
controller (composed of autopilot reference commands and aircraft state mea-

surements), and y is the controller output (actuator commands). The state-
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space matrices for the controller are shown in Equations A.9-A.16.

A Opy
A= | o T (A.9)
02><7 ACQ,Q

—-20.172  21.172 -21.172  21.172 —10.586 —0.700  0.348
28918 —29.918 30.918 —30.918 15.459  0.894 —0.445
—7.923 7.923 —8.923 9.923 —4.961 0.203 —0.101

Ao, =| —6.007  6.007 —6.007 5007 —2.003 —0.850 0.423
6.279 —6.279 6279 —6.279  2.139  0.761 —0.379
0 0 0 0 0 0 —0.600
0 0 0 0 0 0 0
(A.10)
A= —18.925 —7.462 (A1)
8.000 0
[ 0837 0 —0837 0 0304 0581 0|
—1.069 0 1.069 0 —0.293 —0.742 0
—0.243 0 0243 0 0.073 —0.169 0
1.016 0 —1.016 0 0.053 0.706 0
B.=| —0.910 0 0910 0 —0.032 —0.632 0 (A.12)
—1.440 0 1440 0 0 —1.000 0
0.500 0 —0.500 0 0 0 0
0 4.000 00 0 0 —4.000
] 0 0 0 0 0 0 0 |

at
D



01><7 C

C. = (A.13)
002,1 01><2
Cern = | 1313 0.820 (A.14)
Cep, = | 14971 —14.971 14.971 —14.971 7.485 0.011 —0.005]
(A.15)
00 00 0 00
De = (A.16)

—0.013 0 0.013 0 —0.035 —0.009 O
Integrating these models with the linear aircraft sensor models described

in Section 2 constitutes the complete linear GTM model used in this research.
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