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Abstract— Analytical fault detection algorithms have the
potential to reduce the size, power and weight of fault tolerant
safety-critical aerospace systems. One obstacle is the need for
appropriate tools to certify the reliability of these systems.
To complement high fidelity Monte Carlo simulations, this
paper presents a theoretical method to assess the probabilistic
performance of analytically redundant systems. Specifically,
this paper considers a dual-redundant fault tolerant system
that uses a fault detection algorithm to switch between the
hardware components. The exact system failure rate per hour
is computed using the law of total probability. The analysis
assumes known failure models for the hardware components as
well as knowledge of the probabilistic performance of the fault
detection logic. A numerical example is provided to demonstrate
the proposed method.

I. INTRODUCTION

Commercial flight control electronics typically satisfy
reliability and safety requirements of no more than 10−9

catastrophic failures per flight hour [3], [5]. Therefore, fault
tolerance is introduced to enable continued operation in the
event of a component failure. Fault tolerance is currently
achieved mainly through the use of physically redundant
components. For example, the Boeing 777 flight control elec-
tronics consists of multiple redundant computing modules,
actuators, and sensors [21]. Physically redundant architec-
tures are reliable but they increase the system size, weight,
power, and cost. In addition, these architectures are impracti-
cal for smaller unmanned aerial vehicles which cannot carry
the associated payload. As a result, there have been efforts to
develop analytical redundancy as an alternative approach to
achieve fault tolerance, e.g. the oscillatory monitors on the
Airbus A380 [8]. Model-based fault detection and isolation
(FDI) is one method to realize analytical redundancy. This
technique has applications which span most disciplines of
engineering [12] and a thorough treatment can be found
in standard references [4], [11], [6]. The recent AddSafe
project in Europe [1] dealt with the future green aircraft
and assessed the suitability of these more advanced fault
detection methods for optimizing the aircraft design.

There are several issues that must be addressed before
analytical redundancy finds general acceptance for aerospace
applications. One issue is the need to certify the reliability
of an analytically redundant system with aviation authori-
ties, e.g. the Federal Aviation Administration or European
Aviation Safety Agency. In particular, it must be possible
to assess and certify the system reliability. In a physically
redundant configuration, a failed component is detected by
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directly comparing the behavior of each redundant com-
ponent. Hence, these architectures detect faults accurately
and their performance can be certified using fault trees and
known hardware component failure rates [14], [13]. Systems
that use analytical redundancy, on the other hand, depend
on the fault detection algorithm as well as the hardware
component failure rates. Thus different tools are required to
assess the reliability of analytically redundant systems.

The extended fault tree technique has been proposed to
assess the reliability of an analytically redundant system [2],
[9]. In this work, the fault detection performance involves
missed detections and false alarms that occur at the system
sample rate. The system failure rate per sample frame is com-
puted by characterizing false alarms and missed detections as
basic events that are incorporated into a fault tree. However,
the safety requirements are typically specified over longer
time periods, e.g. per hour [3], [5]. The possible failure
of the entire system at different time steps introduces time
correlations which should be addressed properly.

The main contribution of this paper is a mathematical
framework to efficiently compute the system failure rate per
hour of an analytically redundant system. The framework
proposed here builds on the prior work in [2], [9] by
incorporating various time scales. The method is described
for a simple dual-redundant sensor configuration with a
fault detection scheme, as formulated in Section II. The
system failure rate per hour is exactly computed using
probabilistic models of the fault detection performance and
the hardware component failures (Section III). Finally, a
numerical example is presented to demonstrate the utility
of the proposed approach (Section IV). The proposed ap-
proach is complementary to Monte Carlo simulations. In
particular, the Monte Carlo method is a practical solution
to assess system performance via simulations on a high
fidelity model [17]. A potential drawback is that the failure
rate for safety critical systems is designed to be very low.
Thus a large number of Monte Carlo simulations may be
required to draw statistically meaningful conclusions. The
proposed mathematical analysis provides an efficient method
to exactly compute the system reliability. In addition, the
analysis provides additional insight into the various design
choices. However the analysis requires specific assumptions
about the failure models, operating conditions, etc. The use
of both theoretical analysis and high fidelity simulations thus
provides complementary benefits. This is similar to the cur-
rent practice for flight control law validation [10], [16] which
uses a mixture of high fidelity nonlinear simulations and
exact analyses, e.g. gain/phase margins based on approximate
linearized models.



II. DUPLEX SENSOR SYSTEM

Consider a dual-redundant sensor system operating in
discrete-time (Figure 1). At each sample time k, the duplex
system attempts to generate a “correct” measurement m̂(k)
of a particular signal s(k) for use by a flight control algo-
rithm. Fault tolerance is achieved by the combination of two
sensors and a fault detection scheme. At each sample time
the two sensors generate measurements m1(k) and m2(k) of
the signal s(k). The measurement from the primary sensor is
used in the absence of a detected fault. The system switches
to the backup sensor once a fault is detected. The fault
detection scheme is assumed to be an analytical method
that relies on measurements that are independent of those
generated by the primary and backup sensors. The objective
is to assess the reliability of this duplex system. The duplex
system shown in Figure 1 is simplified but captures the
essential features of a more realistic redundant architecture.

Fig. 1. Duplex Sensor System

A. Problem Formulation

A definition of reliability was established by the Technical
Committee on Fault Detection, Supervision and Safety of
Technical Processes [12]. Reliability is the ability of a system
to perform a required function under stated conditions, within
a given scope, and during a given period of time. Two aspects
of this definition should be clarified for the duplex sensor
system. First, the analysis in this paper is formulated in
discrete-time. Hence the given period of time is a window of
length N . Typical aerospace requirements are specified per
hour and hence N may be large, e.g. N = 3.6×105 samples
per hour for a system with a 100 Hz sample rate. Second,
the required function for the duplex system is to generate a
“correct” measurement for use by a control law. The control
laws and aircraft dynamics have low pass characteristics
and thus a single “bad” sample may not lead to system
failure. However, the continued use of incorrect data over
multiple (N0) time frames will eventually cause a failure. To
summarize, the duplex system performs its required function
as long as it does not generate “bad” data for N0 consecutive
steps. PS,N is defined as the probability that the system fails
to perform this required function over an N -step window.

The analysis requires models of the sensor components.
Let θi(k) ∈ {0, 1} denote the status of the ith sensor (i =
1, 2) at time k: θi(k) = 0 if the ith sensor is operational at
time k and θi(k) = 1 if it has failed. It is assumed that once
a sensor fails then it remains failed, i.e. intermittent failures
are neglected. Due to this assumption it is possible to define

a unique failure time Ti for the ith sensor (i = 1, 2) as:

Ti =

{
k if θi(k − 1) = 0 and θi(k) = 1

N + 1 if θi(k) = 0 ∀k ≤ N (1)

The notation Ti = N + 1 corresponds to the case where the
sensor remains functional during the entire N -step window.
Reliability theory can be used to model the failure time
of the sensors [18], [15]. In many applications, the mean
time between failure (MTBF) can be estimated from field
data. The analysis in this paper assumes the probability mass
function P [Ti = k] is known for both sensors i = 1, 2 and
for all time k ≤ N +1. Finally, it is assumed that T1 and T2

are independent. This assumption implies dissimilar sensors
are used and hence common failure modes are neglected.
This simplifies the notation and computation required for
analysis. A similar approach to that presented in this paper
can be used to incorporate the joint probability mass function
of T1 and T2 for systems with correlated sensor failures.

The probability of system failure PS,N also depends on
the fault detection logic. The FDI scheme has a logic signal
d(k) that indicates the status of the primary sensor at time k:
d(k) = 1 if a fault has been detected and d(k) = 0 otherwise.
The FDI logic switches immediately to the backup sensor
once a fault is detected. Thus the logic selects the primary
sensor, m̂(k) = m1(k), if d(k) = 0 and it selects the backup
sensor if d(k) = 1. It is assumed that once the fault detection
logic switches to the backup sensor then it will continue
using the backup. Logic that intermittently switches between
sensors is not considered. Again, this assumption implies that
it is possible to define a unique switching time TS as:

TS =

{
k if d(k − 1) = 0 and d(k) = 1

N + 1 if d(k) = 0 ∀k ≤ N (2)

TS = N + 1 denotes the case where no fault is detected
throughout the entire N -step window.

The system can be in one of four states depending on the
primary sensor status and the fault detection signal. These
four states can be arranged in a confusion matrix [7] as
shown in Table I. The entries of the confusion matrix depend
on both the hardware and the FDI logic. The performance
of the FDI logic alone is typically quantified by (single-
frame) conditional probabilities of false alarm and detection.
Specifically in [6], [20], the probability of false alarm at
time k is defined as P [d(k) = 1 | θ1(k) = 0]. Similarly, the
probability of detection at time k is defined as P [d(k) =
1 | θ1(k) = 1]. As shown in Section III, these single
frame conditional probabilities are not sufficient to compute
the system failure probability. Instead, computation of PS,N
requires the FDI performance to be characterized across
multiple time steps. The first FDI performance metric is
P [TS ≤ N | T1 = N+1]. This is the conditional probability
of a false alarm at some point in the N -step window given
that the primary sensor remains operational. The second FDI
performance metric is P [TS ≥ k+N0 | T1 = k] defined for
1 ≤ k ≤ N . This is the conditional probability that the fault
detection logic continues to use the primary sensor for at
least N0 steps after a failure at time k.



θ1(k) = 1 θ1(k) = 0

d(k) = 1 True Positive False Positive
d(k) = 0 False Negative True Negative

TABLE I
CONFUSION MATRIX FOR FAULT DETECTION LOGIC

In the notation defined above, the duplex system produces
bad data at time k if the primary sensor is selected and failed
(d(k) = 0 and θ1(k) = 1) or the backup sensor is selected
and failed (d(k) = 1 and θ2(k) = 1). Thus the system failure
probability PS,N can be formally defined as:

Definition 1: PS,N is the probability that there exists k0 ≤
N such that for each k ∈ {k0, k0 + 1, . . . , k0 +N0− 1} one
of the following is true:

1) d(k) = 0 and θ1(k) = 1
2) d(k) = 1 and θ2(k) = 1

and the sensor i selected at time k0 + N0 − 1 has a failure
time within the N -step window (Ti ≤ N ).

By this definition, the system fails if it produces bad
data for N0 consecutive steps due to failures in the primary
and/or backup sensor that occur within the N -step window.
A system failure may occur due to a sequence of bad data
beginning within the window (k0 ≤ N ) and ending outside
the window (k0 + N0 − 1 > N ). The required detection
time N0 is typically much smaller than the analysis window
N . Hence the choice of whether or not to include these
boundary events should have negligible effect on PS,N .
Different assumptions regarding such boundary events can
be handled with essentially notational changes.

B. Specific Example

As discussed above, the analysis in Section III only
requires the following information:

1) Sensor Failure Model: P [Ti = k] specified for i = 1, 2
and 1 ≤ k ≤ N .

2) FDI False Alarm: P [TS ≤ N | T1 = N + 1].
3) FDI Missed Detection: P [TS ≥ k + N0 | T1 = k]

defined for 1 ≤ k ≤ N .
This section briefly illustrates the notation in the context of
a specific example. The example assumes sensor failures are
governed by a geometric distribution and the FDI switching
logic is independent and identically distributed (IID) in time.

First, assume the failure time of each sensor has an identi-
cal continuous-time exponential distribution with parameter
λ = 1

MTBF [15]. The continuous-time exponential distri-
bution can be approximated using a discrete-time geometric
distribution with parameter q := 1− e−λ∆t where ∆t is the
sample time [19]. If the sensor is operational at k = 0 then it
follows from the geometric distribution that the probability
mass function for the sensor failures is given by:

P [Ti = k] =

{
(1− q)k−1q if 1 ≤ k ≤ N
(1− q)N if k = N + 1

(3)

Let PF := P [d(k) = 1 | θ1(k) = 0] and PD := P [d(k) =
1 | θ1(k) = 1] denote the (single-frame) probability of false

alarm and detection. The multiple-frame FDI performance
probabilities can be related to these single-frame probabilities
due to the assumption of FDI logic being IID. First, P [TS ≤
N | T1 = N + 1] is the conditional probability that a fault is
declared in the N step window given that the primary sensor
remains operational. The set of sequences {d(k)}Nk=1 where
d(k) = 1 for at least one k is complementary to the sequence
where d(k) = 0 for 1 ≤ k ≤ N . Thus the multiple-frame
false alarm probability can expressed in terms of the single
frame probabilities as:

P [TS ≤ N | T1 = N + 1] = 1− (1− PF )N (4)

Next, P [TS ≥ k+N0 | T1 = k] is the conditional probability
that a fault is not declared in the first k+N0− 1 time steps
given that sensor 1 failed at time k. This corresponds to a
true negative for the first k − 1 steps followed by N0 steps
of false negatives. Thus this probability is expressed as:

P [TS ≥ k +N0 | T1 = k] = (1− PF )k−1(1− PD)N0 (5)

III. PROBABILISTIC ANALYSIS

This section provides an exact expression for PS,N . The
analysis relies on basic probability theory with the law of
total probability as the main tool. An application of this law
is the following statement: Let the events {T1 = k}N+1

k=1 form
a disjoint partition of the sample space. Then the probability
of any other event A can be expressed as:

P [A] = ΣN+1
k=1 P [A | Ti = k]P [Ti = k] (6)

A. General Theory

The dual redundant system fails to perform its required
function if it generates “bad” data for N0 consecutive steps.
PS,N is the probability of the system failing to perform
this function in an N -step window. There are four mutually
exclusive events that lead to system failure:

1) Event MN : The primary sensor fails at some time k ≤
N and the fault detection logic fails to switch within
N0 frames. This is a missed detection, denoted MN .

2) Event FN : The primary sensor remains operational
during the entire N -step window. The fault detection
logic has a false alarm and switches to the backup
sensor but the backup sensor fails within the N -step
window. This event is a false alarm, denoted FN .

3) Event DN : The primary sensor fails at some time k ≤
N . The fault detection logic detects the failure within
N0 frames of the failure and correctly switches to the
backup sensor. The backup sensor fails within the N -
step window (either before or after the detected failure
in the primary sensor). This event is a proper detection,
denoted DN , but results from failure in both sensors.

4) Event EN : The primary fails at some time k ≤ N . The
fault detection logic raises a false alarm prior to time
k and switches to the backup sensor but the backup
sensor fails within the N -step window. This event is
an early false alarm, denoted EN .



The four events are mutually exclusive and hence:

PS,N = P [MN ] + P [FN ] + P [DN ] + P [EN ] (7)

The remainder of the section provides expressions for these
four failure events. The first event is the missed detection
MN . The probability of a missed detection event can be
expressed as P [MN ] = P [{T1 ≤ N} ∩ {TS ≥ T1 +N0}].
Apply the law of total probability (Equation 6) to obtain:

P [MN ] = ΣNk=1P [TS ≥ k +N0 | T1 = k]P [T1 = k] (8)

The second event is the false alarm FN . The false alarm event
can be specified as P [FN ] = P [{T1 = N + 1} ∩ {TS ≤
N} ∩ {T2 ≤ N}]. The sensor failures are independent from
each other. Moreover, the switching logic is independent of
the backup sensor. Hence this probability is:

P [FN ] =P [TS ≤ N |T1 = N + 1]

P [T1 = N + 1] P [T2 ≤ N ] (9)

The third event DN involves a primary sensor failure and
a true detection that causes a switch to the backup sensor. A
failure of the backup sensor then leads to a system failure.
Thus P [DN ] = P [{T1 ≤ N} ∩ {T1 ≤ TS < T1 +N0} ∩
{T2 ≤ N}]. Similarly, the fourth event EN also involves a
primary sensor failure but in this case a false alarm causes
a switch to the backup sensor prior to the primary sensor
failure. The probability of this event can be expressed as
P [EN ] = P [{T1 ≤ N} ∩ {TS < T1} ∩ {T2 ≤ N}]. The
events DN and EN are mutually exclusive and combined as:

P [DN ] + P [EN ] = (10)
P [{T1 ≤ N} ∩ {TS < T1 +N0} ∩ {T2 ≤ N}]

Apply the law of total probability to rewrite this as:

P [DN ] + P [EN ] = (11)

ΣNk=1P [{T1 = k} ∩ {TS < T1 +N0} ∩ {T2 ≤ N}]

The sensor failures and the the switching logic are indepen-
dent and hence this can be expressed as:

P [DN ] + P [EN ] = (12)

ΣNk=1P [TS < k +N0 | T1 = k]P [T1 = k]P [T2 ≤ N ]

Finally, we can compute the total system failure proba-
bility (Equation 7) by combining the probabilities for the
basic failure events (Equations 8, 9, and 12). This yields the
following expression for the system failure probability:

PS,N = ΣNk=1P [TS ≥ k +N0 | T1 = k]P [T1 = k] (13)
+ P [TS ≤ N | T1 = N + 1]P [T1 = N + 1]P [T2 ≤ N ]

+ ΣNk=1P [TS < k +N0 | T1 = k]P [T1 = k]P [T2 ≤ N ]

Computing this system failure probability only requires the
information specified in Section II. Specifically, the system
failure probability can be computed from Equation 13 as long
as the sensor failure P [Ti = k], FDI false alarm P [TS ≤
N | T1 = N + 1] and FDI missed detection P [TS ≥ k +
N0 | T1 = k] probabilities are all known. Moreover, it is not

necessary for the FDI residuals to be Gaussian in order to
compute these probabilities.

B. Specific Example

This section demonstrates the calculation of PS,N using
the probabilities for the sensor and FDI performance (Equa-
tions 3-5) for the example in Section II-B. For this example
the probabilities for the missed detection (Equation 8), false
alarm (Equation 9), and combined detection / early false
alarm (Equation 12) events can be computed as follows:

Pr[MN ] = q(1− PD)N0
1− (1− PF )N (1− q)N

1− (1− PF )(1− q)
(14)

Pr[FN ] =
(
1− (1− PF )N

)
(1− q)NPr[T2 ≤ N ] (15)

Pr[DN ] + Pr[EN ] = (Pr[T1 ≤ N ]− Pr[MN ])Pr[T2 ≤ N ]
(16)

where Pr[Ti ≤ N ] = 1 − (1 − q)N (i = 1, 2) based
on the geometric sensor failure model (Equation 3). The
exact system failure probability PS,N is given by the sum
of Equations 14-16. This result can be simplified if further
assumptions are made. If Nq � 1 and NPF � 1 both
hold then the event probabilities in Equations 14-16 can be
approximated as:

Pr[MN ] ≈ Nq(1− PD)N0 (17)

Pr[FN ] ≈ N2PF q(1−Nq) (18)

Pr[DN ] + Pr[EN ] ≈
(
1− (1− PD)N0

)
(Nq)2 (19)

Next make the following definitions: q̂ := Nq, P̂F :=
NPF and P̂D := 1− (1− PD)N0 . Each of these definitions
has a clear meaning. q̂ and P̂F are the approximate sensor
failure and false alarm probabilities per hour, respectively.
P̂D is the approximate conditional probability of detection
of a fault within the N0 step detection window. With this
notation the system failure probability is approximated as:

PS,N ≈ q̂(1− P̂D) + P̂D q̂
2 + P̂F q̂(1− q̂) (20)

This approximation provides an intuition for the basic causes
of system failure. The first term q̂(1 − P̂D) is due to a a
missed detection of a failed primary sensor. P̂D q̂2 accounts
for the case where the FDI scheme detects a failed primary
sensor but the backup sensor also fails. Finally, P̂F q̂(1− q̂)
refers to the case where the primary sensor is functioning,
the FDI scheme triggers a false alarm and then the backup
sensor fails. The approximation in Equation 20 can be used
to incorporate missed detections and false alarms as basic
events in the extended fault tree analysis as described in [2],
[9]. These approximations are intuitive but only justified for
geometric failure models, IID fault detection logic, Nq �
1, and NPF � 1. If any of these assumptions fail then
Equations 14-16 should instead be used to compute PS,N .

IV. APPLICATIONS

This section provides a numerical example to demonstrate
the proposed analysis method. The dual-redundant system is
assumed to run at a 100Hz sample rate (∆t = 0.01sec) with
primary and back-up sensors that have a mean time between



failure of 1000 hours. This failure rate is approximated using
a discrete-time geometric distribution with q = 2.78×10−9.
The system fails if it produces bad data for at least N0 = 20
consecutive samples. The FDI logic is described in further
detail below. The objective is to compute the probability of
failure for the dual-redundant system, PS,N , using a window
of length N = 3.6 × 105. This corresponds to the per-hour
system failure probability at the specified 100Hz sample rate.
For comparison, note that the system failure rate per hour is
10−3 for a single-sensor architecture. For a triple-redundant
architecture with simple hardware voting, the system will fail
if any two of the three sensors fail. In this case the system
failure rate per hour is approximately 3× 10−6. The system
failure probability for the dual-redundant architecture with
analytical FDI will be compared to these two extreme cases.

The logic for monitoring the primary sensor is assumed to
be a model-based FDI algorithm. A typical model-based FDI
scheme is compromised of two parts: a filter that generates
a residual r(k) and a decision function which determines
the logic signal d(k) that indicates the status of the primary
sensor. There are many approaches to design the FDI filter,
e.g. observers, parity equations, parameter estimators, and
robust filters [4], [11], [6]. The filter output, r(k), is a random
variable and the objective is to design the filter to achieve
a decoupling property: r(k) has zero mean when θ1(k) = 0
and non-zero mean when θ1(k) 6= 0. For some filter designs,
e.g. Kalman filters, the residual is uncorrelated in time. For
these approaches it is reasonable to model r(k) as:

r(k) = n(k) + θ1(k)f (21)

where n(k) is an IID noise process and f is assumed to
be an additive bias fault that occurs when the sensor fails
(θ1(k) = 1). n(k) is assumed to be Gaussian with zero
mean and variance σ2. The decision logic generates the status
signal d(k) based on r(k). Again, there are many different
approaches to design the decision function, e.g. thresholding,
statistical tests, and fuzzy logic [11], [6]. For simplicity, this
example considers the use of a constant thresholding logic:

d(k) :=

{
1 if |r(j)| > H for some j ≤ k
0 else (22)

In other words, a fault is declared when the residual magni-
tude exceeds the threshold H . Note that this decision logic
does not have intermittent switching, i.e. d(k) remains at 1
once the residual exceeds the threshold. This fault detection
logic is IID in time due to the given assumptions on r(k) and
hence the system failure probability PS,N can be computed
using the results in Section III-B. Recall the definition of the
single-frame false alarm and detection probabilities: PF :=
P [d(k) = 1 | θ1(k) = 0] and PD := P [d(k) = 1 | θ1(k) =
1]. The residual is Gaussian at each time and hence:

PF = 1−
∫ H

−H

1√
2πσ

e−
r2

2σ2 dr (23)

PD = 1−
∫ H

−H

1√
2πσ

e−
(r−f)2

2σ2 dr (24)

These single-frame probabilities can be accurately and effi-
ciently computed using the error function erf in Matlab.

The system failure probability can be computed from
the results in Section III for specific values of the residual
variance σ2, fault level f , and threshold H . First, the single-
frame false alarm and detection probabilities are computed
using Equations 23 and 24. The exact probabilities for the
basic failure events can be computed from Equations 14-
16 using PF , PN , q, N0, and N . There is no need to use
the approximations (Equations 17-19) as the exact equa-
tions can be efficiently evaluated. Finally, the exact system
probability is given by the sum of the basic failure event
probabilities (Equation 7). These steps are equivalent to
evaluating the general result in Equation 13. Finally, note
that the single-frame FDI probabilities appear to depend
independently on σ2, f , and H . Equations 23 and 24 can be
non-dimensionalized so that only the ratios H

σ and f
σ appear

in the integrals. The remainder of the section considers the
effect of H

σ and f
σ on PS,N .

Figure 2 shows PS,N as a function of the normalized
threshold H

σ for three values of the normalized fault level
f
σ =1, 6, and 10. The vertical axis is a log-scale to highlight
the changes in system performance as a function of the
threshold. For small thresholds the system will rarely have
a missed detection but will often trigger a false alarm. As
a result, for sufficiently small thresholds the system has
PS,N ≈ 10−3 for all fault levels, i.e. the duplex system
has similar reliability to the single sensor architecture. For
large thresholds the system will rarely have a false alarm
but it will also frequently have missed detections when
failures occur. Thus the duplex system also has similar
reliability as the single sensor system for large thresholds.
For intermediate values of the threshold, the system failure
probability depends on the ratio of the fault to noise level.
For large fault levels ( fσ = 10) the threshold can be chosen
to achieve a system failure probability near 10−6. This
probabilistic performance is even better than that achieved
by the triplex system. However, the analysis of the duplex
system neglects some effects, e.g. failure modes in any
additional sensors used to compute the residual, and hence
this ideal performance is unlikely be achievable in practice.
For smaller fault levels ( fσ = 6) the system failure probability
is higher and there is a smaller range of thresholds that
achieve PS,N near 10−6. Finally, for small fault sizes relative
to the noise ( fσ = 1) the system has PS,N > 10−3 for
some thresholds, i.e. the performance of the duplex system is
even worst than that achieved by a single sensor. The results
shown in Figure 2 were generated with the exact formulas
for PS,N but the approximations discussed in Section III-B
provide some intuition for the f

σ = 1 curve. Specifically, the
approximation in Equation 20 can be expressed as:

PS,N ≈ q̂ + (P̂F − P̂D)q̂(1− q̂) (25)

If P̂F ≥ P̂D then PS,N ≥ q̂. Thus the dual redundant
system fails more often than a single sensor if the false alarm
probability exceeds the detection probability.The results in Figure 2 indicate the importance of proper
threshold selection. For a given fault level f

σ , let H∗( fσ )



Fig. 2. PS,N vs. H
σ

for N = 3.6× 105

denote the threshold that minimizies PS,N . Figure 3 shows
PS,N as a function of the fault level for the optimal threshold
H∗ and for H = 10σ. As expected, for any fault level
the system failure probability is lower with H∗. For both
curves PS,N decreases monotonically with increasing fault
level. Figure 3 also shows the limits of performance for the
specific residual-based FDI scheme. In particular, for small
fault levels (f ≤ 2σ) the failure probability of the duplex
system is similar to that of a single sensor system even
if the optimal threshold is chosen. More advanced decision
functions, e.g. likelihood ratio test, are required if the fault
level is small relative to the noise.

Fig. 3. PS,N vs. f
σ

for N = 3.6× 105

V. CONCLUSION

This paper analyzed the reliability of a dual-redundant
system with analytical fault detection logic. The system
failure probability can be exactly computed provided that
probabilistic information is known for sensor failures and
fault detection performance. The proposed approach can be
combined with Monte Carlo simulations to assess system re-
liability. An example was given to demonstrate the approach.
This example assumed the FDI decisions are independent in
time. Future work will consider intermittent faults and time
correlations that arise due to fault detection filters.
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