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Abstract— A sum-of-squares is a polynomial that can be ex- based on a simple property of positive semidefinite matrices
pressed as a sum of squares of other polynomials. Determirdif  if the (i,4) diagonal entry of a positive semidefinite matrix
a sum-of-squares decomposition exists for a given polynoaliis is zero then the entiré” row and column must be zero.

equivalent to a linear matrix inequality feasibility probl em. The . . . .
computation required to solve the feasibility problem depads The. zero diagonal algorlthm simply searches for diagonal
on the number of monomials used in the decomposition. The €ntries ofQ) that are constrained to be zero and then prunes
Newton polytope is a method to prune unnecessary monomials the corresponding monomials. This algorithm can be imple-
from the decomposition. This method requires the construéon  mented with very little computational cost using the Matlab
of a convex hull and this can be time consuming for polynomia find command. It is shown that final list of monomials

with many terms. This paper presents a new algorithm for . . .

removing monomials based on a simple property of positive returned by j[he zero diagonal algorithm is never larger than
semidefinite matrices. It retumns a set of monomials that is the pruned list obtained from the Newton polytope method.
never larger than the set returned by the Newton polytope For some problems the zero diagonal algorithm returns a
method and, for some polynomials, is a strictly smaller set. strictly smaller set of monomials. Results contained irs thi

Moreover, the algorithm takes significantly less computabn 446y are similar to and preceded by those found in the prior
than the convex hull construction. This algorithm is then work [9], [21]

extended to a more general simplification method for sum-of- - ) ) ) .
squares programming. The basic idea in the zero diagonal algorithm is then

extended to a more general simplification method for sum-
L o of-squares programs. The more general method also removes

A polynomial is a sum-of-squares (SOS) if it can beee variables that are implicitly constrained to be equal
expressed as a sum of squares of other polynomials. Thege 10 This can improve the numerical conditioning and
are close connections between SOS polynomials and positiygyce the computation time required to solve the SOS pro-
semidefinite matrices [3], [2], [4], [13], [11], [7], [12].&F 4 am. Both the zero diagonal elimination algorithm and the

a given polynomial the search for an SOS decomposition igmpjification procedure for SOS programs are implemented
equivalent to a linear matrix inequality feasibility prem. i3 sosOPT [1].

It is also possible to formulate optimization problems with

polynomial sum-of-squares constraints [11], [12]. These i

freely available software that can be used to solve these SOS [I. SOS POLYNOMIALS

feasibility and optimization problems [14], [8], [1], [GlAany

nonlinear analysis problems, e.g. Lyapunov stability gsia| N denotes the set of nonnegative integéfs,1, ...}, and

can be formulated within this optimization framework [11],N" is the set ofn-dimensional vectors with entries iN.

[12], [19], [20]. For a € N", a monomialin variables{z1,...,z,} is given
Computational growth is a significant issue for thesgy z® := z{'z3% .- 22", « is the degree vector associated

optimization problems. For example, consider the search fevith the monomiak:*. The degree of a monomial is defined

an SOS decomposition: given a polynomjaénd a vector as degz® := Y., ;. A polynomial is a finite linear

of monomialsz, does there exist a matrig = 0 such combination of monomials:

that p = 27Qz? The computation required to solve the

corresponding linear matrix inequality feasibility preti pi= Z Cox® = Z Carlrag? - gln (1)

grows with the number of monomials in the vectorThe aeA weA

Newton polytope [15], [18] is a method to prune unnecessary

monomials from the vectar. This method is implemented in wherec, € R, ¢, # 0, and.A is a finite collection of vectors

SOSTOOLs [14]. One drawback is that this method requirda N™. R[z] denotes the set of all polynomials in variables

the construction of a convex hull and this constructionlfitse {z,...,z,} with real coefficients. Using the definition of

can be time consuming for polynomials with many terms. deg for a monomial, the degree ofis defined aslegp :=
This paper presents an alternative monomial reductiofax,c 4 [degz®].

method called the zero diagonal algorithm. This algoritsm i A polynomial p is a sum-of-squaregSOS) if there exist
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ables{zy,...,z,} of degree< d: ! [1l. NEWTON POLYTOPE

As discussed in the previous section, the search for an SOS
decomposition is equivalent to an LMI feasibility problem.
One issue is that the computational complexity of this LMI
feasibility problem grows with the dimension of the Gram
matrix. For a polynomial of degre2d in n variables there
are, in generall, = (/%) monomials inz and the Gram
matrix @ is I, x I.. [, grows rapidly with both the number
of variables and the degree of the polynomial. However, any
particular polynomialp may have an SOS decomposition
with fewer monomials. The Newton Polytope [15], [18] is an
1) If p is a sum-of-squares thenmust have even degree. algorithm to reduce the dimensiénby pruning unnecessary
2) If pis degree2d (d € N) andp = >, f? then monomials froms.

deg fi < d Vi. First, some terminology is provided regarding polytopes

The following theorem, introduced as the “Gram Matrix”[10], [5]. For any setA C R", convhul(A) denotes the

method by [4], [13], connects SOS polynomials and positiv€onvex hull of A. Let C' € R™ be a convex set. A point
semidefinite matrices. a € C is an extreme point if it does not belong to the

relative interior of any segmerjv;,as] C C. In other
Theorem 1:Let p € R[z] be a polynomial of degreed  words, if 301,02 € C and0 < A < 1 such thata =
andz be thel, x 1 vector of monomials defined in Equation 2. o, + (1= X)ay thena; = as = a. A convex polytope (or
Thenp is a SOS if and only if there exists a symmetric matrixsimply polytope) is the convex hull of a non-empty, finite
Q € R'=*!= such thatQ = 0 andp = 27 Qz. set{ai,...,a,} C R™. The extreme points of a polytope
Proof: (=) If pis a SOS, then there exists polynomialsare called the vertices. L&t be a polytope and lev be
{fi}i~, such thap = > | f2. By fact 2 abovedeg f; < d  the (finite) set of vertices of’. ThenC = convhul(V) and
for all i. Thus, for eachf; there exists a vector;; € R'=, v is a minimal vertex representation 6f. The polytopeC’
such thatf; = a! z. Define the matrix4 € R'=*™ whosei'”  may be equivalently described as an intersection of a finite
column isa; and defineQ := AAT = 0. Thenp = 27Qz=. collection of halfspaces, i.e. there exists a makfixc RV *"
(«) Assume there exist§) = QT € R*!= such that and a vectol € RY such thatC' = {a € R" : Ha < g}.
Q = 0 andp = z7Qz. Definem := rank(Q). There exists This is a facet or half-space representatiorCof
a matrix A € R=*™ such that) = AA”. Leta; denote the ~ The Newton Polytopgor cage) of a polynomiap =
i*" column of A and define the polynomial§ := z"a;. By > . 4 caz® is defined as’(p) := convhullA) C R™ [15].
definition of f;, p = 2T(AAT)z =Y | f2. m The reduced Newton polytope &C(p) := {3a : o €

L . ) . C(p)}. The following theorem from [15] is a key result for
Determining if an SOS decomposition exists for a given, 5nomial reduction?

polynomialp is equivalent to a feasibility problem:

T
ei= 1 @, @0, ooy @y o, @iz, ey 02, e, 1] @)

There are( **7~1) monomials inn variables of degreé.

Thusz is a column vector of length, := Zizo (Frn=1) =
(mt4). If f is a polynomial inn variables with degree
< d then by definitionf is a finite linear combination of
monomials of degreg d. Consequently, there exisisc R!
such thatf = a” .

Two useful facts from [15] are:

Theorem 2:1f p =Y, f? then the vertices of (p) are
Find Q@ = 0 such thatp = 2" Q= (3)  vectors whose entries are even numbers@g}) C 3C(p).

Q is constrained to be positive semi-definite and equating co- This theorem implies that any monomiett appearing in
efficients ofp and 27 Q= imposes linear equality constraintsthe vectorz of an SOS decomposition” Q= must satisfy

on the entries ofy. Thus this is a linear matrix inequality @ € $C(p) N N". This forms the basis for the Newton
(LMI) feasibility problem. There is software available topolytope method for pruning monomials: Letbe a given
solve for SOS decompositions [14], [8], [1]. These toolmxepolynomial of degree2d in n variables with monomial
convert the SOS feasibility problem to an LMI problem.degree vectors specified by the finite setFirst, create the
The LMI problem is then solved with a freely availablel- x 1 vectorz consisting of all monomials of degreed in n

LMI solver, e.g. Sedumi [17], and an SOS decompositioMariables. There arg = (™}*) monomials in this complete

is constructed if a feasible solution is found. These saféwa list. Second, compute a half-space representdtios R" :
packages also solve SOS synthesis problems where sofle < g} for the reduced Newton polytopgC(p). Third,

of the coefficients of the polynomial are treated as freerune out any monomials in that are not elements of
variables to be computed as part of the optimization. ThesgC(p). This algorithm is implemented in SOSTOOLSs [14].
more general SOS optimization problems are discussed furhe third step amounts to checking each monomiak in
ther in Section V. Many analysis problems for polynomiafo see if the corresponding degree vector satisfies the half-
dynamical systems can be posed within this SOS synthegiiane constraintsfa < g. This step is computationally
framework [11], [12], [19], [20].

2A polynomial p is a formif all monomials have the same degree. The
results in [15] are stated and proved for forms. A given poigial can

1Any ordering of the monomials can be used to foemin Equation 2, be converted to a form by adding a single dummy variable of@pate
z© precedest? in the definition ofz if degz® < degzf OR degz® = degree to each monomial. The results in [15] apply to polyiatby this
deg z? and the first nonzero entry ef — 8 is > 0. homogenization procedure.



very fast. The second step requires computing a half-plane .- Newton Polytope

representation for the convex hull §t4. This can be done
in Matlab, e.g. withconvhul | n. However, this step can 2t
be time-consuming when the polynomial has many terms
(A has many elements). The next section provides an al- L5
ternative implementation of the Newton Polytope algorithm Y °®
that avoids constructing the half-space representatidhef
reduced Newton polytope. 0.5

Example:Consider the following polynomial Or ®

p =327 — 2xixe + T2 — dxyze + 423 + 1 (4) 05— 1 5 3 1

p is a degree four polynomial in two variables. The list of a

all monomials in two variables with degree? is:
Fig. 1. Newton polytope (large triangle) and monomial degvectors

z= [1 r1 Ty X7 X1T2 x%}T (5) (circles)

The length ofz is [, = 6. An SOS decomposition of a degree Reduced Newton Polytope
four polynomial would, in general, include all six of these 25
monomials. The Newton Polytope can be used to prune some
unnecessary monomials in this list. 2 o

The set of monomial degree vectors fpris A := 15
{131, 131, (3], [}, (3], [8]}- These vectors are shown
as circles in Figure 1. The Newton Polytoggp) is the s 1 L4
large triangle with vertice$[2], [9], [$]}. Figure 2 shows o5l
the degree vectors for the six monomials in(circles) '
and the reduced Newton polytope (large triangle). The re- Or ®
duced Newton pontop(—%C(f) is the triangle with vertices
{121, [9], [9]}. By Theorem 2,25 andz3 can not appear 030 05 1 15 2 25
in any SOS decomposition of becausg!],[$] ¢ +C(f). oy

These monomials can be pruned franmand the search for
an SOS decomposition can be performed using only the foﬁlilg- 2. R_efliuciddNe\/\ﬂon polytope _(Ialrge triangle) and degesgors for
monomials in the reduced Newton polytope: all monomials of degree = 0, 1, 2 (circles)

z:[l T1  To xﬂT (6)

The length of the reduced vectaris I, = 4. The SOS
feasibility problem with this reduced vecter(Equation 3)
is feasible. The following matrix is one feasible solution:

The entries ofz are not independent: it is possible that
ziz; = zpz for somei,j, k,l € {1,...,1.}. The unique
degree vectors in Equation 8 are given by the set

1900 M+ M:={aeN":3a;,0j € M st.a=0a; +;} (9)
Q= [02_4 1} (7)
00 -1 3 The polynomialz7 Q= can be rewritten as:
p is SOS since = z7Qz andQ > 0.
IV. ZERO DIAGONAL ALGORITHM TQz= Y > Qi la” (10)
The zero diagonal algorithm searches for diagonal entries aEMAM \(4,5)€5a
of the Gram matrix that are constrained to be zero and thejhere 5, := {(i,j) : o + a; = a}. Equating the
prunes the associated monomials fremThe remainder of coefficients of p and 27Qz vyields the following linear
the section describes this algorithm in more detail. equality constraints on the entries Qf
As mentioned in Section I, equating the coefficientgpof
and 2T Qz leads to linear equality constraints on the entries Z Qi; = { Ca a€A (11)
of ). The structure of these equations plays an important ’ 0 ag¢A

; ; (4,7)€Sa
role in the proposed algorithm. Let be thel, x 1 vector !

of all monomials inn variables of degreel d (Equation 2). There existsA R!*Z andb € R! such that these equality

Define the corresponding set of degree vectorslas= constraints are given bylg = b 3 whereq := vec(Q) is the
{a1,...,a.} € N". 2TQz is a polynomial inxz with  vector obtained by vertically stacking the columngpfThe
coefficients that are linear functions of the entrie<bf dimension!l is equal to the number of elements &f + M.
m m
T _ o eaitaj 3In addition to the equality constraints duepio= 27 Qz there are also
2 Qz= Z Z wa ’ (8) equality constraints due to the symmetry condit@r= Q7. Some solvers,

=1 j=1 e.g. Sedumi [17], internally handle these symmetry coimgta



The zero diagonal algorithm is based on two lemmas.  Theorem 3:The zero diagonal algorithm terminates in
a finite number of stepsks, and My, C 1C(p) N N".

Lemma 1:1f Sz, = {(i,9)} then Moreover, ifp = 7, f2 thenC(f;) NN C M.
Qii= { C2a; 20; €A (12) Proof: M, hasl. elements. The algorithm terminates
0 20, ¢ A unless at least one point is removed framy.. Thus the
Lemma 2:1f p = 27Qz, Q = 0, andQ;; = 0 thenp = algorithm must terminate aftér; <1, + 1 steps.

:TQz wherez is the (I, — 1) x 1 vector obtained by deleting T show M,, C 1C(p) N N" consider a vertexy; of
the i*" element ofz and Q) = 0 is the (I. — 1) x (I. = 1) convhul( My, ). If there existsu,v € convhul(Mj,) such
matrix obtained by deleting th&" row and column fronQ.  that 20; = u + v thenu = v = «;. This follows froma; =
#(u+ v) and the definition of a vertex. As a consequence,

Lemma 1 follows from Equation 11S3,, = {(4,%
; 2 {60} Saa; = {(i,4)}. By Lemma 1

means that®: -x% is the unique decomposition ef*: as a
product of monomials in. There is no other decomposition
of z2* as a product of monomials in. In this case,
p = zTQz places a direct constraint ap, ; that must hold Con, 205 €A
for all possible Gram matrices. Qi = { 0 20; ¢ A (13)
Lemma 2 follows from a simple property of positive
semidefinite matrices: I§) >~ 0 and@;; = 0 then @, ; =
Qji = 0forj = 1,....0,. If Q;; = 0 then an SOS

decomposition ofy, if one exists, does not depend on the®i.i 7 0 Sincea; was not removed at step 6 during the final
monomialz; andz; can be removed from. iteration and thufa; € A C C(p). This implies that; €

! et : )
The zero diagonal algorithm is given in Table I. The setgC () i-€- 3C(p) contains all vertices of convhill/y).

M;. denote the pruned list of monomial degree vectors fenceM, S convhul(My, ) < 3C().

the k" iterate. The main step in the iteration is the search Finally it is shown thatC(f;) " N* C My,. C(fi) C

for equations that directly constrain a diagonal eri@ry; to 1C(p) by Theorem 2 and,C(p) C convhul(M,) by the

be zero (Step 6). This step can be performed very fast singRoice of M. ThusC(f;) NN™ C M,. Let » be the vector

it can be implemented using tlié¢ nd command in Matlab. of monomials associated withy. If p = >_7" | f? then there

Based on Lemma 2, ); ; = 0 then the monomiat; and the  exists aQ = 0 such thap = 27'Qz. If the iteration removes

i*" row and column of) can be removed. This is equivalentno degree vectors theW,, = M, and the proof is complete.

to zeroing out the corresponding columns 4f(Step 7). Assume the iteration removes at least one degree vector and

This implementation has the advantage tHaandb do not |et «; be the first removed degree vector. Based on Step 6,

need to be recomputed for each updated gt Zeroing p = >TQz constraing);; = 0. By Lemma 2 the monomial

out columns ofA in Step 7 also means that new equations, cannot appear in any;. HenceC'(f;) NN™ C Mo\ {a;}.

of the form Q;; = 0 may be uncovered during the nextinduction can be used to shai( f;) "N C M, holds after

iteration. The iteration continues until no new zero diagon each stepk including the final stegk;. ]

entries ofQ) are discovered. The next theorem proves that if

pis a SOS then the decomposition must be expressible usingThis algorithm is currently implemented in SOSOPT [1].

only monomials associated with the final 3éf,,. Moreover, The results in Theorem 3 still hold i/, C N” is chosen to

My, C 5C(p) "N, i.e. the list of monomials returned pe any set satisfying C(p) N N" C M. Simple heuristics

by the zero diagonal algorithm is never larger than the ligan be used to obtain an initial set of monomiads with

obtained from the Newton polytope method. In fact, there afgwer thani, elementsM, can then be used to initialize the

polynomials for which the zero diagonal algorithm returns gero diagonal algorithm. The next step is to construct the

strictly smaller list of monomials than the Newton polytopematrix A and vector obtained by equating the coefficients

The second example below provides an instance of this fagj p andzTQz. This step is required to formulate the LMI
feasibility problem and it is not an additional computatibn

1.G ven: A pol ialp = T, . . . )
ven: A polynomialp =3 c 4 ca cost associated with the zero diagonal algorittdd,, con-

2.1nitialization: Setk=0andMg := {a;}}2, CN» . . .

i Y { 1.}“1 k2 tains the final reduced set of monomial degree vectors. If at

3. Form Aq = b: Construct the equality constraint datd,c R***= and .
b € R!, obtained by equating coefficients pf= 27 Qx. least one degree vector was pruned then the returned matrix

4.lteration: A and vecton may contain entire columns or rows of zeros.

5. SetZ=0,k:=k+1,and My := My_4 ; ;

4 SearchAq — b If there is an equation of the fori@s ; — 0 These rows/and_colu.m.ns can be de.Ieted prior to passing the
then setM;, := My\{a;} and Z — Z UT whereT are the ~ data to a a semi-definite programming solver. The next two
entries ofg corresponding to thét” row and column ofQ. examples demonstrate the basic ideas of the algorithm.

7. For eachj € Z set thej*" column of A equal to zero.

8. Terminate ifZ = () otherwise return to step 5. . : : P :

9 Return: My, A, b Example: Consider again the polynomial in Equation 4.

The full Tist of all monomials in two variables with degree

< 2 consists of six monomials (Equation 5). Equating
TABLE | the coefficients ofp and z7Qz yields the following linear
MONOMIAL REDUCTION USING THEZERO DIAGONAL ALGORITHM



equality constraints on the entries @Qf V. SIMPLIFICATION METHOD FORSOS FRROGRAMS

Q21+ Q12=0, Qa1+ Qra+Q22=7 This section describes a simplification method for SOS
Qa2+ Q24=0, Q6.4+ Qa6+ Q55 =0 programs that is based on the zero diagonal algorithm. A
Q3.1+ Q13 =0, Qo1+ Q6+ Qss =4 sum-of-squares program is an optimization problem with
Q5.4+ Qus =0, Q5.2+ Qa5 + Qus + Qsa = —2 a linear cost and affine SOS constraints on the decision
Qo3+ Q3,6 =0, Q6,2+ Q26+ Q53+ Q35=0 variables [14]:
Qes,5 + Q5,6 =0, Q51+ Q15+ Q32+ Q23 =—4 min u (16)
Qi1=1 Q1,4 =3 e
Qo6 = 0 subject to:ay(z,u) € X[z], k=1,...N

A matrix A and vectorb can be constructed to represent: € R” are decision variables. The polynomidls, } ', are
these equations in the fordg = b. Note thatQss = 0  given problem data and are affinen
and this implies tha; s = Q; = 0 i = 1,...,6 for any

SOS decomposition gf. Thus the monomiats = =3 can ap(z,u) = ago(x) + ar,1(2)ur + - - + apr(2)u,  (17)
not appear in any SOS decomposition and it can be removed ) )
from the list. After eliminatingr3 and removing th&" row Theorem 1 is used to convert an SOS program into a
and column ofQ, the equality constraints reduce to: semidefinite program (SDP). The constraiptz, u) € X[z]
Qon + Q10 =0, Os1+Qrat Qoo=T can be equivalently written as:
Qa2+ Q24 =0, Qs55=0 ar,0(x) + ak1()ur + - + apr()u, = szkak (18)
Q31+ Q1,3=0, Q33 =4 Qr =0 (19)
Q5,4+ Qa5 =0, Q52+ Q2,5 + Qa3+ Q34 = -2 .
Qs34+ Q35 =0 Qs+ Qs+ Qs+ Qs = —4 If max,[dega(z,u)] = 2d then, in general,z; must
Qra=1 Osa =3 contain all monomials im variables of degree< d. Q

is a new matrix of decision variables that is introduced
Removing the6 row and column ofQ is equivalent to when converting an SOS constraint to an LMI constraint.
zeroing out the appropriate columns of the matdix This Equating the coefficients ozfl{@kzk and ay (z,u) imposes
uncovers the new constrai)s 5 = 0 which implies that Jinear equality constraints on the decision variableand
the monomialzs = x1z2 can be pruned from the list. (). There exists a matrid € R'*™ and vectoh € R! such

After eliminatingz; 2, the procedure can be repeated oncehat the linear equations for all SOS constraints are giwen b
again after removing th&"" row and column of). No new Ay = b where
diagonal entries of) are constrained to be zero and hence

no additional monomials can be pruned frenirhe final list y = [u”, vee(Q)T, ..., vee(Qn)T]" (20)
of monomials consists of four monomials. vec(Qy) denotes the vector obtained by vertically stacking

z=[1 @1 2 xﬂT (14) the columns of@;. The dimensionm is equal tor +

S m2 where Qy, is my x my, (k = 1,...,N). After

The Newton polytope method returned the same list. introducing a Gram matrix for each constraint the SOS

Example:Consider the polynomigh = 3 4 23 + zz3.  Program can be expressed as:

The Newton polytope i€'(p) = convhul({[3], [9]., [1]}). min Tu (21)
The reduced Newton polytope is %C(p) = uweR” {Q N,
convhull{[5], [?], [3]})- The monomial vector subject to:Ay = b

corresponding ta. C(p) N N" is: Qr>=0, k=1,...N

o 2217
2= 21, 22, maws, @i (15) Equation 21 is an SDP expressed in Sedumi [17] primal

There arel, = 15 monomials in two variables with degreeform. u is a vector of free decision variables al{]@k}szl

< 4. For simplicity, assume the zero diagonal algorithm igontain decision variables that are constrained to lie & th
initialized with M, = %C(p) N N". Equating coefficients positive semi-definite cone. Sedumi internally handles the
of p and 27Qz yields the constrains; s = 0 in the first symmetry constraints implied b@, = Q%.

iteration of the zero diagonal algorithm. The monomiak= The SOS simplification procedure is a generalization of
x122 IS pruned and no additional monomials are removed alie zero diagonal algorithm. It prunes the list of monomials
the next iteration. The zero diagonal algorithm retukfis=  used in each SOS constraint. It also attempts to remove free
{[&1, [9], [3]}. M, is a proper subset ofC(p) " N".  decision variables that are implicitly constrained to beoze

The same set of monomials is returned by the zero diagorapecifically, the constraints in some SOS programs imply
algorithm after 13 steps i#/, is initialized with thel, =15 bothwu; > 0 andu; < 0, i.e. there is an implicit constraint
degree vectors corresponding to all possible monomials that u; = 0 for somei. Appendix A.1 of [19] provides
two variables with degreel 4. This example demonstratessome simple examples of how these implicit constraints
that the zero diagonal algorithm can return a strictly semall can arise in nonlinear analysis problems. For these simple
set of monomials than the Newton polytope method. examples it is possible to discover the implicit constrsing



examination. For larger, more complicated analysis proble 1. G ven: Polynomials{a; }j_, in variablesz. Define
; ger, p ySIS p a(z,u) == ap(z) + ar(@)ur + - - + ar(x)ur

it can be difficult to detect that implicit constraints exiShe 2 |nitialization: Setk =0 and choose a finite sétfy := {as}m,

SOS simplification procedure described below automaicall C N” such that[Uyerr 2 C(a(z, u))] NN™ C M.
uncovers some classes of implicit constraints= 0 and 3.Form Ay = b: Construct the equality constraint data,e R!X (7+m”)
removes these decision variables from the optimization. andb € R' obtained by equating coefficients afz, u) = z7Qz
This is important because implicit constraints can caus wherez := [¢°1,..., 2% ] andy := [uT, vec(Q)T]T.

. . . . “47Si gn Dat a: Initialize thel x 1 vectors to bes; = +1 if y;
numerical issues for SDP solvers. A significant reduction in corresponds to a diagonal entry @f Otherwise seb; — NaN.

computation time and improvement in numerical accuracy: | teration:

has been observed when implicitly constrained variables a.? SetZ =0,8=0, k:=k+1, and M, := My,
. Process equality equality constraints of the faryy; = b;

removed prior to calling Sedumi. wherea; ; # 0
. e . . . Z"‘j .

The general SOS simplification procedure is shown in7a. Ifb; =0 then sets; =0 andZ = ZUj _

Table I1. To ease the notation the algorithm is only shown for 7% Else ifs; =NaN then sets; = sign(a;,;b;) andS =S U;j
. . 7c. Else ifs; = —1 and sigria;,jb;) = +1 then sets; = 0
the case of one SOS constrait¥ (= 1). The extension to andS =S Uj
SOS programs with multiple constrainty (> 1) is straight-  7d. Else ifs; = +1 and sigiia; jb;) = —1 then sets; = 0
forward. The algorithm is initialized with a finite set of vec andS=5Uj .
. Process equality equality constraints of the form

tors My C N". The Newton polytope of(x,u) depends on @i gy Ysy + igyUsy = bi.
the choice ofu so M, must be chosen so that it contains allo. If for any j € Z, y; corresponds to a diagonal enigy; ;

possible reduced Newton polytopes. One choice is to initial then setM), := My \{a} and Z = Z UT whereZ are the
entries ofy corresponding to thét” row and column ofQ.

ize M, corresponding to the degree vectors of all monomialg, For eachj € Z set thejt column of A equal to zero.

in n variables and degre€ 2d := max,[degai(z,u)]. A 11 Terminate ifZ = () and S = () otherwise return to step 6.
and b need to be computed when formulating the SDP s&?- Return: My, A, b, s

this step is not additional computation associated with the

simplification procedure. The last pre-processing stejnés t TABLE II
initialization of the sign vectos. The entries ofs; are +1, SIMPLIFICATION METHOD FORSOS FROGRAMS WITHONE
—1, or 0 if it can be determined from the constraints that CONSTRAINT

y; is > 0, < 0 or = 0, respectively.s; =NaN if no sign ) _ )
information can be determined fgr. If y; corresponds to a monomials returned by the algorithm is a subset of _the set
diagonal entry of) thens; can be initialized to+1. returrjed by the Newton polytope method. The zero diagonal
The main iteration step is the search for equations tha{gorithm was extended to a more general reduction method
directly constrain any decision variable to be zero (Stefpr Sum-of-squares programming.
7a). This is similar to the zero diagonal algorithm. The
iteration also attempts to determine sign information @abou
the decision variables. Steps 7b-7d update the sign vectorThis research was partially supported under the NASA
based on equality constraints involving a single decisiohangley NRA contract NNHO77ZEAOO1N entitled "Analyt-
variable. For example, a decision variable must be zereif tHical Validation Tools for Safety Critical Systems” and the
decision variable has been previously determined teclie  NASA Langley NNXO8BAC65A contract entitled "Fault Diag-
and the current equa”ty constraint |mp||es that it mustb@ nosis, PrOgnOSiS and Reliable Fllght Envelope Assessiment.
(Step 7c) These decision variables can be removed from tﬁ@e technical contract monitors are Dr. Christine Bel@astr
optimization. Step 8 processes equality constraints iiegl  @nd Dr. Suresh Joshi respectively.
two decision variables. The logic for this case is omitted du
to space constraints. The processing of equality conssrain
can be performed very fast using thié nd command in [1] G.J. Balas, A. Packard, P. Seiler, and U. Topcu. Robsstamalysis

Matlab Steps 9 and 10 prune monomials and zero out of nonlinear systems. http://www.aem.umn.ed@érospaceControl/,
’ 2009.

apprqpriatg COlumnS ofl. The iteraﬂoh continues Unt”. NO [2] G. Chesi, A. Garulli, A. Tesi, and A. Vicinddomogeneous Polynomial
additional information can be determined about the sign of Forms for Robustness Analysis of Uncertain Systespsinger, 2009.
the decision variables. [3] G. Ches_|, A. Tesi, A. Vicino, and R. Genesio. On convesxificn of
some minimum distance problems. European Control Conference
vI. C 1999.
- LONCLUSIONS [4] M.D. Choi, T.Y. Lam, and B. Reznick. Sums of squares ofl rea
The Newton polytope is a method to prune unnecessa% polynomials. Proc. of Symposia in Pure Math68(2):103-126, 1995.

. .. ] B. Griinbaum.Convex PolytopesSpringer Verlag, 2003.
monomials from an SOS decomposmon. The method re[G] D. Henrion, J. B. Lasserre, and J. Loefberg. Gloptipolyn®ments,

quires the construction of a convex hull and this can be optimization and semidefinite programmingdptimization Methods
time time consuming for polynomials with many terms. _ and Software24(4-5):761-779, 2009.

. . . . é?] J.B. Lasserre. Global optimization with polynomialsdathe problem
This paper presented a zero diagonal algorithm for pruning " ot moments.S1AM Journal on Optimizatign11(3):796-817, 2001.

monomials. The algorithm is based on a simple property ofg] J. Lofberg. Yalmip : A toolbox for modeling and optimizan in

positive semidefinite matrices. The algorithm is fast siice __ MATLAB. In Proc. of the CACSD Conferenceaipei, Taiwan, 2004.
[9] J. Lofberg. Pre- and post-processing sum-of-squarebl@ms in

Only requires _SearCh'ng_ a set Of_l'near equal'ty constsaint practice. IEEE Transactions on Automatic Contrd4(5):1007-1011,
for those having certain properties. Moreover, the set of 2009.
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