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Abstract— A sum-of-squares is a polynomial that can be ex-
pressed as a sum of squares of other polynomials. Determining if
a sum-of-squares decomposition exists for a given polynomial is
equivalent to a linear matrix inequality feasibility probl em. The
computation required to solve the feasibility problem depends
on the number of monomials used in the decomposition. The
Newton polytope is a method to prune unnecessary monomials
from the decomposition. This method requires the construction
of a convex hull and this can be time consuming for polynomials
with many terms. This paper presents a new algorithm for
removing monomials based on a simple property of positive
semidefinite matrices. It returns a set of monomials that is
never larger than the set returned by the Newton polytope
method and, for some polynomials, is a strictly smaller set.
Moreover, the algorithm takes significantly less computation
than the convex hull construction. This algorithm is then
extended to a more general simplification method for sum-of-
squares programming.

I. I NTRODUCTION

A polynomial is a sum-of-squares (SOS) if it can be
expressed as a sum of squares of other polynomials. There
are close connections between SOS polynomials and positive
semidefinite matrices [3], [2], [4], [13], [11], [7], [12]. For
a given polynomial the search for an SOS decomposition is
equivalent to a linear matrix inequality feasibility problem.
It is also possible to formulate optimization problems with
polynomial sum-of-squares constraints [11], [12]. There is
freely available software that can be used to solve these SOS
feasibility and optimization problems [14], [8], [1], [6].Many
nonlinear analysis problems, e.g. Lyapunov stability analysis,
can be formulated within this optimization framework [11],
[12], [19], [20].

Computational growth is a significant issue for these
optimization problems. For example, consider the search for
an SOS decomposition: given a polynomialp and a vector
of monomialsz, does there exist a matrixQ � 0 such
that p = zTQz? The computation required to solve the
corresponding linear matrix inequality feasibility problem
grows with the number of monomials in the vectorz. The
Newton polytope [15], [18] is a method to prune unnecessary
monomials from the vectorz. This method is implemented in
SOSTOOLs [14]. One drawback is that this method requires
the construction of a convex hull and this construction itself
can be time consuming for polynomials with many terms.

This paper presents an alternative monomial reduction
method called the zero diagonal algorithm. This algorithm is
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based on a simple property of positive semidefinite matrices:
if the (i, i) diagonal entry of a positive semidefinite matrix
is zero then the entireith row and column must be zero.
The zero diagonal algorithm simply searches for diagonal
entries ofQ that are constrained to be zero and then prunes
the corresponding monomials. This algorithm can be imple-
mented with very little computational cost using the Matlab
find command. It is shown that final list of monomials
returned by the zero diagonal algorithm is never larger than
the pruned list obtained from the Newton polytope method.
For some problems the zero diagonal algorithm returns a
strictly smaller set of monomials. Results contained in this
paper are similar to and preceded by those found in the prior
work [9], [21].

The basic idea in the zero diagonal algorithm is then
extended to a more general simplification method for sum-
of-squares programs. The more general method also removes
free variables that are implicitly constrained to be equal
to zero. This can improve the numerical conditioning and
reduce the computation time required to solve the SOS pro-
gram. Both the zero diagonal elimination algorithm and the
simplification procedure for SOS programs are implemented
in SOSOPT [1].

II. SOS POLYNOMIALS

N denotes the set of nonnegative integers,{0, 1, . . .}, and
N

n is the set ofn-dimensional vectors with entries inN.
For α ∈ N

n, a monomialin variables{x1, . . . , xn} is given
by xα := xα1

1 xα2

2 · · ·xαn
n . α is the degree vector associated

with the monomialxα. The degree of a monomial is defined
as deg xα :=

∑n

i=1 αi. A polynomial is a finite linear
combination of monomials:

p :=
∑

α∈A

cαx
α =

∑

α∈A

cαx
α1

1 xα2

2 · · ·xαn
n (1)

wherecα ∈ R, cα 6= 0, andA is a finite collection of vectors
in N

n. R[x] denotes the set of all polynomials in variables
{x1, . . . , xn} with real coefficients. Using the definition of
deg for a monomial, the degree ofp is defined asdeg p :=
maxα∈A [deg xα].

A polynomial p is a sum-of-squares(SOS) if there exist
polynomials{fi}mi=1 such thatp =

∑m

i=1 f
2
i . The set of SOS

polynomials is a subset ofR[x] and is denoted byΣ[x]. If
p is a sum-of-squares thenp(x) ≥ 0 ∀x ∈ R

n. However,
non-negative polynomials are not necessarily SOS [16].

Define z as the column vector of all monomials in vari-



ables{x1, . . . , xn} of degree≤ d: 1

z :=
[

1, x1, x2, . . . , xn, x2
1, x1x2, . . . , x2

n, . . . , xd
n

]T
(2)

There are
(

k+n−1
k

)

monomials inn variables of degreek.
Thusz is a column vector of lengthlz :=

∑d

k=0

(

k+n−1
k

)

=
(

n+d
d

)

. If f is a polynomial inn variables with degree
≤ d then by definitionf is a finite linear combination of
monomials of degree≤ d. Consequently, there existsa ∈ R

lz

such thatf = aT z.
Two useful facts from [15] are:

1) If p is a sum-of-squares thenp must have even degree.
2) If p is degree2d (d ∈ N) and p =

∑m

i=1 f
2
i then

deg fi ≤ d ∀i.

The following theorem, introduced as the “Gram Matrix”
method by [4], [13], connects SOS polynomials and positive
semidefinite matrices.

Theorem 1:Let p ∈ R[x] be a polynomial of degree2d
andz be thelz×1 vector of monomials defined in Equation 2.
Thenp is a SOS if and only if there exists a symmetric matrix
Q ∈ R

lz×lz such thatQ � 0 andp = zTQz.
Proof: (⇒) If p is a SOS, then there exists polynomials

{fi}
m
i=1 such thatp =

∑m

i=1 f
2
i . By fact 2 above,deg fi ≤ d

for all i. Thus, for eachfi there exists a vector,ai ∈ R
lz ,

such thatfi = aTi z. Define the matrixA ∈ R
lz×m whoseith

column isai and defineQ := AAT � 0. Thenp = zTQz.
(⇐) Assume there existsQ = QT ∈ R

lz×lz such that
Q � 0 andp = zTQz. Definem := rank(Q). There exists
a matrixA ∈ R

lz×m such thatQ = AAT . Let ai denote the
ith column ofA and define the polynomialsfi := zTai. By
definition of fi, p = zT (AAT )z =

∑m

i=1 f
2
i .

Determining if an SOS decomposition exists for a given
polynomialp is equivalent to a feasibility problem:

Find Q � 0 such thatp = zTQz (3)

Q is constrained to be positive semi-definite and equating co-
efficients ofp andzTQz imposes linear equality constraints
on the entries ofQ. Thus this is a linear matrix inequality
(LMI) feasibility problem. There is software available to
solve for SOS decompositions [14], [8], [1]. These toolboxes
convert the SOS feasibility problem to an LMI problem.
The LMI problem is then solved with a freely available
LMI solver, e.g. Sedumi [17], and an SOS decomposition
is constructed if a feasible solution is found. These software
packages also solve SOS synthesis problems where some
of the coefficients of the polynomial are treated as free
variables to be computed as part of the optimization. These
more general SOS optimization problems are discussed fur-
ther in Section V. Many analysis problems for polynomial
dynamical systems can be posed within this SOS synthesis
framework [11], [12], [19], [20].

1Any ordering of the monomials can be used to formz. In Equation 2,
xα precedesxβ in the definition ofz if deg xα < deg xβ OR deg xα =
deg xβ and the first nonzero entry ofα− β is > 0.

III. N EWTON POLYTOPE

As discussed in the previous section, the search for an SOS
decomposition is equivalent to an LMI feasibility problem.
One issue is that the computational complexity of this LMI
feasibility problem grows with the dimension of the Gram
matrix. For a polynomial of degree2d in n variables there
are, in general,lz =

(

n+d
d

)

monomials inz and the Gram
matrix Q is lz × lz. lz grows rapidly with both the number
of variables and the degree of the polynomial. However, any
particular polynomialp may have an SOS decomposition
with fewer monomials. The Newton Polytope [15], [18] is an
algorithm to reduce the dimensionlz by pruning unnecessary
monomials fromz.

First, some terminology is provided regarding polytopes
[10], [5]. For any setA ⊆ R

n, convhull(A) denotes the
convex hull ofA. Let C ⊆ R

n be a convex set. A point
α ∈ C is an extreme point if it does not belong to the
relative interior of any segment[α1, α2] ⊂ C. In other
words, if ∃α1, α2 ∈ C and 0 < λ < 1 such thatα =
λα1 + (1− λ)α2 thenα1 = α2 = α. A convex polytope (or
simply polytope) is the convex hull of a non-empty, finite
set {α1, . . . , αp} ⊆ R

n. The extreme points of a polytope
are called the vertices. LetC be a polytope and letV be
the (finite) set of vertices ofC. ThenC = convhull(V) and
V is a minimal vertex representation ofC. The polytopeC
may be equivalently described as an intersection of a finite
collection of halfspaces, i.e. there exists a matrixH ∈ R

N×n

and a vectorg ∈ R
N such thatC = {α ∈ R

n : Hα ≤ g}.
This is a facet or half-space representation ofC.

The Newton Polytope(or cage) of a polynomialp =
∑

α∈A cαx
α is defined asC(p) := convhull(A) ⊆ R

n [15].
The reduced Newton polytope is12C(p) := { 1

2α : α ∈
C(p)}. The following theorem from [15] is a key result for
monomial reduction.2

Theorem 2:If p =
∑m

i=1 f
2
i then the vertices ofC(p) are

vectors whose entries are even numbers andC(fi) ⊆
1
2C(p).

This theorem implies that any monomialxα appearing in
the vectorz of an SOS decompositionzTQz must satisfy
α ∈ 1

2C(p) ∩ N
n. This forms the basis for the Newton

polytope method for pruning monomials: Letp be a given
polynomial of degree2d in n variables with monomial
degree vectors specified by the finite setA. First, create the
lz×1 vectorz consisting of all monomials of degree≤ d in n
variables. There arelz =

(

n+d
d

)

monomials in this complete
list. Second, compute a half-space representation{α ∈ R

n :
Hα ≤ g} for the reduced Newton polytope12C(p). Third,
prune out any monomials inz that are not elements of
1
2C(p). This algorithm is implemented in SOSTOOLs [14].
The third step amounts to checking each monomial inz
to see if the corresponding degree vector satisfies the half-
plane constraintsHα ≤ g. This step is computationally

2A polynomial p is a form if all monomials have the same degree. The
results in [15] are stated and proved for forms. A given polynomial can
be converted to a form by adding a single dummy variable of appropriate
degree to each monomial. The results in [15] apply to polynomials by this
homogenization procedure.



very fast. The second step requires computing a half-plane
representation for the convex hull of12A. This can be done
in Matlab, e.g. withconvhulln. However, this step can
be time-consuming when the polynomial has many terms
(A has many elements). The next section provides an al-
ternative implementation of the Newton Polytope algorithm
that avoids constructing the half-space representation ofthe
reduced Newton polytope.

Example:Consider the following polynomial

p = 3x4
1 − 2x2

1x2 + 7x2
1 − 4x1x2 + 4x2

2 + 1 (4)

p is a degree four polynomial in two variables. The list of
all monomials in two variables with degree≤ 2 is:

z =
[

1 x1 x2 x2
1 x1x2 x2

2

]T
(5)

The length ofz is lz = 6. An SOS decomposition of a degree
four polynomial would, in general, include all six of these
monomials. The Newton Polytope can be used to prune some
unnecessary monomials in this list.

The set of monomial degree vectors forp is A :=
{[ 40 ] , [ 21 ] , [ 20 ] , [ 11 ] , [ 02 ] , [ 00 ]}. These vectors are shown
as circles in Figure 1. The Newton PolytopeC(p) is the
large triangle with vertices{[ 40 ] , [

0
0 ] , [

0
2 ]}. Figure 2 shows

the degree vectors for the six monomials inz (circles)
and the reduced Newton polytope (large triangle). The re-
duced Newton polytope12C(f) is the triangle with vertices
{[ 20 ] , [

0
0 ] , [

0
1 ]}. By Theorem 2,x1x2 andx2

2 can not appear
in any SOS decomposition ofp because[ 11 ] , [

0
2 ] /∈

1
2C(f).

These monomials can be pruned fromz and the search for
an SOS decomposition can be performed using only the four
monomials in the reduced Newton polytope:

z =
[

1 x1 x2 x2
1

]T
(6)

The length of the reduced vectorz is lz = 4. The SOS
feasibility problem with this reduced vectorz (Equation 3)
is feasible. The following matrix is one feasible solution:

Q =

[

1 0 0 0
0 7 −2 0
0 −2 4 −1
0 0 −1 3

]

(7)

p is SOS sincep = zTQz andQ � 0.

IV. Z ERO DIAGONAL ALGORITHM

The zero diagonal algorithm searches for diagonal entries
of the Gram matrix that are constrained to be zero and then
prunes the associated monomials fromz. The remainder of
the section describes this algorithm in more detail.

As mentioned in Section II, equating the coefficients ofp
andzTQz leads to linear equality constraints on the entries
of Q. The structure of these equations plays an important
role in the proposed algorithm. Letz be thelz × 1 vector
of all monomials inn variables of degree≤ d (Equation 2).
Define the corresponding set of degree vectors asM :=
{α1, . . . , αlz} ⊆ N

n. zTQz is a polynomial in x with
coefficients that are linear functions of the entries ofQ:

zTQz =

m
∑

i=1

m
∑

j=1

Qi,jx
αi+αj (8)
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Fig. 1. Newton polytope (large triangle) and monomial degree vectors
(circles)
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Fig. 2. Reduced Newton polytope (large triangle) and degreevectors for
all monomials of degree = 0, 1, 2 (circles)

The entries ofz are not independent: it is possible that
zizj = zkzl for some i, j, k, l ∈ {1, . . . , lz}. The unique
degree vectors in Equation 8 are given by the set

M +M := {α ∈ N
n : ∃αi, αj ∈ M s.t.α = αi + αj} (9)

The polynomialzTQz can be rewritten as:

zTQz =
∑

α∈M+M





∑

(i,j)∈Sα

Qi,j



xα (10)

where Sα := {(i, j) : αi + αj = α}. Equating the
coefficients of p and zTQz yields the following linear
equality constraints on the entries ofQ:

∑

(i,j)∈Sα

Qi,j =

{

cα α ∈ A
0 α /∈ A

(11)

There existsA ∈ R
l×l2z and b ∈ R

l such that these equality
constraints are given byAq = b 3 whereq := vec(Q) is the
vector obtained by vertically stacking the columns ofQ. The
dimensionl is equal to the number of elements ofM +M .

3In addition to the equality constraints due top = zTQz there are also
equality constraints due to the symmetry conditionQ = QT . Some solvers,
e.g. Sedumi [17], internally handle these symmetry constraints.



The zero diagonal algorithm is based on two lemmas.

Lemma 1: If S2αi
= {(i, i)} then

Qi,i =

{

c2αi
2αi ∈ A

0 2αi /∈ A
(12)

Lemma 2: If p = zTQz, Q � 0, andQi,i = 0 then p =
z̃T Q̃z̃ wherez̃ is the(lz−1)×1 vector obtained by deleting
the ith element ofz and Q̃ � 0 is the (lz − 1) × (lz − 1)
matrix obtained by deleting theith row and column fromQ.

Lemma 1 follows from Equation 11.S2αi
= {(i, i)}

means thatxαi ·xαi is the unique decomposition ofx2αi as a
product of monomials inz. There is no other decomposition
of x2αi as a product of monomials inz. In this case,
p = zTQz places a direct constraint onQi,i that must hold
for all possible Gram matrices.

Lemma 2 follows from a simple property of positive
semidefinite matrices: IfQ � 0 andQi,i = 0 thenQi,j =
Qj,i = 0 for j = 1, . . . , lz. If Qi,i = 0 then an SOS
decomposition ofp, if one exists, does not depend on the
monomialzi andzi can be removed fromz.

The zero diagonal algorithm is given in Table I. The sets
Mk denote the pruned list of monomial degree vectors at
the kth iterate. The main step in the iteration is the search
for equations that directly constrain a diagonal entryQi,i to
be zero (Step 6). This step can be performed very fast since
it can be implemented using thefind command in Matlab.
Based on Lemma 2, ifQi,i = 0 then the monomialzi and the
ith row and column ofQ can be removed. This is equivalent
to zeroing out the corresponding columns ofA (Step 7).
This implementation has the advantage thatA and b do not
need to be recomputed for each updated setMk. Zeroing
out columns ofA in Step 7 also means that new equations
of the form Qi,i = 0 may be uncovered during the next
iteration. The iteration continues until no new zero diagonal
entries ofQ are discovered. The next theorem proves that if
p is a SOS then the decomposition must be expressible using
only monomials associated with the final setMkf

. Moreover,
Mkf

⊆ 1
2C(p) ∩ N

n, i.e. the list of monomials returned
by the zero diagonal algorithm is never larger than the list
obtained from the Newton polytope method. In fact, there are
polynomials for which the zero diagonal algorithm returns a
strictly smaller list of monomials than the Newton polytope.
The second example below provides an instance of this fact.

1. Given: A polynomial p =
∑

α∈A
cαx

α.
2. Initialization: Setk = 0 andM0 := {αi}

lz
i=1 ⊆ N

n

3. Form Aq = b: Construct the equality constraint data,A ∈ R
l×l2z and

b ∈ Rl, obtained by equating coefficients ofp = zTQz.
4. Iteration:
5. SetZ = ∅, k := k + 1, andMk := Mk−1
6. SearchAq = b: If there is an equation of the formQi,i = 0

then setMk := Mk\{αi} andZ = Z ∪ I whereI are the
entries ofq corresponding to theith row and column ofQ.

7. For eachj ∈ Z set thejth column ofA equal to zero.
8. Terminate ifZ = ∅ otherwise return to step 5.
9. Return: Mk, A, b

TABLE I

MONOMIAL REDUCTION USING THEZERO DIAGONAL ALGORITHM

Theorem 3:The zero diagonal algorithm terminates in
a finite number of steps,kf , and Mkf

⊆ 1
2C(p) ∩ N

n.
Moreover, if p =

∑m

i=1 f
2
i thenC(fi) ∩ N

n ⊆ Mkf
.

Proof: M0 has lz elements. The algorithm terminates
unless at least one point is removed fromMk. Thus the
algorithm must terminate afterkf ≤ lz + 1 steps.

To show Mkf
⊆ 1

2C(p) ∩ N
n consider a vertexαi of

convhull(Mkf
). If there existsu, v ∈ convhull(Mkf

) such
that 2αi = u+ v thenu = v = αi. This follows fromαi =
1
2 (u + v) and the definition of a vertex. As a consequence,
S2αi

= {(i, i)}. By Lemma 1

Qi,i =

{

c2αi
2αi ∈ A

0 2αi /∈ A
(13)

Qi,i 6= 0 sinceαi was not removed at step 6 during the final
iteration and thus2αi ∈ A ⊆ C(p). This implies thatαi ∈
1
2C(p), i.e. 1

2C(p) contains all vertices of convhull(Mkf
).

HenceMkf
⊆ convhull(Mkf

) ⊆ 1
2C(p).

Finally it is shown thatC(fi) ∩ N
n ⊆ Mkf

. C(fi) ⊆
1
2C(p) by Theorem 2 and12C(p) ⊆ convhull(M0) by the
choice ofM0. ThusC(fi) ∩ N

n ⊆ M0. Let z be the vector
of monomials associated withM0. If p =

∑m

i=1 f
2
i then there

exists aQ � 0 such thatp = zTQz. If the iteration removes
no degree vectors thenMkf

= M0 and the proof is complete.
Assume the iteration removes at least one degree vector and
let αi be the first removed degree vector. Based on Step 6,
p = zTQz constrainsQi,i = 0. By Lemma 2 the monomial
zi cannot appear in anyfi. HenceC(fi) ∩N

n ⊆ M0\{αi}.
Induction can be used to showC(fi)∩N

n ⊆ Mk holds after
each stepk including the final stepkf .

This algorithm is currently implemented in SOSOPT [1].
The results in Theorem 3 still hold ifM0 ⊆ N

n is chosen to
be any set satisfying12C(p) ∩ N

n ⊆ M0. Simple heuristics
can be used to obtain an initial set of monomialsM0 with
fewer thanlz elements.M0 can then be used to initialize the
zero diagonal algorithm. The next step is to construct the
matrix A and vectorb obtained by equating the coefficients
of p andzTQz. This step is required to formulate the LMI
feasibility problem and it is not an additional computational
cost associated with the zero diagonal algorithm.Mkf

con-
tains the final reduced set of monomial degree vectors. If at
least one degree vector was pruned then the returned matrix
A and vectorb may contain entire columns or rows of zeros.
These rows/and columns can be deleted prior to passing the
data to a a semi-definite programming solver. The next two
examples demonstrate the basic ideas of the algorithm.

Example:Consider again the polynomial in Equation 4.
The full list of all monomials in two variables with degree
≤ 2 consists of six monomials (Equation 5). Equating
the coefficients ofp and zTQz yields the following linear



equality constraints on the entries ofQ:

Q2,1 +Q1,2 = 0, Q4,1 +Q1,4 +Q2,2 = 7

Q4,2 +Q2,4 = 0, Q6,4 +Q4,6 +Q5,5 = 0

Q3,1 +Q1,3 = 0, Q6,1 +Q1,6 +Q3,3 = 4

Q5,4 +Q4,5 = 0, Q5,2 +Q2,5 +Q4,3 +Q3,4 = −2

Q6,3 +Q3,6 = 0, Q6,2 +Q2,6 +Q5,3 +Q3,5 = 0

Q6,5 +Q5,6 = 0, Q5,1 +Q1,5 +Q3,2 +Q2,3 = −4

Q1,1 = 1 Q4,4 = 3

Q6,6 = 0

A matrix A and vectorb can be constructed to represent
these equations in the formAq = b. Note thatQ6,6 = 0
and this implies thatQi,6 = Q6,i = 0 i = 1, . . . , 6 for any
SOS decomposition ofp. Thus the monomialz6 = x2

2 can
not appear in any SOS decomposition and it can be removed
from the list. After eliminatingx2

2 and removing the6th row
and column ofQ, the equality constraints reduce to:

Q2,1 +Q1,2 = 0, Q4,1 +Q1,4 +Q2,2 = 7

Q4,2 +Q2,4 = 0, Q5,5 = 0

Q3,1 +Q1,3 = 0, Q3,3 = 4

Q5,4 +Q4,5 = 0, Q5,2 +Q2,5 +Q4,3 +Q3,4 = −2

Q5,3 +Q3,5 = 0 Q5,1 +Q1,5 +Q3,2 +Q2,3 = −4

Q1,1 = 1 Q4,4 = 3

Removing the6th row and column ofQ is equivalent to
zeroing out the appropriate columns of the matrixA. This
uncovers the new constraintQ5,5 = 0 which implies that
the monomialz5 = x1x2 can be pruned from the list.
After eliminatingx1x2, the procedure can be repeated once
again after removing the5th row and column ofQ. No new
diagonal entries ofQ are constrained to be zero and hence
no additional monomials can be pruned fromz. The final list
of monomials consists of four monomials.

z =
[

1 x1 x2 x2
1

]T
(14)

The Newton polytope method returned the same list.

Example:Consider the polynomialp = x2
1 + x2

2 + x4
1x

4
2.

The Newton polytope isC(p) = convhull({[ 20 ] , [
0
2 ] , [

4
4 ]}).

The reduced Newton polytope is 1
2C(p) =

convhull({[ 10 ] , [ 01 ] , [ 22 ]}). The monomial vector
corresponding to12C(p) ∩ N

n is:

z :=
[

x1, x2, x1x2, x2
1x

2
2

]T
(15)

There arelz = 15 monomials in two variables with degree
≤ 4. For simplicity, assume the zero diagonal algorithm is
initialized with M0 := 1

2C(p) ∩ N
n. Equating coefficients

of p and zTQz yields the constraintQ3,3 = 0 in the first
iteration of the zero diagonal algorithm. The monomialz3 =
x1x2 is pruned and no additional monomials are removed at
the next iteration. The zero diagonal algorithm returnsM2 =
{[ 10 ] , [ 01 ] , [ 22 ]}. M2 is a proper subset of12C(p) ∩ N

n.
The same set of monomials is returned by the zero diagonal
algorithm after 13 steps ifM0 is initialized with thelz = 15
degree vectors corresponding to all possible monomials in
two variables with degree≤ 4. This example demonstrates
that the zero diagonal algorithm can return a strictly smaller
set of monomials than the Newton polytope method.

V. SIMPLIFICATION METHOD FORSOS PROGRAMS

This section describes a simplification method for SOS
programs that is based on the zero diagonal algorithm. A
sum-of-squares program is an optimization problem with
a linear cost and affine SOS constraints on the decision
variables [14]:

min
u∈Rr

cTu (16)

subject to:ak(x, u) ∈ Σ[x], k = 1, . . .N

u ∈ R
r are decision variables. The polynomials{ak}

N
k=1 are

given problem data and are affine inu:

ak(x, u) := ak,0(x) + ak,1(x)u1 + · · ·+ ak,r(x)ur (17)

Theorem 1 is used to convert an SOS program into a
semidefinite program (SDP). The constraintak(x, u) ∈ Σ[x]
can be equivalently written as:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,r(x)ur = zTk Qkzk (18)

Qk � 0 (19)

If maxu[deg ak(x, u)] = 2d then, in general,zk must
contain all monomials inn variables of degree≤ d. Qk

is a new matrix of decision variables that is introduced
when converting an SOS constraint to an LMI constraint.
Equating the coefficients ofzTk Qkzk and ak(x, u) imposes
linear equality constraints on the decision variablesu and
Qk. There exists a matrixA ∈ R

l×m and vectorb ∈ R
l such

that the linear equations for all SOS constraints are given by
Ay = b where

y := [uT , vec(Q1)
T , . . . , vec(QN )T ]T (20)

vec(Qk) denotes the vector obtained by vertically stacking
the columns ofQk. The dimensionm is equal to r +
∑N

k=1 m
2
k whereQk is mk × mk (k = 1, . . . , N ). After

introducing a Gram matrix for each constraint the SOS
program can be expressed as:

min
u∈Rr ,{Qk}N

k=1

cTu (21)

subject to:Ay = b

Qk � 0, k = 1, . . .N

Equation 21 is an SDP expressed in Sedumi [17] primal
form. u is a vector of free decision variables and{Qk}

N
k=1

contain decision variables that are constrained to lie in the
positive semi-definite cone. Sedumi internally handles the
symmetry constraints implied byQk = QT

k .
The SOS simplification procedure is a generalization of

the zero diagonal algorithm. It prunes the list of monomials
used in each SOS constraint. It also attempts to remove free
decision variables that are implicitly constrained to be zero.
Specifically, the constraints in some SOS programs imply
both ui ≥ 0 andui ≤ 0, i.e. there is an implicit constraint
that ui = 0 for some i. Appendix A.1 of [19] provides
some simple examples of how these implicit constraints
can arise in nonlinear analysis problems. For these simple
examples it is possible to discover the implicit constraints by



examination. For larger, more complicated analysis problems
it can be difficult to detect that implicit constraints exist. The
SOS simplification procedure described below automatically
uncovers some classes of implicit constraintsui = 0 and
removes these decision variables from the optimization.
This is important because implicit constraints can cause
numerical issues for SDP solvers. A significant reduction in
computation time and improvement in numerical accuracy
has been observed when implicitly constrained variables are
removed prior to calling Sedumi.

The general SOS simplification procedure is shown in
Table II. To ease the notation the algorithm is only shown for
the case of one SOS constraint (N = 1). The extension to
SOS programs with multiple constraints (N > 1) is straight-
forward. The algorithm is initialized with a finite set of vec-
torsM0 ⊆ N

n. The Newton polytope ofa(x, u) depends on
the choice ofu soM0 must be chosen so that it contains all
possible reduced Newton polytopes. One choice is to initial-
izeM0 corresponding to the degree vectors of all monomials
in n variables and degree≤ 2d := maxu[deg ak(x, u)]. A
and b need to be computed when formulating the SDP so
this step is not additional computation associated with the
simplification procedure. The last pre-processing step is the
initialization of the sign vectors. The entries ofsi are+1,
−1, or 0 if it can be determined from the constraints that
yi is ≥ 0, ≤ 0 or = 0, respectively.si =NaN if no sign
information can be determined foryi. If yi corresponds to a
diagonal entry ofQ thensi can be initialized to+1.

The main iteration step is the search for equations that
directly constrain any decision variable to be zero (Step
7a). This is similar to the zero diagonal algorithm. The
iteration also attempts to determine sign information about
the decision variables. Steps 7b-7d update the sign vector
based on equality constraints involving a single decision
variable. For example, a decision variable must be zero if the
decision variable has been previously determined to be≤ 0
and the current equality constraint implies that it must be≥ 0
(Step 7c). These decision variables can be removed from the
optimization. Step 8 processes equality constraints involving
two decision variables. The logic for this case is omitted due
to space constraints. The processing of equality constraints
can be performed very fast using thefind command in
Matlab. Steps 9 and 10 prune monomials and zero out
appropriate columns ofA. The iteration continues until no
additional information can be determined about the sign of
the decision variables.

VI. CONCLUSIONS

The Newton polytope is a method to prune unnecessary
monomials from an SOS decomposition. The method re-
quires the construction of a convex hull and this can be
time time consuming for polynomials with many terms.
This paper presented a zero diagonal algorithm for pruning
monomials. The algorithm is based on a simple property of
positive semidefinite matrices. The algorithm is fast sinceit
only requires searching a set of linear equality constraints
for those having certain properties. Moreover, the set of

1. Given: Polynomials{aj}rj=1 in variablesx. Define
a(x, u) := a0(x) + a1(x)u1 + · · ·+ ar(x)ur

2. Initialization: Setk = 0 and choose a finite setM0 := {αi}
m
i=1

⊆ Nn such that
[

∪u∈Rr
1
2
C(a(x, u))

]

∩ Nn ⊆ M0.

3. Form Ay = b: Construct the equality constraint data,A ∈ Rl×(r+m2)

and b ∈ R
l obtained by equating coefficients ofa(x, u) = zTQz

wherez :=
[

xα1 , . . . , xαm
]T andy := [uT , vec(Q)T ]T .

4. Sign Data: Initialize the l× 1 vector s to besi = +1 if yi
corresponds to a diagonal entry ofQ. Otherwise setsi = NaN.

5. Iteration:
6. SetZ = ∅, S = ∅, k := k + 1, andMk := Mk−1

7. Process equality equality constraints of the formai,jyj = bi
whereai,j 6= 0

7a. If bi = 0 then setsj = 0 andZ = Z ∪ j
7b. Else ifsj =NaN then setsj = sign(ai,jbi) andS = S ∪ j
7c. Else ifsj = −1 and sign(ai,jbi) = +1 then setsj = 0

andS = S ∪ j
7d. Else ifsj = +1 and sign(ai,jbi) = −1 then setsj = 0

andS = S ∪ j
8. Process equality equality constraints of the form

ai,j1yj1 + ai,j2yj2 = bi.
9. If for any j ∈ Z, yj corresponds to a diagonal entryQi,i

then setMk := Mk\{αi} andZ = Z ∪ I whereI are the
entries ofy corresponding to theith row and column ofQ.

10. For eachj ∈ Z set thejth column ofA equal to zero.
11. Terminate ifZ = ∅ andS = ∅ otherwise return to step 6.
12. Return: Mk, A, b, s

TABLE II

SIMPLIFICATION METHOD FORSOS PROGRAMS WITH ONE

CONSTRAINT

monomials returned by the algorithm is a subset of the set
returned by the Newton polytope method. The zero diagonal
algorithm was extended to a more general reduction method
for sum-of-squares programming.
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