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Abstract— Wind turbines are subject to periodic loads that
result in a time-varying “trim” condition. Linearizing the
nonlinear turbine dynamics around this trim condition yields
a periodic, linear time-varying (PLTV) system. A linear time-
invariant (LTI) approximation is typically obtained in two steps.
First, the multi-blade coordinate transformation is applied to
the PLTV system to obtain a weakly periodic system. Second,
the state matrices of the weakly periodic system are averaged
over one period to obtain an LTI approximation. This paper
presents an alternative approach to construct optimal LTI
approximations using convex optimization. It is also shown
that the multi-blade coordinate transformation followed by
averaging is equivalent to a special case of the proposed
convex optimization procedure. The proposed approach is
demonstrated on a linearized model of a utility-scale turbine.

I. INTRODUCTION

Wind turbine models vary widely in complexity from
one-state, rotor inertia models up to high fidelity, finite
element codes that model the details of the fluid/blade inter-
actions. The Fatigue, Aerodynamics, Structures and Turbu-
lence (FAST) code [9] developed by the National Renewable
Energy Laboratory (NREL) lies between these extremes in
terms of model complexity. FAST is a widely-used nonlinear
aeroelastic turbine simulation. FAST can linearize models
through numerical perturbation of the nonlinear dynamics.
The nonlinear system is first simulated under steady wind
conditions until the turbine reaches a trim operating trajec-
tory. The turbine loads are time-varying even in constant
wind conditions due to periodic effects such as tower shadow,
gravity and shaft tilt. As a result, the wind turbine trim
trajectory is periodic with period equal to one rotation of the
rotor. Linearizations can be computed at each rotor position
to yield a periodic, linear time-varying (PLTV) system.

It is often desirable to transform the PLTV system to a
related linear time invariant (LTI) system in order to apply
the well established analysis tools for LTI systems. There are
various methods to perform this approximation. The simplest
approaches are to evaluate the PLTV system at one rotor po-
sition or to average the state matrices over one rotor period.
These approaches ignore the periodic modal characteristics
of the turbine and typically do not provide an LTI model
of sufficient accuracy. Floquet theory [8], [13] gives a time-
varying coordinate transformation that transforms a PLTV
system into one with a constant state “A” matrix. The Floquet
transformation retains the periodic modal characteristics but
physical intuition about the system states is lost in the
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transformed system. The most common approach for wind
turbine models is to use the multi-blade coordinate (MBC)
transformation [3], [7], [14], [10], [1], [2], [11]. The MBC
transformation was originally developed in the helicopter
literature [8], [5]. It transforms quantities from rotating blade
coordinates into a non-rotating, inertial coordinate frame.
The MBC transformation ideally converts the PLTV system
into an LTI system. In practice, applying the MBC to the
PLTV models generated by FAST yields a system that is still
“weakly” periodic, i.e. the transformed system is periodic
but with significantly less time variation compared to the
original PLTV system. An LTI approximation is obtained by
averaging the state matrices of the “weakly” periodic system
over one rotor period. This LTI approximation is of sufficient
fidelity in many cases [14]. However, the averaging step is
ad-hoc and does not rely on a quantifiable error criterion.

The main contribution of this paper is an alternative
method to construct optimal LTI approximations for PLTV
turbine models. Let SM denote the set of linear systems that
are transformed to an LTI system by the MBC. It is shown
that SM is in one-to-one correspondence with a convex
set. The proposed approximation approach is summarized in
Figure 1. The upper path in the diagram shows the existing
two-step approach. As noted above, a PLTV turbine model
Gr generated by FAST is typically not in the set SM, i.e.
transforming Gr via the MBC yields a model ḠA that is
not time-invariant. As a result, averaging of the state-space
matrices is required to obtain an LTI approximation ĜA. The
proposed approach essentially flips the sequence of opera-
tions. First, the PLTV model Gr is optimally approximated
by a PLTV system ḠB ∈ SM. This step can be formulated
as a convex optimization. Next, the MBC is applied to ḠB

and, by definition of SM, this leads to an LTI approximation
ĜB . The benefit of the proposed approach is that is relies
on a quantifiable approximation error and the transformed
states retain the physical intuition built around the MBC
transformation.

II. NOTATION

The notation is standard. R denotes the set of real num-
bers. Rn and Rn×m denote the sets of n × 1 real vectors
and n × m real matrices, respectively. In and 0n are the
n × n identity and zero matrices, respectively. A matrix
M ∈ Rn×n is orthogonal if MTM = In. The trace of a
matrix M ∈ Rn×n is defined as

∑n
i=1Mi,i and is denoted

tr(M). The transpose of a matrix M ∈ Rn×n is denoted
MT . Finally, a function M : R → Rn×m is said to be
periodic with period T if M(t+ T ) = M(t) for all t ∈ R.



Fig. 1. Two approaches for approximating a PLTV turbine model with an
LTI system.

III. MULTI-BLADE COORDINATE TRANSFORMATION

This section briefly reviews the use of the MBC transfor-
mation for wind turbine models. The discussion focuses on
linearized models obtained from NREL’s FAST simulation
package. FAST uses the assumed modes method to model
the flexible structural dynamics of the turbine. Blade element
momentum theory is used to calculate the aerodynamic loads
using AeroDYN [6]. FAST can model on-shore wind turbines
with a total of 22-24 degrees of freedom (DOF) including
tower fore-aft and side-to-side bending modes as well as
blade flapwise and edgewise modes. Off-shore turbines can
also be modeled with additional DOFs depending on the
platform structure.

For simplicity consider a five DOF (on-shore) turbine
model that includes rotor position, first tower fore-aft bend-
ing mode, and first flapwise bending mode for each blade.
For constant wind conditions, this five DOF model can be
specified by a nonlinear dynamical equation of the form:

q̈ = f(q̇, q, u)

y = g(q̇, q, u)
(1)

where q ∈ R5 is defined as:

q :=


Tower 1st Fore-Aft Tip Displacement (m)

Rotor position, ψ (rad)
Blade 1 1st Flapwise Tip Displacement (m)
Blade 2 1st Flapwise Tip Displacement (m)
Blade 3 1st Flapwise Tip Displacement (m)

 (2)

The rotor position, denoted as ψ, is defined to be zero when
blade 1 is in the upward position. The input and output
vectors, u ∈ R4 and y ∈ R4, are defined as:

u :=


Blade 1 Pitch Angle (rad)
Blade 2 Pitch Angle (rad)
Blade 3 Pitch Angle (rad)
Generator Torque (N m)

 (3)

y :=


Rotor Speed (rpm)

Blade 1 Root Bending Moment (kN m)
Blade 2 Root Bending Moment (kN m)
Blade 3 Root Bending Moment (kN m)

 (4)

FAST can produce linear turbine models through numerical
perturbation of the nonlinear system in Equation 1. The

nonlinear system is first simulated under steady wind con-
ditions until the turbine reaches a trim operating condition
(q̄(t), ˙̄q(t), ū(t), ȳ(t)). The trim condition is, in general,
periodic with period T equal to the time for one complete
rotation of the rotor. A linear time-varying model is obtained
by linearizing the nonlinear system around this periodic trim
condition. The resulting linearized model has the form

δ̇x = A
(
ψ̄(t)

)
δx +B

(
ψ̄(t)

)
δu

δy = C
(
ψ̄(t)

)
δx +D

(
ψ̄(t)

)
δu

(5)

where δu(t) := u(t)− ū(t) and δy(t) := y(t)− ȳ(t) are the
deviations of the inputs and outputs from their trim values.
Similarly define δq(t) := q(t)− q̄(t) as the deviation of the
turbine DOF from trim and δx(t) as the deviation of the state
from the periodic trim condition:

δx(t) :=

[
δq(t)

δ̇q(t)

]
=

[
q(t)− q̄(t)
q̇(t)− ˙̄q(t)

]
(6)

The trim rotor position satisfies ψ̄(t) = ψ̄(t + T ) for all t
since the trim condition is periodic. Hence the state matrices
in Equation 5 are also periodic with period T . In other words,
the linearized turbine model is PLTV with period T .

The FAST manual [9] contains detailed figures of the coor-
dinate frames used to derive the nonlinear turbine equations
of motion (Equation 1). It is important to note that a variety
of coordinate frames are used. Specifically, the tower and
rotor degrees of freedom are expressed in an earth fixed
coordinate frame while quantities associated with individual
blades are defined in a frame that rotates with the rotor. For
example, the tip displacements of the blade flapwise bending
mode are defined with respect to a rotating coordinate frame
attached to the blade.

The MBC transformation is used to convert blade quan-
tities back and forth between rotating and non-rotating (in-
ertial) coordinate frames. Define the transformation matrix
M : R→ R3×3 as a function of rotor position:

M(ψ) :=

1 sin(ψ) cos(ψ)
1 sin(ψ + 2π

3 ) cos(ψ + 2π
3 )

1 sin(ψ + 4π
3 ) cos(ψ + 4π

3 )

 (7)

For a given rotor position ψ, M(ψ) transforms quantities
in the inertial (non-rotating) frame to the rotating frame
attached to the rotor. Conversely, the inverse of M(ψ)
transforms quantities from a rotating to non-rotating frame.
This inverse is explicitly given by

M(ψ)−1 =
2

3

 1
2

1
2

1
2

sin(ψ) sin(ψ + 2π
3 ) sin(ψ + 4π

3 )
cos(ψ) cos(ψ + 2π

3 ) cos(ψ + 4π
3 )

 (8)

As an example, the last three entries of the output vector
are the root bending moments for the three blades measured
in the rotating frame. For a given rotor position ψ these
quantities are transformed to the non-rotating frame by:ynravgynryaw

ynrtilt

 = M(ψ)−1

y2y3
y4

 (9)



The superscript nr denotes quantities expressed in an inertial
non-rotating frame. After the transformation, these quantities
have meanings in terms of rotor motion instead of individual
blades. ynravg represents average value of blade root bending
moments. The average moment causes the rotor to bend as
a cone. ynrtilt and ynryaw are the blade moments resulting in
rotor tilt and yaw, respectively [12]. Similarly, the blade pitch
angle inputs and blade flapwise tip displacements can be
mapped from rotating to non-rotating coordinates:unr1unr2

unr3

 = M(ψ)−1

u1u2
u3

 (10)

qnr3qnr4
qnr5

 = M(ψ)−1

q3q4
q5

 , (11)

qnr3 , qnr4 , and qnr5 are the rotor coning, rotor tip-path-plane
fore-aft tilt and rotor tip-path-plane side-side tilt, respectively
[1]. Moreover, unr1 is the collective pitch command while unr2
and unr3 are cyclic individual blade pitch commands.

The system states, inputs, and outputs are defined in a
mixed coordinate system, i.e. they have entries expressed in
both rotating and non-rotating (inertial) coordinate frames.
The MBC transformation is used to convert all quantities
to a non-rotating coordinate frame. Specifically, the trans-
formation M introduced in Equation 7 is used to define a
transformation Mq acting on the linearized DOF:

Mq(ψ̄(t)) :=

[
I2 02
02 M(ψ̄(t))

]
(12)

The linearized DOFs are transformed as:

δq(t) = Mq(ψ̄(t)) δnrq (t) (13)

Mq transforms only those quantities that are specified in
the rotating frame. Quantities specified in the inertial frame
are left unchanged. Similarly, the state, input, and output
transformations for the linearized system are:

δx(t) = Mx(ψ̄(t)) δnrx (t) (14)
δu(t) = Mu(ψ̄(t)) δnru (t) (15)
δy(t) = Mu(ψ̄(t)) δnry (t) (16)

where the transformation matrices are given by

Mx(ψ̄(t)) =

[
Mq(ψ̄(t)) 05
d
dtMq(ψ̄(t)) Mq(ψ̄(t))

]
(17)

Mu(ψ̄(t)) :=

[
M(ψ̄(t)) 0

0 1

]
(18)

My(ψ̄(t)) :=

[
1 0
0 M(ψ̄(t))

]
(19)

The transformation Mx is derived by applying the chain
rule to Equation 13 and using the definition of δx in terms
of δq and δ̇q . The complete MBC transformation for the
linearized system is given by the collection of state, input,
and output transformations (Mx,Mu,My). Applying these
transformations to the PLTV model in Equation 5 reduces
the variation due to rotor position but it typically does not

lead to an LTI system. Averaging the remaining variations
over one rotor period often gives an LTI model of sufficient
fidelity [14]. The basic approach reviewed in this section can
easily be generalized to turbine models with additional DOFs
specified in the inertial and/or rotating frames. Additional
details of MBC can be found in [1] and in the manual
for the NREL MATLAB utilities that implement the MBC
transformations [2].

IV. OPTIMAL LTI APPROXIMATIONS

This section gives a precise formulation of the two ap-
proximation methods described in Section I. Section IV-A
develops the necessary mathematical background and the
Section IV-B formulates the two approximation methods.
Finally, Section IV-C shows that the multi-blade coordinate
transformation followed by averaging is equivalent to a
special case of the proposed convex optimization procedure.

A. Mathematical Background

Let Gr denote a PLTV turbine model obtained from
linearization. The superscript r denotes that this model, in
general, contains some quantities in the rotating coordinate
frame. Assume Gr has n states, m inputs, and p outputs.
Moreover, let Mx : R → Rn×n, Mu : R → Rm×m, and
My : R → Rp×p be the state, input, and output transfor-
mations that comprise the complete MBC transformation for
this system. This formulation generalizes the discussion in
Section III to handle an arbitrary number of DOFs. The
first result provides a useful decomposition of the MBC
transformation matrices.

Lemma 1: If trim rotor speed is constant ¨̄ψ(t) = 0 then
the MBC transformation matrices satisfy:

Mx(ψ) = Wx(ψ)Nx (20)
Mu(ψ) = Wu(ψ)Nu (21)
My(ψ) = Wy(ψ)Ny (22)

where Wx(ψ), Wu(ψ), Wy(ψ) are orthogonal ∀ψ ∈ [0, 2π].
Proof: Define a scaled version of the basic coordinate

transformation defined in Equation 7:

W (ψ) := M(ψ)

 1
3 0 0
0 2

3 0
0 0 2

3


1
2

(23)

It can be shown by direct multiplication and trigonometric
identities that W (ψ)TW (ψ) = I3 for all ψ. The input
transformation for the MBC Mu(ψ) is, in general, a block di-
agonal augmentation of identity matrices and the basic coor-
dinate transform M(ψ). It follows that Mu(ψ) = Wu(ψ)Nu
where Wu(ψ) is orthogonal for all ψ and Nu is constant
(independent of ψ). Both the transformations Mq and My

have similar expressions as a product of an orthogonal and
constant matrix. The decomposition Mx(ψ) = Wx(ψ)Nx
with Wx orthogonal follows because M−1q (ψ̄(t))Ṁq(ψ̄(t))

is constant if ¨̄ψ(t) = 0.

The next result concerns the class of systems that become
LTI via the MBC transformation. Let ST denote the set



of PLTV systems with period T and state, input, output
dimension equal to n, m, p, respectively. The PLTV turbine
model Gr is in this set ST . More generally, any system
G ∈ ST has the form:

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)
(24)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp. The state matrices
have compatible dimensions and are periodic functions with
period T . The MBC is a transformation M : ST → ST
that maps any system G ∈ ST to a new periodic system
Gnr = M(G). The states of the new periodic system Gnr

are interpreted as being entirely in non-rotating (inertial)
coordinates. In particular, M transforms the states, inputs,
and outputs of G as:

x(t) = Mx(t)xnr(t) (25)
u(t) = Mu(t)unr(t) (26)
y(t) = My(t)ynr(t) (27)

The transformed system Gnr is

ẋnr(t) = Anr(t)xnr(t) +Bnr(t)unr(t)

ynr(t) = Cnr(t)xnr(t) +Dnr(t)unr(t)
(28)

where the state matrices are given by

Anr(t) = M−1x (t)A(t)Mx(t)−M−1x (t)Ṁx(t) (29)

Bnr(t) = M−1x (t)B(t)Mu(t) (30)

Cnr(t) = M−1y (t)C(t)Mx(t) (31)

Dnr(t) = M−1y (t)D(t)Mu(t) (32)

The state matrices of Gnr are, in general, periodic with
period T and hence Gnr ∈ ST . However, some systems
become time-invariant under the MBC transformation M.
Let SM denote the set of systems in ST that are transformed
to LTI systems by M. SM is formally defined as

SM := {G ∈ ST : M(G) ∈ S0} (33)

S0 ⊂ ST is the set of systems of appropriate dimensions
with constant state matrices.1

Next, note that state matrices of systems in ST can
be packed into a single periodic, matrix function g(t) :=[
A(t) B(t)
C(t) D(t)

]
. Conversely, periodic functions g : R →

R(n+p)×(n+m) of period T can be properly partitioned
and unpacked to yield state space matrices corresponding
to a system in ST . Thus there is a natural one-to-one
correspondence between systems G ∈ ST and periodic
functions. To formalize this connection, let FT denote the
set of periodic functions g : R → R(n+p)×(n+m) of period
T . As noted, there is a natural one-to-one correspondence
between periodic systems in ST and periodic functions in
FT . Similarly, let FM ⊂ FT denote periodic functions

1There is one technical point concerning the definition of SM. It is
possible for Gnr = M(G) to have unobservable and/or uncontrollable
modes such that its state matrices vary with time and yet it has a minimal
realization with constant state matrices. Such systems are not contained in
SM as defined in Equation 33.

corresponding to the packed state matrices of systems in SM.
The following result provides a useful characterization of the
systems that become LTI via the MBC transformation.

Theorem 1: The set FM is convex.
Proof: It follows directly from the transformation

relations (Equations 29-32) that a PLTV system G with state
matrices (A(t), B(t), C(t), D(t)) is in SM if and only if
there exist constant matrices (Anr, Bnr, Cnr, Dnr) such that

A(t) = Mx(t)
[
Anr +M−1x (t)Ṁx(t)

]
M−1x (t) (34)

B(t) = Mx(t)BnrM−1u (t) (35)

C(t) = My(t)CnrM−1x (t) (36)

D(t) = My(t)DnrM−1u (t) (37)

These relations can be used to show that FM satisfies the
basic definition of convexity [4]: g1, g2 ∈ FM implies that
λg1 + (1 − λ)g2 ∈ FM for all λ ∈ [0, 1]. Alternatively, the
result follows by simply noting that FM is an affine subspace
of periodic functions.

By Theorem 1, the class of n-state systems that become
LTI via the MBC can be viewed as a convex set in the space
of their packed state-space matrices.

B. Approximation Methods

Next let Gr ∈ ST be a given PLTV turbine model. Con-
sider the following question: Does the MBC M transform
the turbine model Gr to an LTI system? The answer is yes
if and only if Gr ∈ SM (subject to the technical point
concerning unobservable/uncontrollable modes). If Gr /∈
SM then the answer to this question is no and the following
approximation problem is of interest: Find an n-state LTI
system Ĝ that is approximately related to Gr through the
MBC transformation M. Two specific approaches to this
approximation problem will be considered.

Approach A: First applyM to obtain Ḡ =M(Gr) ∈ ST .
Next, compute an n-state LTI system Ĝ that approximates
Ḡ. The following optimization is proposed as a means to
perform the approximation step:

ĝ := arg min
g∈F0

‖ḡ − g‖ (38)

ḡ ∈ FT denotes the periodic function representation of Ḡ
as a packed state-space matrix. F0 are packed state space
matrices corresponding to n-state LTI systems, i.e. g ∈ F0

is basically a constant matrix R(n+p)×(n+m). Finally, ‖ · ‖
is any norm on the space FT of periodic matrix functions.
The optimization searches for constant state-space matrices
ĝ that best approximate ḡ in the given norm. This yields the
corresponding LTI system Ĝ that is the best approximation.

As a concrete example, the optimization in Approach A
can be formulated with the following norm:

‖h‖2 :=

∫ T

0

tr
(
h(τ)Th(τ)

)
dτ (39)

In words, the 2-norm is the sum of the entries of h squared
and integrated over one period. The next result shows that



the optimal solution to Equation 38 has a particularly simple
form when the 2-norm is used.

Theorem 2: Let Ḡ ∈ ST be given and let ḡ ∈ FT denote
the corresponding periodic function representation of the
packed state matrices. The optimal solution

ĝ := arg min
g∈F0

‖ḡ − g‖2 (40)

is given by:

ĝ :=
1

T

∫ T

0

ḡ(τ)dτ (41)

Proof: Substitute g = ĝ + ∆g into ‖ḡ − g‖2, to obtain∫ T

0

tr
(
(ḡ(τ)− ĝ)T (ḡ(τ)− ĝ)

)
(42)

− 2tr
(
(ḡ(τ)− ĝ)T∆g

)
+ tr

(
∆gT∆g

)
dτ

The second term is zero by definition of the constant matrix
ĝ. Hence ∆g 6= 0 increases the cost.

Thus averaging of the periodic state matrices is the optimal
solution to Equation 38 when the 2-norm is used in the cost.
Thus by Theorem 2, the standard LTI approximation method
of MBC followed by averaging is equivalent to Approach A
in the 2-norm. However, the use of another norm on the space
FT of periodic matrix functions will yield a different optimal
approximation. Next, the alternative approach introduced in
Section I is formally defined below.

Approach B: First approximate Gr by Ḡ ∈ SM. Next
apply the MBC transformation M to obtain the n-state LTI
system Ĝ =M(Ḡ). The following optimization is proposed
as a means to perform the approximation step:

ḡ := arg min
g∈FM

‖gr − g‖ (43)

gr ∈ FT denotes the periodic function representation of Gr

as a packed state-space matrix. ‖ · ‖ again denotes any norm
on the space FT of periodic matrix functions.

It follows from Theorem 1 that Equation 43 is a convex
optimization. This optimization approximates Gr in the sense
of finding a system Ḡ whose state matrices are near those
of Gr in some norm. Unfortunately it is not clear at this
point how to formulate an approximation problem using
norms on the systems themselves. Similarly Equation 38 is
also a convex optimization because F0 is clearly convex.
These optimization are only an approximation in the sense
of matching the state matrices.

C. Relations Between Approximation Approaches

The previous section introduced two general LTI approxi-
mation methods using the MBC transformation. This section
demonstrates an equivalence between these two methods
when using the norm ‖.‖2 defined in Equation 39.

Theorem 3: Assume the trim rotor speed is constant
¨̄ψ(t) = 0. For any Gr ∈ ST the optimal LTI approximation
obtained with Approach A using the 2-norm is identical to
that given by Approach B also using 2-norm.

Proof: The first step of Approach B is to approximate
Gr by Ḡ ∈ SM via a convex optimization

ḡ := arg min
g∈FM

‖gr − g‖2 (44)

As in the proof of Theorem 1, g ∈ FM if and only if there
exist constant matrices (Anr, Bnr, Cnr, Dnr) such that

g(t) =

[
Mx(t) 0

0 My(t)

] [
Anr Bnr

Cnr Dnr

] [
M−1x (t) 0

0 M−1u (t)

]
+

[
Ṁx(t)M−1x (t) 0

0 0

]
By Lemma 1, the MBC transformation matrices can be
decomposed as a product of a time-varying orthogonal matrix
and a constant matrix (Equations 20-22). Moreover, the
2-norm is unchanged by the introduction of time-varying
orthogonal matrices. Thus the optimization in Equation 44
can be equivalently written as:

min
g∈FM

‖QL(gr − g)QR‖2 (45)

where

QL(t) :=

[
WT
x (t) 0
0 WT

y (t)

]
(46)

QR(t) :=

[
Wx(t) 0

0 Wu(t)

]
(47)

These orthogonal matrices separate out the time-varying
components of g. In particular,

QL(t)(gr(t)− g(t))QR(t)

= QL(t)

(
gr(t)−

[
Ṁx(t)M−1x (t) 0

0 0

])
QR(t)

−
[
Nx 0
0 Ny

] [
Anr Bnr

Cnr Dnr

] [
N−1x 0

0 N−1u

]
Thus the optimization in Equation 45 is converted to one
where the objective is to approximate a periodic function
with a constant. The optimal solution is[

Anr Bnr

Cnr Dnr

]
:=

1

T

∫ T

0

ĝ(τ)dτ (48)

where ĝ ∈ FT is the periodic function corresponding to the
state matrices of Ĝ = M(Gr). Hence the optimal solution
for Approach B is identical to that of Approach A.

It was shown (Theorem 2) that the standard LTI approxi-
mation method of MBC followed by averaging is equivalent
to Approach A in the 2-norm. Theorem 3 shows that the
proposed approach, i.e. Approach B, is also equivalent to this
standard LTI method in the 2-norm. However, Approaches
A and B need not be equivalent to each other nor to the
MBC/Averaging method when another norm is used for
approximation. Other norms may yield better LTI approxi-
mations from a dynamical systems perspective. Moreover, it
is not clear if approximating the system Gr before (Approach
B) or after (Approach A) the MBC transformation leads to
better results from a dynamical systems perspective. Finally,
it is again worth noting that the two approaches approximate
systems using norms on the state space matrices.



V. NUMERICAL RESULTS

This section presents initial numerical for the three-bladed
Controls Advanced Research Turbine (CART3) located at
the National Wind Technology Center. The CART3 is a
40 m diameter turbine with 600 kW rated power. A 5 DOF
model, as described in Section III, was linearized at 14 m/sec
mean wind speed using FAST. The trim condition is periodic
and some key characteristics of the trim condition are pro-
vided in Table I. The state matrices for the PLTV model
(Ar(ψ), Br(ψ), Cr(ψ), Dr(ψ)) are continuous functions of
rotor position. FAST computes these matrices on a finite grid.
In this example, the state matrices were computed at 180
equally spaced rotor positions in [0, 2π].

TABLE I
TRIM CONDITIONS

Description Value
Mean wind speed, F̄ 14.0 m/s
Vertical shear factor 0.2
Rotor speed, Ω̄ 3.881 rad/s
Collective blade pitch, ū 0.1713 rad
Generator torque (High Speed Side) 3524.0 Nm

The nonlinear optimization solvers in MATLAB were used
to compute LTI approximations for the CART3 PLTV model
using both Approaches A and B described in Section IV.
The decision variables are the elements of the LTI system
matrices (Anr, Bnr, Cnr, Dnr). The matrices Anr and Bnr

must have special structure because the first five states are
position DOFs whose time derivatives are equal to the second
five states. This structure is exploited in the optimization. In
addition, the decision variables and the cost of optimization
are all scaled to 1 at the optimization starting point. This
improves the numerical conditioning of the optimization.

First, the optimizations in both Approaches A and B were
performed in MATLAB using the 2-norm. The optimizations
were initialized with the LTI approximation obtained using
the MBC transformation followed by averaging. In both
cases the optimization terminated immediately and reported
that cost did not decrease for any change in the decision
variables. This result verifies that both Approaches A and B
are equivalent to the standard MBC transformation followed
by averaging as shown in Section IV.

Next, the optimizations in both Approaches A and B were
performed in MATLAB using the ∞-norm:

‖h‖∞ := max
0≤t≤T

max
i,j
|hi,j(t)| (49)

The LTI approximation using Approach A can be computed
analytically. The LTI approximation with Approach B was
obtained from numerical optimization in MATLAB. The
optimization had approximately 150 decision variables and
took less than 2 minutes to solve on a desktop computer.
Using the ||.||∞ norm, Approaches A and B yielded different
matrices than each other and both LTI approximations were
different than that obtained by simple MBC followed by
averaging. However, the differences were relatively minor.
The state matrices Anr obtained in these cases all had poles

whose damping ratios differed by less than 0.5%. Morever,
the relative difference between the entries of any of the
computed Anr matrices was less than 4%. We performed
an identical analysis at a higher wind speed of 18m/s
with similar results. Future work will apply the various
approximation methods to larger turbines. Larger turbines
are more flexible and hence significant differences in the
approximations may be observed in this case.

VI. CONCLUSIONS

This paper introduced a procedure for computing LTI
approximations for turbine models. The approach first ap-
proximates the periodic model using convex optimization
and then applies the multi-blade coordinate transformation.
The common procedure of transforming the periodic model
with the multi-blade coordinate transformation followed by
averaging of the state matrices is a special instance of the
proposed procedure. Future work will investigate the use of
different norms in the approximation step.
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