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Abstract— A modern hard disk drive uses a dual-stage
actuator to read/write data on a track with width less than
100nm. The dual-stage actuator requires an advanced controller
to achieve high performance on millions of hard disk drives.
This paper presents a numerical algorithm utilizing convex
optimization to create an uncertainty model, for the purpose
of synthesizing a robust controller, from a set of experimental
frequency response data. Furthermore several practical issues
of constructing an uncertainty model for the dual-stage actuator
are described. The proposed method is applied to a set of
frequency response data of dual-stage actuators from numerous
hard disk drives to create an uncertainty model of the actuator.
Then the uncertainty model is used to synthesize a robust
control law, which is implemented and experimentally tested
on a hard drive.

I. INTRODUCTION

A typical hard disk drive (HDD) works by spinning
a magnetic disk while a magnetic head reads/writes data
from/to circular tracks on the disk. Modern HDD have
achieved significant improvements in data track density and
historically the data density of disk drives has historically
doubled almost every 2 years [1]. For example, one drive
currently manufactured by Seagate has a track density of
340,000 tracks per inch, which translates to about 75nm
per track [2]. Many modern HDDs utilizes a dual-stage
actuator composed of a voice coil motor (VCM) and a micro
actuator (MA) in order to improve tracking to keep up with
the reduction in track width. The internal structure of a
typical HDD, shown in Fig. 1, has the VCM located at the
base of the actuator arm while the MA is located nearer
to the magnetic head. The VCM is the primary actuator
that provides a full range of motion for the magnetic head
to cover all disk tracks. The MA provides greater tracking
accuracy than the VCM but with a smaller range of motion.

Advanced controller for the dual-stage actuator is also
required to achieve high performance across millions of
HDDs, each of which has similar and yet unique dynamics.
µ-synthesis [3] is one technique that can be utilized to
synthesize a robust controller. This method requires a model
for the nominal actuator dynamics as well as the uncertainty
associated with this nominal model. It is often difficult
to analytically create an uncertainty model for a complex
system such as a dual-stage actuator on a HDD. This paper
describes an efficient algorithm to automatically construct
an uncertainty set from an empirical frequency response
data. The work in this paper builds upon several results
in the existing literature. The most closely related results
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are contained in [4] and [5]. Semidefinite programming
(SDP) was used in [4] to construct an optimal uncertainty
model from frequency response data accounting for both
noise and fitting errors. A similar approach, presented in
[5], forms the basis of the Matlab command ucover. The
ucover function computes a minimal uncertainty bound
from a given set of frequency response data and a known
nominal model. The nominal model is typically computed by
simply averaging the frequency response data. Approaches
to construct uncertainty models from time domain data have
also been presented in [6]–[9].

Fig. 1. Typical Internal structure of a HDD with a dual stage actuator.

This paper uses convex optimization to construct uncer-
tainty sets from experimental frequency response data. The
proposed algorithm generates both the nominal model and
the uncertainty bounds from empirical frequency response
data. It is shown via a simple example that optimizing the
nominal model (rather than simply averaging the data) leads
to a reduction in the uncertainty bounds. This ultimately
reduces the conservatism in the control design. Several
practical issues that arise in the construction of uncertainty
sets for the dual-stage actuator application are also described.
Finally, the proposed method is applied using data from
many HDDs. The resulting uncertainty set is used to syn-
thesize, implement, and experimentally test a robust control
law.

II. NOTATION

R and C denote the sets of real and complex numbers,
respectively. RL∞ denotes the set of rational functions with



real coefficients that are proper and have no poles on the
imaginary axis. RH∞ is the subset of functions in RL∞
that are analytic in the closed right half of the complex
plane. Rn×m, Cn×m, RLn×m

∞ and RHn×m
∞ denote the sets

of n×m matrices whose elements are in R, C, RL∞, RH∞,
respectively. A single superscript index is used for vectors,
e.g. Rn denotes the set of n× 1 vectors whose elements are
in R. For a matrix M ∈ Cn×m, MT denotes the transpose
and M∗ denotes the complex conjugate transpose. For a
square matrix M ∈ Cn×n, Tr[M ] denotes the trace of the
matrix M . For an LTI system G, the H∞ norm is defined
as ‖G‖ := supω σ̄ (G(jω)).

III. UNCERTAINTY MODELING

A. Problem Statement

The problem formulation assumes that a collection of
n ×m frequency responses are obtained from input/output
experiments. The kth experimental dataset (k = 1, . . . ,K)
consists of the complex frequency response data Gk :=
{Gk(jω1), . . . , Gk(jωF )} ⊂ Cn×m defined on a common
grid of frequencies {ωf}f=1,2,...,F ⊂ R. This data can be
easily and efficiently computed for many drives in the HDD
application using a basic sinusoidal frequency sweep. For ro-
bust control design it is useful to construct an uncertainty set
of linear, time-invariant models S ⊂ RLn×m

∞ that contains
all the frequency response data. Specifically, the uncertainty
set S is said to cover the collection of experimental data if for
each frequency response Gk there exists a model Ḡ ∈ S such
that Ḡ(jωf ) = Gk(jωf ) for all frequencies f = 1, . . . , F .

This paper focuses on two types of non-parametric un-
certainty sets: additive and input multiplicative uncertainty.
These uncertainty sets are both described by a nominal model
G0 ∈ RLn×m

∞ and stable uncertainty weights WL ∈ RH·×·∞ ,
WR ∈ RHm×m

∞ where the dimensions of WL depend
on the uncertainty set type. The additive (SA) and input
multiplicative (SM ) uncertainty sets are defined as:

SA := {G0 +WL∆WR : ∆ ∈ RLn×m
∞ , ||∆|| ≤ 1} (1)

SM := {G0(Im +WL∆WR) : ∆ ∈ RLm×m
∞ , ||∆|| ≤ 1}

(2)

The dimensions of WL are n×n and m×m for the additive
and multiplicative uncertainty sets, respectively. The explicit
dependence of the uncertainty set on the nominal model and
weights will occasionally be denoted, e.g. SA(G0,WL,WR).

For a given type of uncertainty set (additive or input
multiplicative), the objective is to construct the nominal
model G0 and uncertainty weights WL and WR such that the
resulting uncertainty set covers the collection of experimental
data. In addition, the “smallest” possible uncertainty set that
covers the data should be constructed since this will reduce
the conservatism in the robust control design. The following
function will be used as a measure for the size of the
uncertainty set at the frequency ω:

h(WL,WR, ω) :=Tr[WL(jω)∗ΓLWL(jω)] (3)
+ Tr[WR(jω)ΓRWR(jω)∗]

where ΓL and ΓR are positive definite matrices of appro-
priate dimensions. These matrices are chosen to emphasize
specific directions in the input/output space. They can also
be chosen as functions of ω to emphasize specific frequency
bands. In most cases the simple choices ΓL = I and ΓR =
I provide reasonable results. The following optimization
is a formal statement for the uncertainty set construction
problem:

min
G0,WL,WR

∫ ∞
0

h(WL,WR, ω) dω (4)

subject to: SA(G0,WL,WR) covers {Gk}k=1,...,K

The optimization is stated for additive uncertainty sets but
a similar optimization can be formulated using an input
multiplicative uncertainty set. The following section will
describe a numerical algorithm to approximately solve the
optimizations for both uncertainty set types using semidef-
inite programming (SDP) [10]. The use on non-parametric
uncertainty sets leads to a computationally tractable algo-
rithm for covering the frequency response data. The approach
described in this paper can be extended to other frequency
domain uncertainty sets including output multiplicative, in-
verse additive, and inverse (input or output) multiplicative
models [3], [11].

It is worth noting that if the nominal function G0 is
specified and held fixed in the optimization then the results in
[4], [5] can be used to construct WL and WR. In particular,
the algorithm described in [5] forms the basis for the Matlab
function ucover which constructs uncertainty set weights
if the nominal model and frequency response data is given.
A contribution of this paper is to develop an algorithm
that addresses the practical issues that arise in creating
uncertainty models from frequency response data of dual-
stage actuators from HDDs.

B. Numerical Algorithm

The constraint in Equation 4 can be reformulated in terms
of a frequency-dependent matrix inequality via the following
lemma.

Lemma 1 ( [5]): Let SA(G0,WL,WR) be an additive
uncertainty set (Equation 1) defined by a nominal model
G0 ∈ RLn×m

∞ and stable uncertainty weights WL ∈ RHn×n
∞ ,

WR ∈ RHm×m
∞ . In addition, assume WL and WR have

stable inverses. Then any Ḡ ∈ RLn×m
∞ satisfies Ḡ ∈

SA(G0,WL,WR) if and only if

[
WLW

∗
L Ḡ−G0(

Ḡ−G0

)∗
W ∗RWR

]
(jω) ≥ 0 ∀ω (5)

Proof: This is a minor variation of Theorem 1 in [5].



Based on Lemma 1 the optimization in Equation 4 can be
approximated on the frequency grid as:

min
G0,WL,WR

F∑
f=1

h(WL,WR, ωf ) (6)

subject to:[
WLW

∗
L Gk −G0

(Gk −G0)
∗

W ∗RWR

]
(jωf ) ≥ 0

f = 1, . . . , F and k = 1, . . . ,K

The constraints and objective function involve product terms
WLW

∗
L and W ∗RWR. Define two new variables L := WLW

∗
L

and R := W ∗RWR. The optimization can now be expressed
as a finite-dimensional SDP in terms of these new variables:

min
G0,L,R

F∑
f=1

Tr[ΓLL+ ΓRR](jωf ) (7)

subject to:[
L Gk −G0

(Gk −G0)
∗

R

]
(jωf ) ≥ 0

f = 1, . . . , F and k = 1, . . . ,K

The decision variables in this optimization are the complex
matrices L(jωf ), R(jωf ), and G0(jωf ) defined at each
frequency gridpoint. This can be expressed as an SDP with
real matrices / constraints using a standard complex to real
transformation for LMIs [12]. It is important to note that the
cost function and constraints contain no coupling across the
frequency gridpoints. Thus this optimization trivially decou-
ples into F smaller SDP problems, one for each frequency
gridpoint.

Equation 7 is a finite dimensional convex optimization that
can be used to jointly compute the nominal model and the
uncertainty weights on the frequency grid. Computational
steps are described below to obtain state-space systems for
the nominal model and wegihts. The steps are described for
SISO systems n = m = 1 and the extension to MIMO
systems is discussed in Section III-C.

1) Solve Equation 7 for {G0(jωf )}Ff=1, {L(jωf )}Ff=1,
and {R(jωf )}Ff=1. This decouples Equation 7 as F
independent SDPs that can be solved with available
software, e.g. LMILab in Matlab.

2) A state-space model for the nominal dynamics G0(s)
is fit to the optimal response {G0(jωf )}Ff=1 obtained
in Step 1. This can be done in Matlab using the
fitfrd function. The order of the state-space model
is chosen by the user to obtain a trade-off between
model complexity and fitting accuracy.

3) The state-space model G0(s) obtained in Step 2 is
substituted into Equation 7 and the optimization is
resolved for {L(jωf )}Ff=1, and {R(jωf )}Ff=1. This
can be done in Matlab using the ucover function.
Step 3 reconstructs the uncertainty weights on the
frequency grid to account for any error in fitting the
state space nominal model.

4) For SISO systems, L := |WL|2 and R := |WR|2.
Hence the L(jωf ) and R(jωf ) obtained in Step 3
specify the magnitudes of the uncertainty weights
required to cover the experimental frequency response
data. Stable, minimum phase transfer functions WL(s)
and WR(s) are constructed that satisfy |WL(s)| ≥√
L(jωf ) and |WR(s)| ≥

√
R(jωf ). This fitting step

can be performed in Matlab using the fitmagfrd
function. Constructing the state-space weights in this
fashions ensures that SA(G0,WL,WR) will cover the
data. Moreover, the set SA is unaffected by the phase
of the uncertainty weights and hence the restriction
to minimum phase WL and WR is without loss of
generality. Finally, the optimal additive uncertainty
model is given by SA(G0,WL,WR).

An input multiplicative uncertainty set can be constructed
starting with the optimization in Equation 4 with SA replaced
by SM . The constraint in this optimization can be equiva-
lently expressed as a frequency-dependent matrix inequality
using Theorem 3 in [5]. This leads to a finite-dimensional
optimization of the form:

min
G0,WL,WR

F∑
f=1

f(WL,WR, ωf ) (8)

subject to:[
G0WLW

∗
LG
∗
0 Gk −G0

(Gk −G0)
∗

W ∗RWR

]
(jωf ) ≥ 0

f = 1, . . . , F and k = 1, . . . ,K

It is important to note that nominal model appears as prod-
ucts with itself and the left uncertainty weight in the upper
left block of the matrix constraint. Hence this optimization
is not jointly convex in (G0,WL,WR) as written. As before
the products of the uncertainty weights can be handled by
introducing the new variables L := WLW

∗
L and R =

W ∗RWR. Further introduce Q0 := G−10 and multiply the
matrix constraint on the left and right by diag(G−10 , I) and
diag(G−∗0 , I). This leads to the following (convex) SDP
problem:

min
Q0,L,R

F∑
f=1

Tr[ΓLL+ ΓRR](jωf ) (9)

subject to:[
L Q0Gk − I

(Q0Gk − I)
∗

R

]
(jωf ) ≥ 0

f = 1, . . . , F and k = 1, . . . ,K

The numerical steps to solve for the nominal model and
uncertainty weights for the input multiplicative model are
essentially the same as those given above for the additive
uncertainty model. The only additional detail is that the
nominal model on the frequency grid {G0(jωf}Ff=1 is ob-
tained by inverting the values of Q0(jωf ) computed from
the optimization.



C. Practical Issues

1) Incorporating Prior Knowledge: In many applications
there is some prior knowledge regarding the nominal system
dynamics. For example the voice coil motor dynamics has a
double integrator characteristic, and the micro actuator has a
second order high frequency roll off [13]. Let P (s) ∈ RL∞
denote any known characteristics of the nominal model. This
prior knowledge is incorporated by constructing a nominal
model of the form G0(s) = P (s)T0(s) where T0(s) is
the unknown component to be determined. To construct the
nominal model, first transform the experimental frequency
responses {Gk}Kk=1 into equivalent frequency responses for
the unknown component:

Tk(jωf ) = P−1(jωf )Gk(jωf )∀k, f (10)

Next, use the optimization method described previously
to construct T0 and weights such that the corresponding
uncertainty set covers {Tk}Kk=1. The optimal nominal model
on the frequency grid G0(jωf ) is then given by multiplying
the known and unknown system components, i.e. G0(jωf ) =
P (jωf )T0(jωf )∀f . Then the process can continue on to
step 2 listed in Section B. For the optimization based on
the additive uncertainty, if the optimal nominal model and
uncertainty weight on the frequency grid is desired, the
weight, WL(jωf ) must also be multiplied by P (jωf ).

2) Limiting Magnitude of Nominal Model Derived From
Multiplicative Uncertainty Set: The uncertainty set optimiza-
tion attempts to minimize the magnitude of the weights. In
some cases this formulation leads to impractical results for
multiplicative uncertainty sets. To illustrate the issue consider
a SISO multiplicative uncertainty set SM (G0,WL, 1). Sys-
tems in this set have the form G0(1+WL∆) where ‖∆‖ ≤ 1.
Note that this set can cover any collection of frequency
responses by choosing the nominal model to have sufficiently
large magnitude and ‖WL‖ = 1. Thus an optimization to
construct the nominal model G0 and WL will never result in
an uncertainty weight that exceeds 1 in magnitude, i.e. 100%
multiplicative uncertainty is an upper bound on the optimal
weight. The practical consequence is that the optimization
will return a very large nominal model and an uncertainty
weight of magnitude near 1 for any frequency where the
responses have ”large” spread. In particular, this will occur
for any frequency such that maxk,l |Gk(jω)−Gl(jω)| > 2.
The optimization in Equation 9 can be modified to add one
additional constraint that prevents the nominal model from
growing too large:

|Q0(jωf )| ≥ min
k
|Gk(jωf )−1| (11)

The crux of the issue is that the actual ”size” of the
multiplicative uncertainty set is |G0WL| and the posed opti-
mization only attempts to minimize |WL|. It is not possible
to directly minimize |G0WL| in a computationally efficient
manner as this is a non-convex objective. An alternative
procedure to construct a multiplicative uncertainty set is to
first compute an additive uncertainty set and then compute
the corresponding weights for a multiplicative model.

3) Data Trimming: In some systems, there may be prior
knowledge on their uncertainty at certain frequency ranges
that may not be captured by the optimization method. For
example, if there is an excess of measurement noise at certain
frequencies, there would be an artificially large uncertainty at
those frequencies. Any prior information on the uncertainty
can be incorporated by modifying the values of L(jωf )
and/or R(jωf ) at particular frequencies before fitting the
state-space weights WL(s) and WR(s) (Step 4 in Section III-
C

4) Fitting State-Space Models to MIMO Systems: The
optimization technique described in the previous sections can
be extended to MIMO systems but some simplifications are
typically required in the state-space fitting steps. For example
fitfrd in Matlab applies only for vector systems (either
one input or one output). Thus in the case of a MIMO system,
one possible method is to fit a state-space model to the data
one column or one row at a time. This method will naturally
increase the order of the MIMO system, thus utilizing some
order reduction technique may be useful. For the uncertainty
weights, the fitting process is simplified by restricting the
weights, a priori, to be diagonal.

D. Simple Numerical Example

In this example, a stable second order system with uncer-
tainties in its natural frequency and damping ratio is used to
demonstrate the approach described in the previous section.
First a transfer function with uncertainty is defined as,

Gtrue(s) =
p2

s2 + 2ζp+ p2
(12)

where ζ =[0.05, 0.1] and p =[3, 7]. In a real application
the true underlying model, specified here by Gtrue would
not be known. The ”true” model is defined here to generate
the frequency response data that is used in the proposed
model uncertainty construction procedure. An uncertainty
set such as SA(G0,WL, 1) does not capture the parametric
uncertainties that appears in the true model but it is still
useful for creating a robust controller for a system like this.

Experimental data {Gk}Kk=1 was simulated by taking
K = 100 random samples of ζ and p with a frequency
containing 250 frequency points from ω1 = 10−1rad/sec to
ω250 = 102rad/sec. Since the magnitude difference between
the different Gk(jωf ) was too large, the nominal model
was constructed using the LMI constraints for an additive
uncertainty and then the multiplicative uncertainty weight for
the G0(jωf ) was constructed using the method described
in section III-C.2. A second nominal model was created
by taking the average of Gk(jωf ) and utilizing ucover
to create the WL(jωf ) for this model. It is known that
the average of plant models is not the best nominal model
for robust controller design, thus this example was created
to show the advantage of the nominal model created from
the LMI constraints. Fig. 2 shows the resultant frequency
response data of the two nominal models, and the smallest
multiplicative uncertainty weight required to cover all of the
experimental data.
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Fig. 2. (a) The nominal model, G0(jω) created from the additive
uncertainty optimization method and averaging of the simulated data (b)
The smallest multiplicative uncertainty weight, WL to cover all of the
experimental data.

As shown in the bottom subplot of Fig. 2, the uncertainty
weight for the average system is greater than the uncertainty
weight for the nominal model created by the optimization
method. Since there are uncertainties in both ζ and p values,
the frequency and magnitude of the peak are different for
each sample. Since only 1 peak exists for each frequency
response data, when the average of the samples are taken
the magnitude of the peak of each sample is reduced by
K − 1 other frequency response data.

For a SISO system the LMI constraint finds a complex
number at each frequency that will require a circle with the
smallest radius to cover all of the data points. This point
is exemplified in Fig. 3, which shows a scatter plot of the
simulated data, two nominal data points, and the smallest
circle centered at each of the nominal data points required
to cover all of the data points at ω =5 rad/sec. At this
frequency many of the data points are near the real axis,
and thus the average of the data is naturally pushed up
towards the real axis. The nominal point created by the
averaging method requires a circle with a radius of 6.5 to
cover all of the data, while the nominal point created using
the optimization method requires a circle with a radius of
4.3 to cover all of the data. Compared to the average model
the nominal model derived from the LMI constraint requires
an uncertainty weight with smaller magnitude to cover the
frequency response data, which should result in a controller
with better performance.

IV. RESULTS

The proposed algorithm was tested using 27 frequency
responses obtained on different dual-stage HDD. As shown
in Fig. 1, the voice coil motor and the micro actuator work
together to keep the magnetic head at a desired position.
The block diagram for the uncertainty system of a dual-
stage actuator with input multiplicative uncertainty is shown
in Fig. 4. The inputs, uV CM and uMA, to the actuators are
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Fig. 3. The data points and the nominal point created by LMI method and
Averaging method at ω=5rad/sec.

typically voltage or current signals from the HDD controllers.
The W1 and W2 are uncertainty weights for the VCM and
MA system, respectively. The magnetic head determines its
position by computing the position error signal (PES) from
signals on the magnetic disk. The frequency response data
is extracted from a drive by injecting sinusoidal signals
of varying frequency into the VCM and MA separately as
disturbance signals and recording the PES at each frequency.
Although this method requires less than 1 minute to obtain
the frequency response data of both the VCM and MA
systems, at low frequency there is a large variation between
the different HDD data due to measurement noise.

uV CM GV CM

W1∆1

lΣ-

-

?
-

uMA GMA

W2∆2

lΣ-

-

?
-

lΣ
6

?
- PES

Fig. 4. The block diagram for the uncertainty system of a dual-stage
actuator.

From the 27 frequency response data, the uncertainty
model for the dual-stage actuator as depicted in Fig. 4
was constructed utilizing optimization technique described in
this paper. Many of the techniques from section III-C were
utilized to create the uncertainty model. First, the VCM is
essentially a double integrator at low frequencies (below the
first flexible mode) due to the rigid-body rotational dynamics.
Moreover, the MA is known to have a high frequency second-



order roll-off and a gain of 0 dB at low frequencies. The
method from Section III-C was used to incorporate these
known dynamics in the nominal models. Second, it is known
that the low-frequency data has high variance due to the
measurement noise introduced during the sinusoidal sweep.
The optimal uncertainty weights were reduced at these
frequencies. Furthermore data points were added beyond
ωF with magnitude of WL(jωF ) to prevent the state-space
model fit from rolling down at high frequency. The LMI
constraint based on SA(G0,WL, 1) was used to construct
the optimal nominal model, while LMI constraint based on
SM (G0,WL, 1) was utilized to construct the optimal input
multiplicative uncertainty weight. An 8th order fit was used
to create G0(s) for both the actuators, and a 5th order fit
was used for W1(s) and W2(s).

Fig. 5 and Fig. 6 show the experimentally recorded fre-
quency response data of VCM and MA and the uncertainty
model derived from the data respectively. For confidentiality
purposes, the magnitude and frequency axes have been nor-
malized. Both the magnitude and the phase of the VCM and
MA nominal models are shown in black solid lines, while
the upper and lower bounds created from their respective
uncertainty weights are shown in red dotted lines. The cloud
of light blue lines is the collection of experimental data. The
lower bound magnitude falls to zero and the bounds on the
phase uncertainty cover [−180o, 180o] once the multiplica-
tive uncertainty weight exceeds 1, which occurs at ω > 40
and ω > 46 for the VCM and DAC respectively. Thus the
corresponding bound curves are not shown for frequencies
where the weight magnitude exceeds 1. It is worth noting
that the closed-loop bandwidth of the system is bounded by
these frequencies since the phase of the uncertainty model
covers the entire unit circle once |WL| > 1. In Fig.5,
the double integrator characteristics can be seen as it was
incorporated into the system model. The maximum and
minimum magnitude and phase at low frequency for both
VCM and MA do not bound all of the experimental data,
since the uncertainty weight at low frequency was reduced
due to occurrence of measurement noise. Furthermore the
maximum magnitude of both VCM and MA system do not
”tightly” cover the experimental data, since low order fit was
used to create the uncertainty weights. Higher order systems
could be used to improve the fits but this would ultimately
increase the order of the system and hence the complexity of
the control design. This is also true for increasing the order
of the nominal models. Since there is limited computational
power on the HDD controller, it is desired to design a low
order controller and thus minimal orders are used to create
the uncertainty model.

The uncertainty models can be used within the intercon-
nected model as shown in Fig. 7 in order to construct a
robust controller via µ-synthesis [3]. Punc is the uncertainty
model shown in Fig. 4, WD is the disturbance weight, WP is
the performance weight, and WV and WM are the actuator
weights for the VCM and MA. For WP and WD a low
pass filter was utilized, while the actuator weights utilized
a constant value and a low pass filter for WV and WM ,
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Fig. 5. (a) The magnitude of the nominal VCM model (solid line) created
from the LMI constraint shown with the upper and lower bound (dotted
line). (b) The phase of the nominal VCM model (solid line) created from
the LMI constraint shown with the upper and lower bound (dotted line).
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Fig. 6. (a) The magnitude of the nominal MA model (solid line) created
from the LMI constraint shown with the upper and lower bound (dotted
line). (b) The phase of the nominal MA model (solid line) created from the
LMI constraint shown with the upper and lower bound (dotted line).

respectively to prioritize the usage of MA for high frequency
inputs.
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Fig. 7. The interconnected model used to create a robust controller, K(s)

A controller was synthesized with dksyn and the result
is an 76th-order controller. This controller was reduced



to 20-states using balanced truncation. The reduced-order
controller was assessed by computing the closed-loop sen-
sitvity function as well as classical gain/phase margins using
the experimental open-loop frequency response data. The
controller was then implemented on a dual-stage HDD from
the same product-line as those used to generated the 27 fre-
quency responses. The open loop response and closed-loop
sensitivity function were measured by injecting sinusoids
at various frequencies. The experimental results, shown in
Fig. 8, demonstrate that the automatically generated uncer-
tainty set can be used to construct robust control designs for
a dual-stage actuator of a HDD.
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V. CONCLUSION

A practical method of creating an uncertainty set for a
dual-stage actuator of hard disk drives from a set of experi-
mental frequency response data was presented in this paper.
The numerical algorithm was derived through definitions of
additive and input multiplicative uncertainty sets. Further-
more this method was altered for the practical application
of robust controller synthesis for a dual-stage actuator of a
hard disk drive. A robust controller was synthesized using

the uncertainty model derived from the proposed method and
tested on a hard disk drive successfully. Future work will
include applying the method onto the dual-stage actuator as
a 2 input 1 output system, instead of dealing with the system
as two separate SISO systems.
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