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Computation of lower bounds
for the induced L2 norm of LPV systems

Tamas Peni, Member, IEEE, and Peter J. Seiler, Member, IEEE

Abstract

Determining the induced L2 norm of a linear, parameter-varying (LPV) system is an integral part of many analysis and robust
control design procedures. Most prior work has focused on efficiently computing upper bounds for the induced L2 norm. The
conditions for upper bounds are typically based on scaled small-gain theorems with dynamic multipliers or dissipation inequalities
with parameter dependent Lyapunov functions. This paper presents a complementary algorithm to compute lower bounds for the
induced L2 norm. The proposed approach computes a lower bound on the gain by restricting the parameter trajectory to be a
periodic signal. This restriction enables the use of recent results for exact calculation of the L2 norm for a periodic linear time
varying system. The proposed lower bound algorithm has two benefits. First, the lower bound complements standard upper bound
techniques. Specifically, a small gap between the bounds indicates that further computation, e.g. upper bounds with more complex
Lyapunov functions, is unnecessary. Second, the lower bound algorithm returns a ”bad” parameter trajectory for the LPV system
that can be further analyzed to provide insight into the system performance.

Index Terms
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I. INTRODUCTION

DETERMINING the induced L2 norm of an LPV system is an integral part of many analysis and robust control design
procedures. In general, this norm cannot be determined explicitly. Most prior work focuses on computing an upper bound

on the induced L2 norm. The method used to compute the induced gain upper bound depends primarily on the structure of
the LPV system. One class of LPV systems involves state matrices that are rational functions of the parameter. In this case
the LPV system can be expressed as a feedback interconnection (linear fractional transformation, LFT) of a known linear
time invariant (LTI) system and a parameter dependent block. The upper bound for these LFT-type LPV systems is typically
computed using scaled mall gain theorems with multipliers and the full block S-procedure [1], [2], [3]. Another class of LPV
systems involves state matrices with an arbitrary dependence on the parameter. These systems, called ”Gridded” LPV systems,
can arise via linearization of nonlinear models on a grid of equilibrium operating points [4], [5], [6], [7], [8]. The upper bound
for Gridded LPV systems is computed using the dissipation inequality evaluated over a finite set of parameter grid points. In
both cases the upper bound calculation reduces to a convex optimization with linear matrix inequality (LMI) constraints.

This paper addresses the complementary problem, i.e. the approximation for the lower bound of the induced L2 norm.
Frozen point analysis is one simple way to compute a lower bound. Specifically, the induced L2 norm of the LPV system
over all possible parameter trajectories is clearly lower bounded by the restriction to constant (frozen) parameter trajectories.
A lower bound is thus obtained by computing the maximum gain of the LTI systems obtained by evaluating the LPV system
on a grid of frozen parameter values. To our knowledge this is currently the only method available to compute a lower bound
on the induced L2 norm of an LPV system. Unfortunately, this approach produces very conservative results in many cases as
it neglects the variation of the scheduling parameter. To compute a better estimate, the L2 norm has to be evaluated over time
varying parameter trajectories. This concept introduces a complex optimization problem involving a maximization over both
the allowable parameter trajectories and the L2 inputs to the LPV system.

The proposed lower bound algorithm restricts the scheduling trajectories to periodic signals. This restriction is useful because
the LPV system evaluated on a fixed periodic trajectory is simply a periodic linear time-varying (PLTV) system. Moreover,
the induced L2 norm of a PLTV system can be exactly determined by using recently developed numerical methods, see e.g.
[9]. Thus the lower bound algorithm only requires the maximization over periodic parameter trajectories and the maximization
over L2 inputs is not required. Specifically, the lower bound algorithm maximizes a cost function related to the induced L2

norm (described in detail in Sec. III) over a finite dimensional subspace of periodic scheduling trajectories. The output of the
algorithm is the lower bound estimate and the worst-case (bad) parameter trajectory. In addition, we construct a worst-case
input signal that approximately achieves the computed induced gain lower bound for the LPV system. The construction of
the worst-case input is based on the PLTV results collected in [10] and [11]. In [10] the worst case input is derived by using
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a special, frequency domain representation for the PLTV system. In this paper the worst-case input construction and proofs
are provided using only time-domain operators. This approach, detailed in section II-C, streamlines the construction of the
worst-case input.

It is important to note that our algorithm does not assume any specific structure on the LPV system. Thus it is developed
for the ”Gridded” case. It trivially applies for ”LFT” models as well although the additional rational structure in LFT models
may lead to faster lower bound algorithms than those developed here. It will also be shown, by numerical examples, that the
proposed lower bound algorithm and the known upper bound methods complement each other. Specifically, these methods,
applied together, can yield a tight bound for the induced L2 norm of an LPV system.

The paper is organised as follows: in the next section the properties of periodic systems are summarized and the recent results
related to the induced L2 norm computation are reviewed. In Sec. II-C we provide an algorithm to construct the worst-case
input for PLTV systems. Our approach for computing lower bounds on L2 norm of LPV systems is presented in Sec. III and
III-C. Sec. IV is devoted to the numerical simulations and analysis. The conclusions are drawn in section V, where the future
works required to improve our results are also summarized.

The notations used in the paper are fairly standard. R and C denote the fields of real and complex numbers, respectively.
D and ∂D are the unit disc and unit circle in the complex plane C. If T : E → F is a bounded, linear operator between
Hilbert spaces E and F , then the adjoint of T is denoted by T∗ and is defined as follows: 〈Tu, y〉F = 〈u,T∗y〉E , ∀u ∈ E
and ∀y ∈ F . The space of square-integrable signals f : [0,∞) → Rn is denoted by L2(Rn). The inner product and norm
in L2(Rn) are defined as 〈f, g〉L2(Rn) =

∫∞
0
f(t)T g(t)dt and ‖f‖ =

√
〈f, f〉L2(Rn), respectively. If G is a bounded linear

operator, such that G : w ∈ L2(Rp) 7→ z ∈ L2(Rq) then its induced L2 norm is defined as

‖G‖ := sup
06=w∈L2(Rp)

‖z‖
‖w‖

L2,[0,h)(Rn) denotes the space of square-integrable functions on the interval [0, h) with inner product 〈f, g〉L2,[0,h)(Rn) =∫ h
0
f(t)T g(t)dt. `2(E) denotes the square-summable sequences w = {wk}∞k=0 in the Hilbert space E with inner product

〈w, v〉`2(E) :=
∑∞
k=0〈wk, vk〉E .

II. PERIODIC SYSTEMS

A. Background

This section reviews known results on PLTV systems. Most results can be found in [11]. In particular, we consider the linear
time-varying system G of the form:

G :
ẋ(t) = A(t)x(t) +B(t)w(t)
z(t) = C(t)x(t) +D(t)w(t)

(1)

that has the following properties:
(i) the system matrices A(t) : R→ Rn×n, B(t) : R→ Rn×p, C(t) : R→ Rq×n, D(t) : R→ Rq×p are bounded continuous

functions of time,
(ii) are h-periodic, i.e. A(t+ h) = A(t), B(t+ h) = B(t), C(t+ h) = C(t), D(t+ h) = D(t), ∀t and

(iii) the dynamics (1) are internally stable.
The state transition matrix Φ(t, τ) associated with the autonomous dynamics ẋ(t) = A(t)x(t) is defined for all (t, τ) as
the linear mapping from x(τ) to x(t), i.e. x(t) = Φ(t, τ)x(τ). It is easy to check that Φ(t, τ) is periodic with h, i.e.
Φ(t + h, τ + h) = Φ(t, τ), and satisfies the matrix differential equation d

dtΦ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I . The state
transition matrix over one period is called the monodromy matrix: Ψ(t) := Φ(t + h, t). Clearly, the monodromy matrix is
periodic with h, i.e. Ψ(t+ h) = Ψ(t).

The system defined in (1) is stable and hence it defines a bounded operator G := w ∈ L2(Rp) 7→ z ∈ L2(Rq), such that

z(t) =

∫ t

0

C(t)Φ(t, τ)B(τ)w(τ) dτ +D(t)w(t) (2)

i.e. z(t) is the response of (1) to the input signal w(t) if x(0) = 0. We are interested in G. It is shown in [12] that ‖G‖ is
equal to the norm of the ”lifted” operator Ĝ : `2(L2,[0,h)(Rp))→ `2(L2,[0,h)(Rq)), which, has a finite dimensional state-space
realization in the following form [13]:

ξk+1 = Âξk + B̂ŵk

ẑk = Ĉξk + D̂ŵk (3)
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where ξk ∈ Rn and Â : Rn → Rn, B̂ : L2,[0,h)(Rp) → Rn, Ĉ : Rn → Rq , D̂ : L2,[0,h)(Rp) → L2,[0,h)(Rq) are linear
operators defined as follows:

Âξk := Ψ(0)ξk, B̂ŵk :=

∫ h

0

Φ(h, τ)B(τ)ŵk(τ)dτ

Ĉξk := C(t)Φ(t, 0)ξk, D̂ŵk :=

∫ t

0

C(t)Φ(t, τ)ŵk(τ)dτ +D(t)ŵk(t) (4)

Although (3) is a finite dimensional system, it is still not suitable for numerical computations, because its system matrices
are operators. Therefore, based on the same idea applied for LTI systems (see e.g. Chapter 21 in [14]), a discrete-time, linear,
time-invariant system Gγ is introduced in [15],[9]. The state-space matrices of Gγ are computed as follows:

Aγ := Â+ B̂(γ2I − D̂∗D̂)−1D̂∗Ĉ

BγB
∗
γ := γB̂(γ2I − D̂∗D̂)−1B̂∗ (5)

C∗γCγ := γĈ∗(γ2I − D̂D̂∗)−1Ĉ

More specifically, the matrices Bγ and Cγ are defined to be full rank matrices that satisfy the equalities that appear in (5).
Note that Aγ , Bγ , Cγ are now real matrices Aγ ∈ Rn×n, Bγ ∈ Rn×p, Cγ ∈ Rq×n. The following theorem, taken from [9],
proves that there is a strong relation between the induced `2-norm of Gγ and the norm of Ĝ.

Theorem 1. The following statements are equivalent:
a) eig(Â) ∈ D\∂D and ‖Ĝ‖ < γ
b) eig(Aγ) ∈ D\∂D and ‖Gγ‖∞ < 1

where ‖Gγ‖∞ is the standard H∞ norm of the LTI system Gγ .

B. Induced norm computation

Theorem 1 gives the base of the bisection algorithm, proposed in [9] to compute the L2-norm of the periodic system
(1). Therefore, an efficient method is needed to determine the system matrices Aγ , Bγ , Cγ . For this, consider the following
differential equation associated with (1):

ė(t) = H(t)e(t) (6)

where (suppressing the notation of time dependence)

H11 = −AT − CTD(γ2I −DTD)−1BT

H12 = −γCT (γ2I −DDT )−1C

H21 = γB(γ2I −DTD)BT (7)

H22 = A+B(γ2I −DTD)−1DTC

Note that (6) is a Hamiltonian system (JH(t) is symmetric with J =
[

0 I
−I 0

]
). Let the monodromy matrix of (6) be denoted

by ΨH(t) and let Q = ΨH(0). It was shown in [9], that

BγB
T
γ = Q21Q

−1
11

CTγCγ = −Q−111 Q12

Aγ = Q22 −Q21Q
−1
11 Q12 (8)

where Q =
[
Q11 Q12

Q21 Q22

]
. Since Q is symplectic [16], i.e. QTJQ = J , thus Q is uniquely determined by (8) in the following

form:

Q =

[
A−Tγ −A−Tγ CTγCγ

BγB
T
γA
−T
γ Aγ −BγB

T
γA
−T
γ CTγCγ

]
(9)

One possible method to determine the Aγ , Bγ , Cγ matrices can be given as follows. Integrate first the Hamiltonian system (6)
on [0, h) starting from the matrix initial condition e(0) = I . Then e(h) = Q. Determine the system matrices from Q by using
(8). Since H(t) is not stable this approach is numerically not reliable. The method proposed in [9] is based on the following
relations:

Aγ = X(h), CTγCγ = Z(0), BγB
T
γ = Y (h)
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where X(h), Z(0), Y (h) are point solutions of the differential Riccati equations

Ż = −HT
22Z − ZH22 − γZB(γ2I −DTD)−1BTZ + γCT (γ2I −DDT )−1C (10)

Ẋ = (H22 + γB(γ2I −DTD)−1BTZ)X (11)

Ẏ = H22Y + Y HT
22 + γY CT (γ2I −DDT )−1CY + γB(γ2I −DTD)−1BT (12)

with boundary conditions Z(h) = 0, X(0) = I and Y (0) = 0. Integrating these Riccati equations is a numerically better
conditioned problem than the direct integration of (6) [9]. Moreover, (10) has a very useful property [9]:

Lemma 1. Assume γ2I −D(t)TD(t) > 0 for all t ∈ [0, h). Then (10) has a bounded solution over the interval [0, h] if and
only if ‖D̂‖ < γ.

The bisection algorithm proposed in [9] is based on iteratively solving (10)-(12) and computing ‖Gγ‖∞ at different γ values
that are tuned in a bisection loop. The output is a lower- and upper bound pair (γ, γ) satisfying γ ≤ ‖G‖ ≤ γ such that
γ − γ ≤ ε, where ε is a given tolerance.

Remark 1. If we introduce T =
[

0 I
γI 0

]
and apply the state transformation ẽ(t) = T−1e(t) in (6), we get the following

transformed Hamiltonian system:

˙̃e(t) = H̃ẽ(t), with H̃(t) = T−1H(t)T. (13)

This system is the same as that is used in [10]. Denote ΨH̃(t) the monodromy matrix associated with (13) and let Q̃ := ΨH̃(0).
Then, it can be shown that Q̃ = T−1QT . We use (13) instead of (6) in the next section, because (13) is more convenient for
the forthcoming derivations.

C. Construction of the worst-case input

We are also interested in constructing the worst-case input w◦ ∈ L2 that achieves the induced norm ‖G‖. The signal
achieving this gain is not in L2 and hence our construction approximately achieves this gain. Specifically, for any ε > 0 we
construct an input w◦ ∈ L2 such that z◦ := Gw◦ satisfies ‖z◦‖ ≥ ‖G‖‖w◦‖ − ε. This is similar to the LTI case where
the worst-case input is a sinusoid and a truncated sinusoid approximately achieves the system gain. The method used to
construct the worst-case input for the PLTV system is based on the proof of Lemma 2.6 in [10]. In [10] the worst-case input is
constructed using a special frequency-domain representation of G defined over exponentially periodic signals. In this section,
an alternative construction and proof is provided using only time-domain formulations. This alternative proof streamlines the
numerical construction of the worst-case input.
To this end, let the linear operator TG : Rn × L2,[0,h)(Rp)→ Rn × L2,[0,h)(Rq) be defined as follows:

TG(x0, w)→ (xh, z) := (Âx0 + B̂w, Ĉx0 + D̂w).

TG is equivalent to the (state-input) → (state-output) map realized by (1) over the period [0, h):

ẋ(t) = A(t)x(t) +B(t)w(t), x(0) = x0

z(t) = C(t)x(t) +D(t)w(t), xh = x(h) (14)

If we introduce an inner product in Rn × L2,[0,h)(R·) as

〈(x,w), (y, v)〉 = x∗y +

∫ h

0

w∗(t)v(t)dt,

then we can define the adjoint operator T∗G to satisfy the equation

〈(x̂h, ẑ),TG(x0, w)〉 = 〈T∗G(x̂h, ẑ), (x0, w)〉.

The next lemma shows how the state-space realization of the adjoint operator is related to the periodic system (1).

Lemma 2. If (x̂0, ŵ) = T∗G(x̂h, ẑ) then

˙̂x(t) = −A∗(t)x̂(t)− C∗(t)ẑ(t), x̂(h) = x̂h

ŵ(t) = B∗(t)x̂(t) +D∗(t)ẑ(t), x̂0 = x̂(0) (15)

Proof. The proof can be found in the Appendix.

The following lemma provides a useful interpretation for the Hamiltonian dynamics (13).
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Lemma 3. Interconnect the dynamics of (14) and (15) with ẑ(t) := z(t) and w(t) := γ−2ŵ(t). The resulting autonomous
dynamics has state ẽT := [xT x̂T ] with dynamics given by (suppressing dependence on t):

˙̃e = H̃ẽ (16)

w = (γ2I −D∗D)−1
[
D∗C B∗

]
ẽ (17)

z = (γ2I −DD∗)−1
[
γ2C DB∗

]
ẽ (18)

Moreover let (λ, v) denote an eigenvalue/eigenvector of the monodromy matrix Q̃ for (16). Partition v∗ := [v∗1 v
∗
2 ] conformably

with the state ẽT := [xT x̂T ]. Then TG(v1, w) = (λv1, z) and T∗G(λv2, z) = (v2, γ
2w).

Proof. The expression for the Hamiltonian dynamics as the feedback connection of (14) and (15) is from [10]. The expressions
for TG and T∗G follow from the definitions of the forward and adjoint operators.

In what follows we show that worst-case input can be constructed from (17) if the Hamiltonian system (16) is initialized as
ẽ(0) = v. For this we need the following theorem, which is the direct application of Theorem 21.12 in [14] to the discrete-time
system Gγ :

Theorem 2. The following statements are equivalent:
(a) ‖Gγ‖∞ < 1.
(b) Q̃ has no eigenvalues on the unit circle and ‖Cγ(I −Aγ)−1Bγ‖ < 1

It follows form Theorems 2.1 and 2.2 that if γ ≤ ‖G‖ then Q̃ has a unit modulus eigenvalue ejωh for some ω. Let v denote
the corresponding eigenvector. Let ẽ denote the solution of the Hamiltonian dynamics (16) and (w, z) the corresponding outputs
with initial condition e(0) = v. Then Lemma 3 implies that G maps the input w and initial condition v1 to the output z.
Moreover, it follows from Lemma 3 that:

v∗2v1 +

∫ h

0

z∗(t)z(t) = 〈(ejωhv2, z),TG(v1, w)〉 (19)

= 〈T∗G(ejωhv2, z), (v1, w)〉 (20)

= v∗2v1 + γ2
∫ h

0

w∗(t)w(t) (21)

Thus ||z||[0,h) = γ||w||[0,h), i.e. the L2 gain of G is equal to γ on the interval [0, h) provided the initial condition of the
system G is given by x(0) = v1.

Note that the input/output pair (w, z) for t ∈ [0, h) is obtained by integrating the Hamiltonian dynamics (16) starting from
the initial condition e(0) = v. The state of the Hamiltonian system after one period is given by e(h) = Q̃e(0) = ejωhv.
Thus integrating the periodic Hamiltonian dynamics forward over the next interval yields w(t) = ejwhw(t − h) and z(t) =
ejwhz(t−h) for t ∈ [h, 2h). Continuing to evolve the Hamiltonian dynamics forward in time over subsequent periodic intervals
yields an input/output pair of G such that for any interval k ∈ {0, 1, 2, . . .}:

w(t) = ejωkhw(t− kh), t ∈ [kh, (k + 1)h) (22)

z(t) = ejωkhz(t− kh) (23)

This input/output pair satisfies ‖z‖[kh,(k+1)h) = γ‖w‖[kh,(k+1)h) over each interval [kh, (k+1)h). Thus w is, loosely speaking,
an input that achieves the gain γ. There are three issues to be resolved to make this more precise. First, the input (22) is
persistent and hence is not in L2,[0,∞). Second, the signals (w, z) in (22-23) are an input/output pair of G only if the periodic
system starts with the initial condition x(0) = v1. However, the induced gain is defined assuming x(0) = 0. Third, the input
can be complex if the eigenvector v is complex.

The first two issues are resolved by noting that (w, z) can be expressed using the state transition matrix:

z(t) = C(t)Φ(t, 0)v1 +

∫ t

0

C(t)Φ(t, τ)B(τ)w(τ) dτ +D(t)w(t)

Define w• as the truncation of w after K periodic intervals, i.e. w•(t) := w(t) for t ∈ [0,Kh) and w•(t) := 0 otherwise.
Define z• as the output of G driven by input w• but with initial condition x(0) = 0. By causality, z•(t) = z(t) − s(t) for
t < Kh where s(t) := C(t)Φ(t, 0)v1 is the initial condition response. The norm of z• can be bounded as:

‖z•‖ ≥ ‖z‖[0,Kh) − ‖s‖[0,Kh)
= γ‖w•‖[0,Kh) − ‖s‖[0,Kh)

The first line follows from the triangle inequality. The second line follows from two facts. First, ‖z‖[kh,(k+1)h) = γ‖w‖[kh,(k+1)h)

over each interval as noted above. Second, w• = w by construction for t ∈ [0,Kh). Next note that ‖s‖[0,Kh) ≤ ‖s‖ <∞ due
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to the stability of G. In addition, ‖w•‖[0,Kh) = K‖w•‖[0,h) and hence ‖w•‖[0,Kh) →∞ as K →∞. Thus it is clear that for
all ε > 0 there exists an integer K such that the input-output pair (w•, z•) of G satisfies ‖z

•‖
‖w•‖ ≥ γ − ε. The input w• is a

valid “worst-case” signal because it is in L2 and the output has been generated with zero initial conditions.
The remaining issue is the fact that (w•, z•) may be complex. The periodic system G is linear and the system matrices are

real. Thus neglecting the imaginary part of the complex valued input does not change the gain, i.e. the ratio of the norms of
the real input and the corresponding real output remains the same. Therefore the real valued worst-case input can be obtained
by defining w◦ = Re(w•). Now we can summarize the complete algorithm.

Algorithm 1 (Worst-case input).

1: Let γ be given such that γ ≤ ‖G‖. Set γ := γ.
2: Compute Q from Aγ , Bγ , Cγ using the equation (9). Determine Q̃ by applying the similarity transformation T .

3: Compute the unit modulus eigenvalue ejωh of Q̃ and the corresponding eigenvector v =
[
x∗ x̂

∗
]∗

.
4: Integrate the Hamiltonian dynamics (13) from t = 0 to t = h starting from the initial condition ẽ(0) = v.
5: Use (17) to compute w(t) from the state trajectories x(t), x̂(t) over [0, h).
6: Choose an integer K � 1 and define the (possibly complex valued) signal w•(t) by:

w•(t) =


ejωkhw(t− kh) if t ∈ [kh, (k + 1)h),

k = 0, 1, . . . ,K − 1

0 if t ≥ Kh

7: Let w◦ := Re(w•) and z◦ := Gw◦.

III. COMPUTATION OF LOWER BOUNDS FOR THE INDUCED L2 NORM OF LPV SYSTEMS

A. Problem formulation

Linear parameter varying (LPV) systems are a class of systems whose state space matrices depend on a time-varying
parameter vector ρ. We assume that ρ : R+ → Rm is a piecewise continuously differentiable function of time and satisfies the
known bounds:

ρi ≤ ρi(t) ≤ ρi, µi ≤ ρ̇i(t) ≤ µi, 1 ≤ i ≤ m (24)

The set of allowable parameter vectors, denoted P ⊆ Rm consists of vectors ρ that satisfy the range bounds given in (24).
The set of admissible trajectories, denoted A, consists of piecewise continuously differentiable trajectories that satisfy both the
rate and range bounds given also in (24).

The state-space matrices of an LPV system are continuous functions of the parameter: A : P → Rn×n, B : P → Rn×p,
C : P → Rq×n and D : P → Rq×p. An nth order LPV system, G, is defined by the following state-space form:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))w(t)

z(t) = C(ρ(t))x(t) +D(ρ(t))w(t)
(25)

The performance of an LPV system G can be specified in terms of its induced L2 gain from input w to output z. The induced
L2-norm is defined by

‖G‖ = sup
06=w∈L2(Rp),ρ(·)∈A

‖z‖
‖w‖

, (26)

The initial condition is assumed to be x(0) = 0. The notation ρ(·) ∈ A refers to the entire (admissible) trajectory as a function
of time. The class of LPV system given above has an arbitrary dependence on the parameter. For this class of systems there
are known linear matrix inequality (LMI) conditions to efficiently compute an upper bound on the induced L2 gain [5], [6].

Now we address the complementary problem, i.e. our aim is to determine a lower bound for the induced L2 norm by using
the results of the previous section.

B. Lower bound for the induced L2 norm

The computation of the lower bound is based on restricting the scheduling parameter trajectories to a finite-dimensional
set of periodic signals. Let ρ : R+ × RN → Rm denote a function that specifies a periodic scheduling trajectory for each
value of c ∈ RN . ρ(·, c) denotes the entire trajectory (as a function of time) at the particular value c and ρ(t, c) denotes the
m-dimensional scheduling vector obtained by evaluating ρ(·, c) at time instant t. The trajectory is assumed to be periodic, i.e.
for each c there is a period h(c) such that ρ(t+h(c), c) = ρ(t, c) ∀t. In addition, we must ensure the trajectory is admissible in
the sense that it satisfies the range and rate bounds in (24). Let Cp ⊆ RN denote the set of values that lead to such admissible
trajectories, i.e. ρ(·, c) ∈ A for all c ∈ Cp. The corresponding set of periodic trajectories is defined as

Ap := {ρ(·, c) | c ∈ Cp} (27)
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As a concrete example, ρ can be specified as a linear combination of periodic bases functions {φk}Nk=1, i.e. ρ(·, c) :=∑N
k=1 ckφk(·). Section III-C provides alternative characterizations to specify periodic trajectories.
Define the lower bound γlb on the induced L2 gain (26) as

γlb := sup
ρ(·,c)∈Ap

‖Gρ(·,c)‖ = sup
c∈Cp
‖Gρ(·,c)‖ (28)

where Gρ(·,c) denotes the periodic system (operator) obtained by evaluating the LPV system G along the periodic trajectory
specified by ρ(·, c). The algorithm described in [9] can thus be used to evaluate the gain ‖Gρ(·,c)‖. It follows immediately
from Ap ⊂ A that γlb ≤ ‖G‖. Equation (28) defines a finite dimensional optimization problem, which is non-convex in
general. One further issue is that a single, accurate evaluation of ‖Gρ(·,c)‖ requires many bisection steps and, as a consequence
the matrix differential equations (Equations (11), (12) and (10)) must be integrated many times for a single evaluation of
the objective function. Thus the evaluation of ‖Gρ(·,c)‖ is computationally costly. A significant reduction in computation
time can be achieved by using Algorithm 2 described below. In this algorithm, Gγ,ρ(·,c) denotes the discrete-time system (5)
corresponding to the PLTV operator Gρ(·,c). Moreover, define ν(c, γ) := ‖Gγ,ρ(·,c‖. With this notation, ‖Gρ(·,c)‖ < γ if and
only if ν(c, γ) < 1. The lower bound algorithm can now be stated.

Algorithm 2 (Lower bound on L2 norm-I).
1: Pick an initial parameter vector c0. Let c := c0.
2: Compute the norm of Gρ(·,c0) by using the algorithm in [9]. Take the upper bound γ from the bisection. It is clear that
ν(c0, γ̄) < 1 because γ̄ is an upper bound for ‖Gρ(·,c0)‖.

3: Starting from the initial value c0, solve the nonlinear optimization problem

sup
c∈Cp

ν(c, γ̄) (29)

Three different outcomes are possible: (29) terminates at a (local) optimum c∗ where ν(c∗, γ) < 1 (case-a), ν(c∗, γ) ≥ 1
(case-b), or the optimization stops because at some c = c∗ the solution Z(t) of (10) goes unbounded (case-c). Clearly,
case-b and case-c mean that γ̄ is smaller than ‖Gρ(·,c∗)‖ so the optimization managed to improve the lower bound.
Therefore, set c0 := c∗ and go to step 2. In case-a the optimization above was unsuccessful in the sense that the norm
was not significantly improved. In this case, go to step 4.

4: Compute the norm of Gρ(·,c∗) and take the lower bound γ from the bisection. Let γlb := γ and stop.

The advantages of Algorithm 2 over the direct maximization of ‖Gρ(·,c)‖ are the following: the bisection has to be performed
less times (only once before each optimization step (29) and then once at the end of the procedure) and the computation
of ν requires only a single integration of the matrix differential equations, i.e. it can be evaluated with significantly less
computation than ‖Gρ(·,c)‖. Testing the algorithm on numerical examples, we found in most cases that only a few or even
just one optimization step is enough to get a good approximation for the lower bound. The problem is often with the solution
of the Riccati equation (10), which goes unbounded when the norm of Gρ(·,c) becomes significantly larger than γ̄ at some
c = ĉ. If this happens, a new γ̄ has to be computed by performing the time-consuming bisection algorithm. This situation
can be avoided if (29) is started with some γ̄ � ‖Gρ(·,c0)‖. Clearly if γ̄ is chosen to be an upper bound of the L2 norm of
the LPV system, then ‖Gρ(·,c)‖ ≤ ‖G‖ ≤ γ̄ for all c, which implies that Z(t) never goes unbounded. The modified, 1-step
algorithm is summarized as follows:

Algorithm 3 (Lower bound on L2 norm-II).
1: Compute an upper bound γub on the gain of the LPV system, i.e. γub ≥ ‖G‖. Such an upper bound can be determined

by using standard methods based on dissipativity relation (e.g. Bounded Real type LMI conditions) [5], [6]. Let γ̄ := γub.
Pick an initial parameter vector c0.

2: Solve the optimization problem (29).
3: Compute the norm of Gρ(·,c∗) and take γ from the outputs of the bisection. Let γlb := γ and stop.

This algorithm only requires the L2 nor of the periodic system to be evaluated at the last step. This greatly reduces the
number of required integrations for the matrix differential equations associated with X, Y, and Z. By performing either of the
algorithms above we obtain a lower bound γlb for the induced L2 gain and the worst-case scheduling trajectory ρ(·, c∗), where
the associated PLTV system takes this norm. By using Algorithm 1 we can also construct a worst-case input signal wo for
Gρ(·,c∗). This, together with ρ(·, c∗) gives the (worst-case input, worst-case scheduling trajectory) pair, where the L2-gain of
the LPV system is γlb.

C. Scheduling trajectories

Algorithms 2 and 3 optimize the L2 bound over the elements of Ap. Therefore it is important how this set is characterized,
i.e. how the periodic signals depend on the parameter vector c. The structure of ρ(·, c) influences the convergence properties of
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(29) and determines the final result. Therefore it has to be carefully chosen. There are many ways to construct periodic signals.
In this section we focus on piecewise linear scheduling trajectories, while another construction method, based on sinusoidal
basis functions, is described in [17]. Both methods result in a polytopic parameter set, i.e. Cp is defined by linear inequality
constraints. The linearity of the constraints simplifies the optimization (29).

Let the scheduling trajectories be specified by restricting the time derivative ρ̇ to be piecewise constant. Specifically, consider
the one-dimensional case (nρ = 1) where the time interval [0, h] is subdivided into R intervals [Tj−1, Tj) for j = 1, . . . , R
with T0 := 0 and TR = h. Let cj := Tj − Tj−1 denote the length of the jth sub-interval. The parameter trajectory is then
given as the periodic function of period h defined for t ∈ [0, h] by:

ρ(0, c) := ρ0 (30)
ρ̇(t, c) := rj for t ∈ [Tj−1, Tj) (31)

where rj ∈ [µ, µ̄] are user-selected values that specify the rate on each interval. The vector c := [ρ0, c1, . . . , cR] ∈ RR+1

specifies the parameter trajectory offset ρ0 and the subinterval lengths. Equation (31) can be integrated to give the explicit
form of the trajectory as:

ρ(t, c) = ρ0 +

j−1∑
i=1

ciri + (t− Tj−1)rj for t ∈ [Tj−1, Tj) (32)

Note that the period h = c1 + · · ·+ cR is a free parameter as it depends on the interval lengths. Moreover, ρ(t, c) is a linear
function of the offset ρ0 and interval lengths cj . Thus the magnitude constraints in (24) can be transformed into R+ 1 linear
constraints on c:

ρ ≤ ρ0 +

j∑
i=1

ciri ≤ ρ̄, j ∈ {0, . . . , R} (33)

To ensure ρ(0, c) = ρ(h, c), (33) has to be completed with an equality condition
∑R
i=1 ciri = 0. Since all constraints are

linear, thus Cp is a polytope.

Remark 2. The construction of the worst-case input requires additional considerations. In particular, Algorithm 1 for
constructing the worst-case input requires integrating the unstable Hamiltonian system over [0, h). This causes numerical
issues if the period length h is ”too large”. Thus it is reasonable to introduce an inequality constraint of the form h ≤ h̄ to
bound the period length when performing the optimization (24). This is simply another linear constraint on the vector c.

IV. NUMERICAL EXAMPLES

In this section three numerical examples are presented to demonstrate the applicability of the proposed methods. To initialize
our algorithms we need to determine an upper bound γub for the induced L2 gain. In all examples γub is computed by solving
the following optimization problem:

min
V (x,ρ)

γ

V (x, ρ) > 0, V̇ (x, ρ, ρ̇) ≤ γ2wTw − zT z (34)

where the Lyapunov (storage) function V (x, ρ) was chosen to be quadratic: V (x, ρ) = xTP (ρ)x, P (ρ) = P (ρ, P0, P1, . . . , PM ),
where Pi-s denote the free (matrix) variables to be found. The infinite LMI constraints obtained were transformed to a finite
set by choosing a suitable dense grid over the parameter domain P and only the inequalities evaluated at the grid points are
considered [4].

Our strategy to compute the lower bound on the L2 gain was the following: first we performed Algorithm 3 and then we used
the parameter trajectory and lower bound we obtained as an initial value to run Algorithm 2. Since in all numerical examples
this second optimization cannot improve the previous results, thus the numerical results we described in the forthcoming
sections are generated by Algorithm 3. The nonlinear optimization was performed under MATLAB, by using the pattern
search algorithm implemented in the Global Optimization Toolbox.

A. LPV system with gain-scheduled PI controller

The first example, taken from [18] is a feedback interconnection of a first-order LPV system with a gain-scheduled
proportional-integral controller. The state-space matrices of the closed-loop system are as follows

A(ρ) :=

[
− 1
τ(ρ) (1 +Kp(ρ)K(ρ)) 1

τ(ρ)

−Ki(ρ)K(ρ) 0

]
, B(ρ) :=

[ 1
τ(ρ)Kp(ρ)

Ki(ρ)

]
,

C(ρ) := [−K(ρ) 0], D := 1 (35)
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Fig. 1. Worst case scheduling trajectories and worst-case input/output for the LPV system in Section IV-A. The first two figures show the trajectory of the
worst-case scheduling parameter ρ(t) and its time derivative ρ̇(t). In the 3rd and 4th figures wo is depicted over a longer and a shorter ([0 8h]) time intervals.
In the 5th and 6th figures zo is displayed over the same time intervals.

where τ(ρ) :=
√

13.6− 16.8ρ, K(ρ) :=
√

4.8ρ− 8.6 and

Kp(ρ) =
2ξclωclτ(ρ)− 1

K(ρ)
, Ki(ρ) =

ω2
clτ(ρ)

K(ρ)
, ξcl = 0.7, ωcl = 0.25.

The scheduling parameter is assumed to vary in the interval [2, 7] and ρ̇ ∈ [−1, 1]. By performing the optimization (34) with

V (x, ρ) = xT

(
P0 +

6∑
k=1

ρkPk +
1

ρ
P7 +

1

ρ2
P8 +

1

ρ3
P9

)
x

Γ := {ρ1 = 2, . . . , ρ100 = 7}, ρk+1 − ρk = 5/99

we got γub = 2.964 for the upper bound. Using the parameter values in Γ the frozen lower bound was also computed as
γlb,fr = maxk ‖Gρk‖, ρk ∈ Γ, where Gρk denotes the LTI system obtained by substituting ρ(t) = ρk for all t. The lower
bound we obtained is γlb,fr = 1.1066. To compute the lower bound by Algorithm 3, we chose the following pattern for the
rate variation of the scheduling trajectory r = [µ 0 µ 0 µ 0] = [1 0 − 1 0 1 0] and let the algorithm tune the period in the
interval [hmin hmax] = [12 20]. The lower bound we obtained is γlb,pwl = 2.84, at h = 15.877. The scheduling trajectory can
be seen in Fig. 1. This lower bound is is significantly larger than γlb,[17], where γlb,[17] is the lower bound we obtained in [17]
by using sinusoid scheduling trajectories. Moreover, γlb,pwl is very close to γub: the difference is only γub − γlb,pwl = 0.13.
This means that we have very tight bounds on the norm of G: 2.84 = γlb,pwl ≤ ‖G‖ ≤ γub = 2.964.

Finally, by using Algorithm 1 we computed also the worst case input for both scheduling trajectories. The input signals
were constructed starting from the unit modulus eigenvalue −1. The parameter K in Algorithm 1 was chosen to be K = 60.
The result can be seen in Fig. 1.
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B. Input and output scaled LTI system
The next example was constructed by taking two copies of the simple LTI system 1/(s + 1), scaling the input of the first

and he output of the second and computing the difference of the two outputs. The dynamics are given as follows:[
ẋ1
ẋ2

]
=

[
−1 0
0 −1

] [
x1
x2

]
+

[
1
ρ

]
w

z =
[
ρ −1

] [ x1
x2

]
We assume that ρ ∈ [−1 1] and ρ̇ ∈ [−µ µ]. We are going to compute the lower bound for different values of µ. It follows
from the structure of the system that if ρ is constant then the difference between the input and the output scaled systems is 0.
This implies that γlb,fr = 0. Next, the upper bound on the L2 gain was computed for different rate bounds. In all cases the
storage function V (x, ρ) and the parameter grid Γ was chosen as follows:

V (x, ρ) = xT

(
P0 +

10∑
k=1

ρkPk

)
x

Γ = {ρ1 = −1, . . . , ρ100 = 1}, ρk+1 − ρk = 2/99

The upper bounds obtained are collected in Table I. To compute the lower bound we used the following rate pattern to
characterize the piecewise linear scheduling trajectories: r = [µ 0 − µ 0 µ 0]. The lower bounds and the period of the worst-
case scheduling trajectories obtained for the different µ values are collected in Table I. The range bounds hmin and hmax used
to constrain the period length in (29) are also given in Table I. It can be seen that the upper and lower bounds are very close
to each other, which means that by using the upper and lower bound algorithms we could precisely compute the norm of this
LPV system. In two particular cases, µ = 1 and µ = 2, we plotted also the worst case scheduling trajectory and the worst-case
input in Fig. 3. (The worst case inputs were computed starting from the unit modulus eigenvalues [0.9723 + 0.2337i](in case
µ = 1) and [0.9704 + 0.2415i] (in case µ = 2). K was 60 in both cases.)

µ γlb γub γub − γlb [hmin hmax] h
0.1 0.0979 0.1087 0.0108 [0.5 50] 49.9
0.4 0.3309 0.3342 0.0033 [0.5 50] 44.2
0.7 0.4783 0.4805 0.0022 [0.5 20] 19.78
1 0.5645 0.5766 0.0121 [0.5 6] 6
1.3 0.6364 0.6435 0.0071 [0.5 6] 6
1.6 0.6874 0.6924 0.0050 [0.5 6] 6
2 0.7347 0.7403 0.0056 [0.5 6] 6

TABLE I
UPPER AND LOWER BOUNDS ON THE L2 NORM OF THE LPV SYSTEM DEFINED IN SECTION IV-B

C. Rotated LTI system
The next example was constructed by taking a stable LTI system and performing a parameter dependent similarity transfor-

mation, which is actually a rotation, on the A matrix. The system can be given in state-space form as follows:

ẋ = R(ρ)T
[
−0.5 −0.4

3 −0.5

]
R(ρ)x+

[
0.5
0.5

]
w

z = [1 − 1]x+ 0.1w

where R(ρ) =
[

cos(ρ) sin(ρ)
− sin(ρ) cos(ρ)

]
. The range and rate bounds for ρ were chosen to be: ρ ∈ [π/4 π/2] and ρ̇ ∈ [−0.1 0.1].

The upper bound on the induced L2 norm was computed by using the following storage function and parameter grid:

V (x, ρ) = xT

(
P0 +

7∑
k=1

ρk1Pk

)
x

Γ = {ρ1 = π/4, . . . , ρ50 = π/2},
ρk+1 − ρk = π/196, k ∈ {1 . . . 50}

We obtained γub = 3.3. The lower bound computed at frozen parameter values over the grid above was γlb,fr = 2.696. To
compute the lower bound we chose the following derivative pattern for the scheduling trajectory: r = 0.1 · [1 0 −1 0 1 0]. The
algorithm was allowed to tune the period length in the interval [1 5]. The lower bound we got is γlb = 3.15, (h = 3.11), which
is again significantly larger than γlb,fr. The worst-case scheduling trajectories and the worst-case input are plotted in Fig. 5.
(The worst-case input was constructed by starting from the unit modulus eigenvalue −0.99997 + 0.00816i. The parameter K
was set to 60.)



11

0 2 4 6 8 10 12 14 16 18
−1

0

1

ρ

0 2 4 6 8 10 12 14 16 18
−1

0

1

dρ
 / 

dt

0 50 100 150 200 250 300 350 400 450 500
−2

0

2

w
o

0 48.0069
−1

0

1

w
o

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

zo

0 48.0069
−1

0

1

zo

Time [sec]

Fig. 2. Worst case scheduling trajectories and worst-case inputs/outputs at rate bounds µ = 1 for the example in Section IV-B. The first two subfigures show
the trajectory of the worst-case scheduling parameter ρ(t) and its time derivative ρ̇(t). In the 3rd and 4th subfigures wo is depicted over a longer and a
shorter ([0 8h]) time interval. In the 5th and 6th figures zo is displayed over the same time intervals.

D. A 2-parameter system

The next, more complex example was constructed from the examples in sections IV-A and IV-B. We took two copies of
the closed loop system (35) with scheduling parameter ρ(t) := ρ1(t), then we scaled the input of the first and the output of
the second system by the same time-varying parameter ρ2(t) and defined the output as the difference between the outputs the
two subsystems (like in Section IV-B). The state-space equations of the system obtained can be written as[

ẋ1
ẋ2

]
=

[
A(ρ1) 0

0 A(ρ1)

] [
x1
x2

]
+

[
B(ρ1)
ρ2B(ρ1)

]
w

z =
[
ρ2C(ρ1) −C(ρ1)

] [ x1
x2

]
The range and rate bounds were as follows: 2 ≤ ρ1 ≤ 7, −1 ≤ ρ2 ≤ 1 and −1 ≤ ρ̇1, ρ̇2 ≤ 1. The construction of the system
implies that γlb,fr = 0. The upper bound on the induced L2 norm was computed by using the following storage function and
parameter grid:

V (x, ρ) = xT

(
P0 +

3∑
k=1

ρk1Pk +

5∑
`=1

ρ`2P` +
1

ρ1
P9 +

1

ρ2
P10

)
x

Γ = {ρ1,1 = 2, . . . , ρ1,30 = 7}×
{ρ2,1 = −1, . . . , ρ2,10 = 1},

ρk+1,1 − ρk,1 = 2/29, ρ`+1,2 − ρ`,2 = 2/9,

k ∈ {1 . . . 30}, ` = {1 . . . 10}

We obtained γub = 5.38. To compute the lower bound we chose piecewise linear scheduling trajectories with the following
derivative patterns: r1 = [1 0 − 1 0 1 0] and r2 = [0 1 0 − 1 0 1 0]. The lower bound we got is γlb = 5.047, (h = 16.2142),
which is again very close to the upper bound. The worst-case scheduling trajectories and the worst-case input are plotted in
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Fig. 3. Worst case scheduling trajectories and worst-case inputs/outputs at rate bounds µ = 2 for the example in Section IV-B. The first two subfigures show
the trajectory of the worst-case scheduling parameter ρ(t) and its time derivative ρ̇(t). In the 3rd and 4th subfigures wo is depicted over a longer and a
shorter ([0 8h]) time interval. In the 5th and 6th figures zo is displayed over the same time intervals.
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Fig. 4. Upper and lower bounds on the induced L2 norm computed for the example in Section IV-B.

Fig. 6. (The worst-case input was constructed by starting from the unit modulus eigenvalue −0.9997 + 0.0227i. The parameter
K was set to 60.)
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Fig. 5. Worst case scheduling trajectories and worst-case input/output for the LPV system in Section IV-C. The first two figures show the trajectory of the
worst-case scheduling parameter ρ(t) and its time derivative ρ̇(t). In the 3rd and 4th figures wo is depicted over a longer and a shorter ([0 8h]) time intervals.
In the 5th and 6th figures zo is displayed over the same time intervals.

V. CONCLUSION

In the paper a numerical method is proposed for computing the lower bound of the induced L2-gain of continuous-time, LPV
systems. The algorithm finds this bound – together with the worst-case parameter trajectory – by using nonlinear optimization
over periodic scheduling parameter trajectories. Restricting the domain of parameter trajectories to periodic signals enables to
use the recent results for exact calculation of the L2 norm for a periodic time varying system. It was shown that the proposed
algorithm can be reliably implemented by standard numerical tools and provides precise approximation for the L2 bound.

APPENDIX A
PROOF OF LEMMA 2

To prove the theorem we need the following properties of the state transition matrix: for all t, τ, τ ′ ∈ R
(a) Φ(t, τ)Φ(τ, t) = I , which implies Φ(t, τ) = Φ(τ, t)−1

(b) d
dtΦ(τ, t) = −Φ(τ, t)A(t)

(c) d
dt [Φ(τ, t)∗] = −A(t)∗Φ(τ, t)∗.

Item (a) follows from the definition and from the regularity [11] of Φ(t, τ); item (b) is a consequence of item (a) and can be
proved by applying the chain rule of derivation to 0 = d

dtΦ(t, τ)Φ(τ, t) and finally, item (c) is the direct consequence of item
(b).

Then Lemma 2 can be proved directly from the definition of the adjoint (Equation (15)) as follows:

〈(x̂h, ẑ),TG(x0, w)〉 = x̂∗hx(h) +

∫ h

0

ẑ(t)∗z(t) dt (36)
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Fig. 6. Worst case scheduling trajectories and worst-case input/output for the LPV system in Section IV-D. The first two figures show the trajectory of the
worst-case scheduling parameter ρ(t) and its time derivative ρ̇(t). In the 3rd and 4th figures wo is depicted over a longer and a shorter ([0 8h]) time intervals.
In the 5th and 6th figures zo is displayed over the same time intervals.

where (x(h), z(t)) are the final state and output of the PLTV system in (14). The solution of (14) can be expressed in terms
of the state transition matrix as:

x(h) = Φ(h, 0)x0 +

∫ h

0

Φ(h, τ)B(τ)w(τ) dτ (37)

z(t) = C(t)Φ(t, 0)x0 +

∫ t

0

C(t)Φ(t, τ)B(τ)w(τ) dτ (38)

Use these relations to substitute for x(h) and z(t) in Equation (36). Re-arrange terms to obtain the following form:

〈(x̂h, ẑ),TG(x0, w)〉 = x̂(0)∗x(h) +

∫ h

0

[B∗(τ)x̂(τ) +D∗(τ)ẑ(τ)]
∗
w(τ) dτ

where we have defined the signal

x̂(τ) := Φ(h, τ)∗x̂h +

∫ h

τ

Φ(t, τ)∗C(t)∗ẑ(t) dt (39)

Using property (c) above, we obtain

dx̂(τ)

dτ
= −A∗(τ)x̂(τ)− C∗(τ)ẑ(τ), x̂(h) = x̂h

If we also define ŵ(τ) = B∗(τ)x̂(τ)+D∗(τ)ẑ(τ), and x̂0 = x̂(0) then we can express the inner product 〈(x̂h, ẑ),TG(x0, w)〉
as

x̂∗0x0 +

∫ h

0

ŵ(τ)∗w(τ)dτ = 〈T∗G(x̂h, ẑ), (x0, w)〉

Thus the proof is complete.
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