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Abstract— A general approach is presented to analyze the
worst case input/output gain for an interconnection of a linear
parameter varying (LPV) system and an uncertain or nonlinear
element. The input/output behavior of the nonlinear/uncertain
block is described by an integral quadratic constraint (IQC). A
dissipation inequality is proposed to compute an upper bound
for this gain. This worst-case gain condition can be formulated
as a semidefinite program and the result can be interpreted
as a Bounded Real Lemma for uncertain LPV systems. The
paper shows that this new condition is a generalization of
the well known Bounded Real Lemma for LPV systems. The
effectiveness of the proposed method is demonstrated on a
simple numerical example.

I. INTRODUCTION

This paper presents a method to analyze the robustness
of a linear parameter varying (LPV) system with respect
to nonlinearities and/or uncertainties. LPV systems are a
class of linear systems where the state matrices depend on
(measurable) time-varying parameters. The existing analysis
and synthesis results for LPV systems provide a rigorous
framework for design of gain-scheduled controllers. These
results can roughly be categorized based on how the state
matrices depend on the scheduling parameters. One approach
is to assume the state matrices of the LPV system have a
rational dependence on the parameters. In this case finite
dimensional semidefinite programs (SDPs) can be formulated
to synthesize LPV controllers [1], [2], [3]. An alternative
approach is to assume the state matrices have an arbitrary
dependence on the parameters. The controller synthesis prob-
lem leads to an infinite collection of parameter-dependent
linear matrix inequalities (LMIs) [4], [5]. A brief review of
this technical result is provided in Section II. The computa-
tional solution of such parameter-dependent LMIs requires
some finite-dimensional approximation and is typically more
involved. The benefit is that arbitrary parameter dependence
can be considered which appears in many applications,
e.g. aeroelastic vehicles [6] and wind turbines [7], [8], by
linearization of nonlinear models.

Integral quadratic constraints (IQCs) are used in this paper
to model the uncertain and/or nonlinear components. IQCs,
introduced in [9], provide a general framework for robustness
analysis. In [9] the system is separated into a feedback
connection of a known linear time-invariant (LTI) system
and a perturbation whose input-output behavior is described
by an IQC. An IQC stability theorem was formulated in [9]
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with frequency domain conditions and was proved using a
homotopy method.

The contribution of this paper is to provide robust per-
formance conditions for a feedback interconnection of an
LPV system and a perturbation whose input-output behavior
is described by an IQC. The frequency-domain stability
condition in [9] does not apply for this case because the
LPV system is time-varying. Instead, this paper uses a time-
domain interpretation for IQCs, described in Section II, that
builds upon the work in [10], [11]. The time-domain view-
point is used in Section III to derive dissipation-inequality
conditions that bound the worst-case induced gain of the
system. The conditions are derived for LPV systems whose
state matrices have arbitrary dependence on the scheduling
parameters. The robust performance analysis conditions can
thus be viewed as generalizations of those given for nominal
(not-uncertain) LPV systems in [4], [5]. The results in
this paper also complement the recent robust performance
results obtained for LPV systems whose state matrices have
rational dependence on the scheduling parameters [12], [13],
[14], [15]. In contrast to [12], [13], [14], [15], an arbitrary
dependence on the parameters is assumed in this work and
a finite-dimensional approximation based approach is taken.
As noted above, this will enable applications to systems,
e.g. aeroelastic vehicles or wind turbines, for which arbitrary
dependence on scheduling variables is a natural modeling
framework.

II. BACKGROUND
A. Notation

Standard notation is used except for a few cases which
are specifically mentioned in this section. S™ denotes the
set of n X n symmetric matrices. R™ describes the set of
nonnegative real numbers.

B. Analysis of LPV Systems

Linear parameter varying (LPV) systems are a class of
systems whose state space matrices depend on a time-
varying parameter vector p : Rt — R"™ . The parameter is
assumed to be a continuously differentiable function of time
and admissible trajectories are restricted, based on physical
considerations, to a known compact subset P C R". In
addition, the parameter rates of variation p : Rt — P are
assumed to lie within a hyperrectangle P defined by

Pi={geR™|y, <q<p,i=1...,n,} (1)



The set of admissible trajectories is defined as A := {p :
Rt — R™ : p(t) € P, p(t) € PVt > 0}. The parameter
trajectory is said to be rate unbounded if P = R".

The state-space matrices of an LPV system are continuous
functions of the parameter: A : P — R"=*"= B . P —
Rnexna (O ;P — R%*" and D : P — R, An b
order LPV system, G, is defined by

#(t) = Alp(t))(t) + B(p(H))d()
e(t) = Clp(t)(t) + D(p(H))d(t)

The state matrices at time ¢ depend on the parameter vector
at time t. Hence, LPV systems represent a special class of
time-varying systems. Throughout the remainder of the paper
the explicit dependence on t is occasionally suppressed to
shorten the notation.

The performance of an LPV system G, can be specified
in terms of its induced L, gain from input d to output e.
The induced Lo-norm is defined by
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where |.|| represents the signal Lo-norm, ie. |le] =
(f" e(t)Te(t) dt)?. The initial condition is assumed to be
z(0) = 0.

The notation p € A refers to the entire (admissible)
trajectory as a function of time. The analysis below leads
to conditions that involve the parameter and rate at a single
point in time, i.e. (p(t), p(t)). The parametric description
(p,q) € P x P is introduced to emphasize that such
conditions only depend on the (finite-dimensional) sets P
and P.

In [5] a generalization of the LTI Bounded Real Lemma
is stated, which provides a sufficient condition to bound the
induced Ly gain of an LPV system. The sufficient condition
uses a quadratic storage function that is defined using a
parameter-dependent matrix P : P — S™=. It is assumed that
P is a continuously differentiable function of the parameter
p. In order to shorten the notation, a differential operator
OP : P x P — S" is introduced as in [16]. P is defined
as:

QP
OP(p,q) = @ % 4)

The next theorem states the condition provided in [5] to
bound the Lo gain of an LPV system.

Theorem 1. ([5]): An LPV system G, is exponentially stable
and [|G,|| < v if there exists a continuously differentiable
P :P — S", such that V(p,q) € P x P

P(p) >0, (5)

P(p)A(p) + A(p)" P(p) + 0P(p,q)
BT (p)P(p) —1

L1

72

The conditions (5) and (6) are parameter-dependent LMIs
that must be satisfied for all possible (p, ) € P xP. Thus (5)
and (6) represent an infinite collection of LMI constraints.
Since ¢ enters only affinely into the LMI and the set Pisa
polytope, it is sufficient to check the LMI on the vertices of
P. On the other hand, p can enter (6) nonlinearly and the set
‘P does not have to be convex. A remedy to this problem,
which works in many practical examples, is to approximate
the set P by a finite set Py,;q C P that represents a gridding
over P.

In order to avoid the functional dependence of the decision
variable, P(p) has to be restricted to a finite dimensional
subspace. A common practice [5], [17] is to restrict the
storage function variable P(p) to be a linear combination
of basis functions,

Ny
P(p) =) gip)P: (7)
i=1
where g; : R™ — R are basis functions (z = 1,..., Np) and

the matrix coefficients P; € S™= are the decision variables
in the optimization.

C. Integral Quadratic Constraints

An 1QC is defined by a symmetric matrix M = MT ¢
R"=*"= and a stable linear system ¥ € RH"=*(m1+m2) g
is denoted as

U (jw) := Cy(jwl — Ay) "' [By1 Bya] + [Dy1 Dya] (8)

A bounded, causal operator A : Li'' — L3'? satisfies an
IQC defined by (¥, M) if the following inequality holds for
all v € Ly"[0,00), w = A(v) and T > 0:

T
/ 2T Mz(t)dt >0 )
0
where z is the output of the linear system W:

T (t) = Apay(t) + Byav(t) + Byow(t), z4(0) =0 (10)
Z(t) = Cwmw(t) + lev(t) + Dwzw(t) (1

The notation A € IQC(¥, M) is used if A satisfies the IQC
defined by (¥, M). Fig. 1 provides a graphic interpretation
of the IQC. The input and output signals of A are filtered
through U. If A € IQC(V¥, M) then the output signal z
satisfies the (time-domain) constraint in (9) for any finite-
horizon T' > 0. Two simple examples are provided below to
connect this terminology to standard results used in robust
control.
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Fig. 1. Graphic interpretation of the IQC

Example 1. Consider a causal (SISO) operator A that sat-
isfies the bound ||A] < b. The norm bound on A implies



that |jw] < bllv|| for any input/output pair v € Lo and
w = A(v). This constraint on (v,w) can be expressed as
the following infinite-horizon inequality:

T
R
o |w(t) 0 —1] |w(t)

Next, the causality of A is used to demonstrate that, in fact,
the inequality involving (v, w) holds over all finite horizons.
Give any T' > 0, define a new input @ by 9(t) = v(t) for ¢t <
T and ©(t) = 0 otherwise. This truncated signal © generates
an output w = A(?). This new input/output pair (7, w) also
satisfies ||w]|| < b||v||. This implies

OS/“’ '5(t)'le2 o] [a(t) | o
0

0 1] |af
@ T law] [z o] o
(T E

@ " le] T2 0] [o]
< / dt

o |w®)] [0 —1] [w(t)
Inequality (a) follows because ©(t) = 0 for ¢t > T Inequality
(b) follows from the causality of A. Specifically, 9(t) = v(t)
for ¢ < T and hence w(t) = w(t) for t < T. The final
conclusion is that A satisfies the IQC defined by (¥, M)

with U = I, and M = [& 0 ]. In this example ¥ contains
no dynamics and hence z = [v; w].

Example 2. Next consider an LTI (SISO) system A that
satisfies the bound ||A|| < b. Since A is LTI it commutes
with any stable, minimum phase system D(s), i.e. AD =
DA. Thus the frequency-scaled system A := DAD™! is
also norm-bounded by b. Let (7, w) be any input-output pair

Fig. 2. Scaling of the LTI system A

for the scaled system A, see Fig. 2. The first example implies

that
T
T | = 2 _
/ o(t) b 0| [9(¢) &t >0 (13)
o |w(t) 0 -1 [w(t)
The associated input/output pair for the original system w =
A(v) is related to the input/output pair for the scaled system
by w = Dw v = Dwv. Thus the inequality in (13) can be
equivalently written as
T
/ 2()TMz(t) >0 (14)
0
where M = [¥ 9] and z is the output of ¥ := [B 9]
generated by the signals [, |, see Fig. 1. Hence A satisfies the
IQC defined by (¥, M). Note that the use of D(s) directly

corresponds to the multipliers used in classical robustness
analysis, e.g. the structured singular value p [18], [19], [20],
[21].

The two examples above are simple instances of IQCs.
The proposed approach applies to the more general IQC
framework introduced in [9] but with some technical restric-
tions. In particular, [9] provides a library of IQC multipliers
that are satisfied by many important system components,
e.g. saturation, time delay, and norm bounded uncertainty.
The IQCs in [9] are expressed in the frequency domain
as an integral constraint defined using a multiplier II. The
multiplier II can be factorized as II = U*M¥ and this
connects the frequency domain formulation to the time-
domain formulation used in this paper. One technical point
is that, in general, the time domain IQC constraint only
holds over infinite horizons (1" = oo). The work in [9], [10]
draws a distinction between hard/complete IQCs for which
the integral constraint is valid over all finite time intervals
and soft/conditional IQCs for which the integral constraint
need not hold over finite time intervals. The formulation
of an IQC in this paper as a finite-horizon (time-domain)
inequality is thus valid for any frequency-domain IQC that
admits a hard/complete factorization (¥, M). While this is
somewhat restrictive, it has recently been shown in [10] and
[11] that a wide class of IQCs have a hard factorization.
The remainder of the paper will simply treat, without further
comment, (U, M) as the starting point for the definition of
the finite-horizon IQC.

Integral quadratic constraints were introduced in [9] to
provide a general framework for robustness analysis. In
this framework the system is separated into a feedback
connection of a known linear time-invariant (LTI) system
and a perturbation whose input-output behavior is described
by an IQC. The IQC stability theorem in [9] was formulated
with frequency domain conditions and was proved using a
homotopy method. A contribution of this paper is to use the
time-domain view of IQCs in order to derive stability con-
ditions for the interconnection of a known linear parameter-
varying (LPV) system and a perturbation whose input-output
behavior is described by an IQC. The LPV system is time
varying and hence a frequency-domain stability condition is
not suitable for such interconnections. A dissipation inequal-
ity condition is derived to determine stability of the LPV
system in the presences of perturbations.

III. LPV ROBUSTNESS ANALYSIS

An uncertain LPV system is described by the intercon-
nection of an LPV system G, and an uncertainty A, as
depicted in Fig. 3. This interconnection represents an upper
linear fractional transformation (LFT), which is denoted
Fu(G,,A). The uncertainty A is assumed to satisfy an
IQC described by (¥, M). Note that the perturbation A
can include hard nonlinearities (e.g. saturations) and infinite
dimensional operators (e.g. time delays) in addition to true
system uncertainties. The term “uncertainty” is used for
simplicity when referring to the the perturbation A.
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Fig. 3. Uncertain LPV System

The robust performance of F,(G,,A) is measured in
terms of the worst case induced Lo gain from the input d to
the output e. The worst-case gain is defined as

sup  [[Ful(Gp, A)].
AEIQC(V,M)

5)

This gain is worst-case over all uncertainties A that satisfy
the IQC defined by (¥, M) and admissible trajectories p.

A. Bounded Real Lemma including IQCs

As proposed in [11], the basic LFT interconnection in
Fig. 3 is considered where A satisfies the IQC defined by
(U, M). In this basic interconnection the filter ¥ is included
as shown in Fig. 4.
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Fig. 4. Analysis Interconnection Structure

The dynamics of the interconnection in Fig. 4 are de-
scribed by w = A(v) and
i = A(p)x + Bi(p)w + Ba(p)d
z = C1(p)x + Di1(p)w + D12(p)d
e = Ca(p)x + Da1(p)w + Daz(p)d,
where the state vector is z = [zg;zy] With ¢ and zy
being the state vectors of the LPV system G, and the filter
U respectively. The uncertainty A is shown in the dashed
box in Fig. 4 to signify that it is removed for the analysis.

The signal w is treated as an external signal subject to the
constraint

(16)

T

/ ()T M=2(t) dt > 0. (17)
0

This effectively replaces the precise relation w = A(v) with
the quadratic constraint on z.

A dissipation inequality can be formulated to upper bound
the worst-case Lo gain of F,(G,, A) using the system (16)
and the time domain IQC (17). The following theorem is
based on the dissipation inequality framework given in [11].

Theorem 2. Assume F,(G,,A) is well posed for all A €
IQC(®, M). Then the worst-case gain is < = if there exists a

continuously differentiable P : P — S"= and a scalar A > 0
such that V(p,q) € P x P

P(p) >0, (18)
P(p)A+ ATP(p)+0P(p,q) P(p)B1 P(p)B:
BT P(p) 0 0 |+
BgP(p) 0 -1
cf
+A | DE | M |:Cl Dy D12}
Df,
cy

+— | D3
DY,

{02 Dy, D22}<0

19)

In (19) the dependency of the state space matrices on p
has been omitted to shorten the notation.

The same considerations in regard to gridding and basis
functions for P(p) as in Section II-B have to be taken into
account, in order to turn Theorem 2 into a computational
tractable optimization problem.

In many practical examples, the IQCs include frequency-
dependent weightings which do not necessarily have to be
rational functions. For instance, the IQC factorization for
an LTI norm-bounded operator uses a scaling D(s). In the
classical p-framework, a frequency gridding is applied, so
that D(jw) can be solved for at each frequency individually.
This freedom is lost in the presented approach, as a single
D € RH,, has to be specified. To overcome this shortcoming
a basis function approach is used, i.e.

Np
D(s) = a;Di(s). (20)
i=1
«; can be treated as free decision variable by using an inde-
pendent factorization (¥;, M;) for each D;(s) and allowing
different \; in condition (19) for each factorization. This is
analogous to the use of many multipliers in the original IQC
analysis [9].

IV. NUMERICAL EXAMPLE

A simple example is used to demonstrate the applicability
of the proposed method. The example is a feedback inter-
connection of a first-order LPV system with a gain-scheduled
proportional-integral controller as shown in Fig. 5.

(Y w

Co 2 Tier» Gp ﬁ

Closed Loop Interconnection with Dynamic Uncertainty

Fig. 5.

The system G, taken from [22], is a first order system
with dependence on a single parameter p. It can be written



as
. 1 1
g = —mzc + @UG 1)
y=K(p)za

with the time constant 7(p) and output gain K (p) depending
on the scheduling parameter as follows:

7(p) = /133.6 — 16.8p
K(p) =+/4.8p — 8.6.

The scheduling parameter p is restricted to the interval [2, 7].
For all the following analysis scenarios a grid of six points
is used that span the parameter space equidistantly. A time-
delay of 0.5 seconds is included at the control input. The
time delay in the system is represented by a second order
Pade approximation:

(22)

(Tys)®  Tys
!
Taer(s) = og—2——, (23)
(T;;)Q TSS 1

where T,; = 0.5.

For G, a gain-scheduled PI-controller C,, is designed that
guarantees a closed loop damping (; = 0.7 and a closed
loop frequency w. = 0.25 at each frozen value of p. The
controller gains that satisfy these requirements are given by

_ 2<clwcl7—(p) —1

K,(p) =
=)
2 (24)
K( ) _ wclT(p)
K(p)
The controller is realized in the following state space form:
ic = Ki (&
(p) 25)

u=u1z.+ Ky(p)e

As an extension to the original example in [22], a multi-
plicative norm bounded uncertainty A is inserted at the input
of the plant. The norm of the uncertainty is assumed to be
less than a positive scalar b, i.e. ||A] < b. The uncertainty
is described by the integral quadratic constraints (¥, M)
with U = [ and M = [b02 0, ]. The gain of the channel
from the reference signal d to the control error e is used as
performance measurement and  is an upper bound on the
worst case gain as defined by (15).

Established techniques are used to compute two gains for
comparison with the proposed method: (I) the worst-case LTI
gain in the presence of uncertainty at each frozen value of
p, and (II) the bound on induced Lo gain of the nominal
LPV system (A = 0). The worst-case LTI gain (I) at each
frozen value of p is computed using the Matlab command
wcgain [23]. The nominal LPV gain (II) is computed using
the standard LMI condition in Theorem 1.

The first analysis is performed assuming unbounded pa-
rameter variation rates. Hence, a constant matrix P is
assumed. In this case, the nominal gain for the system
without uncertainty is 18.7. The results of the robust LPV
performance analysis for different uncertainty sizes is shown
in the top plot of Fig. 6. The convex optimization could

not find feasible solutions for b > 0.1, meaning that for
uncertainties larger than ten percent no finite gain can be
guaranteed. For the case b = 0.05 this analysis yields a bound
on the worst case gain of 29.1. The following approach is
used to estimate the conservativeness of the upper bound.
First, the frozen LTI analysis (I) is performed for b = 0.05
to obtain the worst values of p and A. The worst value of A
returned by wcgain is used to construct a (not-uncertain)
LPV system F,(G,,A). The conditions in Theorem 1 are
then used to compute the induced L, gain bound for this
system. The result of this analysis is a gain of 27.5 which his
close to the computed worst-case gain of 29.1. This approach
does not provide a true lower bound on the worst-case gain
due to the conservatism in the Bounded Real Lemma for
LPV systems. However, it does provide an indication of the
conservatism in the proposed robustness bound.

In the next step, the parameter variation rate is bounded
by |p| < 2. Affine and quadratic parameter dependences are
considered for P, i.e. P(p) = Py + pP1 and P(p) = Py +
pP1 + p? P, respectively. The results are given in the middle
plot of Fig. 6. Allowing a higher order P(p) reduces the
worst case gains and also allows finding finite gains up to
b = 0.3. In comparison, the affine storage function could
only guarantee finite gains for b < 0.25.

Finally, to compare the proposed method with the LTI
gains the rate is bounded by |p| < 0.1. Both affine and
quadratic dependences of P(p) are presented in relation to
the results of the Matlab function wcgain in the lower
plot of Fig. 6. The following two facts mostly contribute
to the difference between the results from wcgain and the
proposed method: First, the parameter dependence of the
storage function is restricted in the latter, while the first can
compute a individual P at each grid point. Second, wcgain
assumes that A is an LTI operator, whereas it can be any
norm-bounded operator in the latter case.

V. CONCLUSIONS

In this paper the analysis frameworks for LPV systems and
uncertainties described by IQCs have been combined. This
leads to computationally efficient conditions to assess the
robust performance of an LPV system interconnected with
uncertainties and nonlinearities. The proposed robust LPV
analysis framework is a generalization of the well known
nominal LPV Bounded Real Lemma. A simple numerical
example was presented to show the potential of the proposed
approach. Future work will consider the synthesis of robust
controllers for uncertain LPV systems.
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