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Abstract— A robust synthesis algorithm is proposed for a
class of uncertain linear parameter varying (LPV) systems.
The uncertain system is described as an interconnection of a
nominal (not-uncertain) LPV system and an uncertainty whose
input/output behavior is described by an integral quadratic
constraint (IQC). The proposed algorithm is a coordinate-wise
ascent that is similar to the well-known DK iteration for µ-
synthesis. In the first step, a nominal controller is designed
for the LPV system without uncertainties. In the second step,
the robustness of the designed controller is evaluated and a
new scaled plant for the next synthesis step is created. The
robust performance condition used in the analysis step is
formulated as a dissipation inequality that incorporates the
IQC and generalizes the Bounded Real Lemma like condition
for performance of nominal LPV systems. Both steps can be
formulated as a semidefinite program (SDP) and efficiently
solved using available optimization software. The effectiveness
of the proposed method is demonstrated on a simple numerical
example.

I. INTRODUCTION

This paper considers the robust synthesis problem for a
class of uncertain linear parameter varying (LPV) systems.
The uncertain system is described as an interconnection
of a nominal (not-uncertain) LPV system and a structured
perturbation. The state matrices of the nominal system are
assumed to have an arbitrary dependence on the parame-
ters. An arbitrary parameter dependence appears in many
applications, e.g. aeroelastic vehicles [1] and wind turbines
[2], [3], by linearization of nonlinear models. The existing
analysis and synthesis results for nominal (not uncertain)
LPV systems provide a rigorous framework for design of
gain-scheduled controllers [4], [5]. The input/output behavior
of the perturbation is described by an integral quadratic con-
straint (IQC) [6]. The perturbation can include (parametric
or dynamic) uncertainty and/or nonlinearities, e.g. saturation.
However, this paper focuses on the case where the IQC
describes the behavior of a norm-bounded uncertainty. A
robust performance condition for uncertain LPV systems is
formulated as a dissipation inequality that incorporates the
IQC and generalizes the Bounded Real Lemma like condition
for performance of nominal LPV systems [7]. A brief review
of these technical results are provided in Section II.

The robust synthesis algorithm is proposed in Section
III. It is a coordinate-wise ascent that is similar to the
well-known DK iteration for µ-synthesis [8]. In the first
step, a nominal controller is designed for the LPV system
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without uncertainties. In the second step, the robustness of
the designed controller is evaluated using the dissipation
inequality condition. The main technical issue is that the
IQC scalings must be incorporated to create a new scaled
plant for further synthesis. A new controller is designed
at the next step using this scaled plant. Both steps can be
formulated as a semidefinite program (SDP) and efficiently
solved using available optimization software. In Section IV,
the effectiveness of the proposed method is demonstrated on
a simple numerical example.

It should be noted that robust synthesis conditions have
recently been developed for LPV systems in [9], [10]. These
recent results are for the specific class of LPV systems
where the state matrices have a rational (linear fractional)
dependence on the parameters. The results contained in
this conference paper complement the existing results in
[9], [10]. In particular, this paper handles a more general
class of LPV systems where the state matrices have an
arbitrary dependence on the parameters. The drawback of this
generality is that the SDP conditions are more complicated
and difficult to solve than those obtained for LPV models
with rational dependence [11], [12], [13]. Another drawback
is that the proposed algorithm inherits the non-convexity
of µ-synthesis. As a result, the proposed coordinate-wise
iteration will not, in general, converge to a local (nor global)
optima. However, the coordinate-wise algorithm provides a
useful and intuitive extension of the standard DK-synthesis
approach to LPV systems. A key distinction is that DK-
synthesis uses a frequency-domain robust performance con-
dition in the D step in order to compute the scalings on a
frequency grid. This approach is not possible in the analysis
step of the proposed approach because the (nominal) LPV
system is time-varying with an arbitrary dependence on the
parameters. Hence the analysis step is instead performed
based on a time-domain, dissipation inequality approach.

II. BACKGROUND

A. Linear Parameter Varying Systems

LPV systems are a class of systems whose state space
matrices depend on a time-varying parameter vector ρ :
R+ → Rnρ . An allowable parameter trajectory ρ is a
continuously differentiable function of time that is restricted
at each point in time to lie in a known compact set P ⊂ Rnρ .
The set of admissible parameter trajectories is denoted as A.
In some applications, the parameter rates of variation ρ̇ are
assumed to be bounded. However, only the rate-unbounded
case is considered here for simplicity. Most results in this



paper generalize, but with more extensive notation, to the
rate bounded case using existing results in [4], [5], [7].

The state-space matrices of an LPV system are continuous
functions of the parameter: A : P → RnG×nG , B : P →
RnG×nd , C : P → Rne×nG and D : P → Rne×nd . An nth

G

order LPV system, Gρ, is defined by[
ẋ(t)
e(t)

]
=

[
A(ρ(t)) B(ρ(t))
C(ρ(t)) D(ρ(t))

] [
x(t)
d(t)

]
(1)

The state matrices at time t depend on the parameter vector
at time t. Hence, LPV systems represent a special class of
time-varying systems. Throughout the remainder of the paper
the explicit dependence on t is occasionally suppressed to
shorten the notation. Moreover, it is important to emphasize
that the state matrices are allowed to have an arbitrary
dependence on the parameters.

B. Induced L2 Control for LPV systems

The performance of an LPV system Gρ can be specified
in terms of its induced L2 gain from input d to output e.
The induced L2 norm is defined by

‖Gρ‖ := sup
d6=0,d∈L2,ρ∈A,x(0)=0

‖e‖
‖d‖

. (2)

In words, this is the largest input/output gain over all possible
inputs d ∈ L2 and allowable trajectories ρ ∈ A.

This norm forms the basis for the induced L2 norm
controller synthesis in [4], [5]. The results in [4], [5] are
briefly summarized for the rate unbounded case. Consider
an open loop LPV system Gρ asẋe

y

 =

A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D22(ρ)
C2(ρ) D21(ρ) D22(ρ)

xd
u

 (3)

where x ∈ RnG , d ∈ Rnd , e ∈ Rne , u ∈ Rnu and y ∈ Rny .
The goal is to synthesize an LPV controller Kρ of the form:[

ẋK
u

]
=

[
AK(ρ) BK(ρ)
CK(ρ) DK(ρ)

] [
xK
y

]
. (4)

The controller generates the control input u. It has a linear
dependence on the measurement y but an arbitrary depen-
dence on the (measurable) parameter ρ. The closed-loop
interconnection of Gρ and Kρ is given by a lower linear
fractional transformation (LFT) and is denoted Fl(Gρ,Kρ).
The objective is to synthesize a controller Kρ of the specified
form to minimize the closed-loop induced L2 gain from
disturbances d to errors e:

min
Kρ
‖Fl(Gρ,Kρ)‖ . (5)

A simple, necessary and sufficient condition does not exist
to evaluate the induced L2 norm of an LPV system. However,
there are bounded-real type linear matrix inequality (LMI)
conditions that are sufficient to upper bound the gain of an
LPV system (Lemma 3.1 in [5]). This sufficient condition
forms the basis for the synthesis result in Theorem 1 below.
The notation for the synthesis result is greatly simplified
by assuming the feedthrough matrices satisfy D11(ρ) = 0,

D22(ρ) = 0 and D12(ρ)T = [0, Inu ], D21(ρ) = [0, Iny ].
Under some technical rank assumptions, this normalized
form can be achieved through a combination of loop-shifting
and scaling [4], [14]. The input matrix is partitioned as
B1(ρ) :=

[
B11(ρ) B12(ρ)

]
compatibly with the normal-

ized form of D21. Similarly, the output matrix is partitioned
as CT1 (ρ) :=

[
CT11(ρ) CT12(ρ)

]
compatibly with D12. Given

these simplifying assumptions, the solution to the induced L2

control synthesis problem is stated in the next theorem.
Theorem 1 ([4], [5]): Let P be a given compact set and

Gρ an LPV system (Equation 3) that satisfies the normalizing
assumptions above. There exists a controller Kρ as in Equa-
tion 4 such that ‖Fl(Gρ,Kρ)‖ ≤ γ if there exist matrices
P = PT > 0 and Q = QT > 0 such that ∀ρ ∈ P[

P Inx
Inx Q

]
≥ 0

(6)[
QÂ(ρ)T + Â(ρ)Q− γB2(ρ)B2(ρ)T QC11(ρ)T B1(ρ)

C11(ρ)TQ −γIne1 0
B1(ρ)T 0 −γInd

]
< 0

(7)[
Ã(ρ)TP + PÃ(ρ)− C2(ρ)TC2(ρ) PB11(ρ) C1(ρ)T

B11(ρ)TP −γInd1 0
C1(ρ) 0 −γIne

]
< 0

(8)

where Â(ρ) := A(ρ) − B2(ρ)C12(ρ) and Ã(ρ) := A(ρ) −
B12(ρ)C2(ρ).

Proof: The proof uses a matrix elimination argument
similar to that used in the LMI approach to H∞ synthesis
for LTI systems [15]. Moreover, if the conditions are satisfied
then an LPV controller (AK(ρ), BK(ρ), CK(ρ), DK(ρ)) can
be constructed from the open loop plant matrices and the
feasible values of P , Q, and γ. The controller reconstruction
formulation is given in [4], [5].

C. Robustness Analysis of LPV Systems

Integral quadratic constraints (IQCs) [6] provide a frame-
work for robustness analysis. The IQC and the stability con-
dition in [6] are all specified in frequency domain. A related
stability theorem can be formulated using dissipation theory,
and a time-domain IQC [7]. The time domain approach is
preferred for robust analysis of LPV systems. A time domain
IQC is defined by a symmetric matrix M = MT ∈ Rnz×nz
and a stable linear system Ψ ∈ RHnz×(nv+nw)

∞ . Ψ is denoted
as [

ẋψ(t)
z(t)

]
=

[
Aψ Bψ1 Bψ2

Cψ Dψ1 Dψ2

]xψ(t)
v(t)
w(t)

 (9)

The initial condition for Ψ is always taken as xψ(0) = 0.
Definition 1: A bounded, causal operator ∆ : Lnv2e →

Lnw2e satisfies an IQC defined by (Ψ,M) if the following
inequality holds for all v ∈ Lnv2 [0,∞), w = ∆(v) and
T ≥ 0: ∫ T

0

z(t)TMz(t) dt ≥ 0 (10)



where z is the output of the linear system Ψ as defined
in Equation 9. The notation ∆ ∈ IQC(Ψ,M) is used if ∆
satisfies the IQC defined by (Ψ,M).

∆

Ψ
z

v w

Fig. 1. Graphical interpretation of the IQC

Fig. 1 provides a graphical interpretation of the IQC. The
input and output signals of ∆ are filtered through Ψ. If
∆ ∈ IQC(Ψ,M) then the output signal z satisfies the (time-
domain) constraint in Equation 10 for any finite-horizon T ≥
0. IQCs can be used to model a variety of nonlinearities and
uncertainties (Cite Ranzer). However, this paper will focus
on the special case where ∆ is a norm-bounded uncertainty.
Specifically, the results in this paper hold for uncertainties
∆ that satisfy the following assumptions:

Assumption 1: ∆ satisfies IQC(Ψ,Mb) where Mb :=[
b2Inv 0

0 −Inw

]
, Ψ :=

[
Ψ11 0

0 Ψ22

]
, Ψ11 ∈ RHnv×nv∞ and

Ψ22,Ψ
−1
22 ∈ RHnw×nw∞ .

Norm-bounded nonlinear operators can be modeled using
an IQC that satisfies Assumption 1. As an example, let
∆ be a casual (SISO), LTI uncertainty with norm bound
‖∆‖ ≤ b. Then ∆ satisfies the IQC defined by Mb and
Ψ(s) :=

[
D(s) 0

0 D(s)

]
where D(s) is any stable, minimum

phase transfer function. This is equivalent to the use of
frequency-dependent D-scales in µ-analysis. The causality
of ∆ can be used to show that the time-domain constraint
(Equation 10) holds over all finite time horizons [7]. MIMO
LTI uncertainties also satisfy an IQC of the form given in
Assumption 1.

Given this assumption, an uncertain LPV system is de-
scribed by the interconnection of an LPV system Gρ and an
uncertainty ∆, as depicted in Fig. 2. This interconnection
represents an upper LFT denoted Fu(Gρ,∆). The filter Ψ
has been included in Fig. 2 as it is used for the analysis.

Gρ

∆

Ψ

de

wv

z

Fig. 2. Analysis Interconnection

The dynamics of the analysis interconnection in Fig. 2 are
described by w = ∆(v) andẋz

e

 =

A(ρ) B1(ρ) B2(ρ)
C1(ρ) D11(ρ) D12(ρ)
C2(ρ) D21(ρ) D22(ρ)

xw
d

 (11)

where the state vector is x = [xG;xψ] ∈ RnG+nψ with
xG and xψ being the state vectors of the LPV system Gρ
and the filter Ψ respectively. The uncertainty ∆ is shown
in the dashed box in order to signify that it is removed for
the analysis. The signal w is treated as an external signal
subject to the constraint 10. This effectively replaces the
precise relation w = ∆(v) with the quadratic constraint on
z.

A natural performance metric for this uncertain LPV
system is the worst-case gain over all ‖∆‖ ≤ 1:

sup
∆∈IQC(Ψ,Mb=1), ρ∈A

‖Fu(Gρ,∆)‖ (12)

This metric is inconvenient for robust synthesis as the
controller must achieve both robust stability and minimal
input/output gain. Thus it is standard, e.g. in DK-synthesis, to
insead use a robust performance metric that simultaneously
scales both the uncertainty level and the system gain. This
metric used for robust synthesis is formally defined as

Definition 2: Fu(Gρ,∆) achieves Robust Performance
(RP) of level γ if

sup
∆∈IQC(Ψ,M 1

γ
), ρ∈A

‖Fu(Gρ,∆)‖ ≤ γ (13)

Let r∆[Gρ] denote the smallest level of RP achievable by
Gρ.

In other words, RP of level γ is achieved if the worst-case
induced L2 gain from the input d to the output e is ≤ γ over
all admissible trajectories ρ ∈ A and uncertainties ‖∆‖ ≤
1
γ . The next theorem provides a (sufficient) dissipation-
inequality condition to upper bound the robust performance.
This theorem is a minor modification of the worst-case gain
condition in [7].

Theorem 2: Assume Fu(Gρ,∆) is well posed for all ∆ ∈
IQC(Ψ,M 1

γ
). Then Fu(Gρ,∆) achieves RP of level γ if

there exists a matrix P = PT ∈ R(nG+nψ)×(nG+nψ) and a
scalar λ ≥ 0 such that P ≥ 0 and ∀ρ ∈ P[

PA+ATP PB1 PB2

BT1 P 0 0

BT2 P 0 −I

]
+ λ

[
CT1
DT11
DT12

]
M 1

γ
[C1 D11 D12 ]

+
1

γ2

[
CT2
DT21
DT22

]
[C2 D21 D22 ] < 0

(14)

In Equation 14 the dependence of the state matrices on ρ has
been omitted.

Proof: The proof is based on defining a storage function
V : RnG+nψ → R+ by V (x) := xTPx. Left and right
multiply Equation 14 by [xT , wT , dT ] and [xT , wT , dT ]T to



show that V satisfies the dissipation inequality:

V̇ (t) + λz(t)TM 1
γ
z(t) ≤ d(t)T d(t)− γ−2e(t)T e(t) (15)

The dissipation inequality (Equation 15) can be integrated
from t = 0 to t = T with the initial condition x(0) = 0. The
IQC condition (Equation 10) along with λ ≥ 0 and P ≥ 0
imply ‖e‖ ≤ γ‖d‖. Details are in [7].

III. ROBUST SYNTHESIS
A. Problem Formulation

Consider the robust synthesis problem for uncertain LPV
systems as shown in Fig 3. The uncertain LPV system is
described by the interconnection of an open loop LPV system
Gρ and a perturbation ∆. Gρ is defined as

ẋ
v
e
y

 =


A(ρ) B1(ρ) B2(ρ) B3(ρ)
C1(ρ) D11(ρ) D12(ρ) D13(ρ)
C2(ρ) D21(ρ) D22(ρ) D23(ρ)
C3(ρ) D31(ρ) D32(ρ) D33(ρ)



x
w
d
u

 (16)

Gρ

Kρ

∆

Ψ

de

wv

uy

z

Fig. 3. LPV Robust Synthesis

The objective is to synthesize an LPV controller Kρ as
in Equation 4 to minimize the robust performance of the
closed-loop system:

inf
Kρ stabilizing

r∆ [FL(Gρ,Kρ)] (17)

The condition in Theorem 2 (Equation 14) provides an upper
bound on the closed-loop robust performance condition. This
results in a matrix inequality that is bilinear in the state
matrices for Kρ and the storage matrix P ≥ 0. This leads to
a non-convex optimization. In addition, the scaling for the
IQC λ ≥ 0 also leads to non-convexity in the optimization.
A standard coordinate-wise approach is used to decouple
the design into a controller synthesis step (for Kρ) and
an uncertainty analysis step (for P and λ). As with DK-
synthesis, there are no guarantees that the coordinate-wise
iteration will lead to a local optima let alone a global optima.
However, it is a useful heuristic that will enable the robust
synthesis to extended naturally from LTI to LPV systems.
The control synthesis step for Kρ is described in Section
III-B. The analysis step for λ and P is described in Section
III-C. Finally, the detailed description of the coordinate-wise
iteration using these two steps is given in Section III-D.

B. Synthesis Step

Assume that the IQC filter Ψ =
[

Ψ11 0
0 Ψ22

]
has been

computed from the previous step of the coordinate-wise
iteration. Define the following scaled system:

G̃ρ :=
[

Ψ11 0
0 Ine+ny

]
Gρ

[
Ψ−1

22 0
0 Ind+nu

]
(18)

In the synthesis step, the objective is to synthesize a con-
troller Kρ to minimize the induced L2 gain of the closed-
loop system shown in Figure 4 below. This synthesis step
is completed by applying Theorem 1 in Section II-B. The
synthesis step with the scaled system ensures the original,
unscaled system achieved a specified level of robust perfor-
mance as stated in the following Lemma.

Gρ

Ψ−1
22Ψ11

Kρ

w w̃vṽ

de uy
G̃ρ

Fig. 4. LPV Synthesis

Lemma 1: If supρ∈A

∥∥∥Fl(G̃ρ,Kρ)
∥∥∥ ≤ γ then

sup
∆∈IQC(Ψ,M 1

γ
), ρ∈A

‖Fu(Fl(Gρ,Kρ),∆)‖ ≤ γ (19)

Proof: The proof requires the transformation from
the original interconnection (Figure 3) to the scaled inter-
connection shown in Figure 5 below. In the transformed
interconnection, G̃ρ is the scaled LPV system. It can
be easily shown that ∆ ∈ IQC(Ψ,M 1

γ
) if and only if

∆̃ ∈ IQC(Inv+nw ,M 1
γ

). Thus the original interconnection
achieves RP of level γ if and only if the scaled interconnec-
tion achieves RP of level γ.

Gρ

Ψ−1
22Ψ11

Kρ

∆ Ψ22Ψ−1
11

I

w w̃vṽ

de

z

uy
G̃ρ

∆̃

Fig. 5. Block Diagram Transformation



The proof is thus concluded by showing that
supρ∈A

∥∥∥Fl(G̃ρ,Kρ)
∥∥∥ ≤ γ implies the scaled

interconnection achieves RP of level γ. Let d ∈ L2, ρ ∈ A,
∆̃ denote any input, admissible parameter trajectory, and
uncertainty satisfying IQC(Inv+nw ,M 1

γ
). Let e, ṽ, and w̃

denote the resulting signals of the scaled interconnection with
zero initial conditions. By assumption

∥∥∥Fl(G̃ρ,Kρ)
∥∥∥ ≤ γ

and hence ‖ṽ‖2 + ‖e‖2 ≤ γ2(‖w̃‖2 + ‖d‖2). Moreover,
γ2 ‖w̃‖2 ≤ ‖ṽ‖2 since ∆̃ ∈ IQC(Inv+nw ,M 1

γ
). Combining

these two inequalities yields ‖e‖2 ≤ γ2 ‖d‖2. Thus the scaled
interconnection (and hence the original interconnection)
achieves RP of level γ.

C. Analysis Step

The analysis step assumes that a controller Kρ has been
computed from the previous step of the coordinate-wise iter-
ation. Define the following scaled system Nρ := Fl(Gρ,Kρ).
The objective at this step is to analyze the robust performance
of Fu(Nρ,∆). Theorem 2 can be applied to bound the robust
performance of this system. However, several issues must be
addressed in order to apply the matrix inequality condition
in this theorem.

First, the standard DK-synthesis (for LTI ∆) uses fre-
quency gridding to construct D-scales with an arbitrary
frequency dependence. This freedom is lost in the proposed
dissipation inequality approach because the LPV system
is time-varying and does not have a frequency response.
Instead, several basis functions {Ψk}Nk=1 can be selected to
describe frequency-dependent constraints on ∆. Each Ψk can
be appended to the inputs/outputs of ∆ to yield a filtered
output zk. Theorem 2 remains valid if the matrix inequality
condition (Equation 14) is modified to include the term

N∑
k=1

λk

[
C1k(ρ)T

D11k(ρ)T

D12k(ρ)T

]
M 1

γ
[C1k(ρ) D11k(ρ) D12k(ρ) ] (20)

for any constants λk ≥ 0. In this case the extended system
includes the dynamics of Gρ as well as the dynamics of each
Ψk (k = 1, · · · , N ). In addition, (C11k, D11k, D12k) denote
the output state matrices of the extended system associated
with output zk. The robust performance analysis consists of
a search for the matrix P ≥ 0, performance bound γ, and
the constants λk ≥ 0 that lead to feasibility of the matrix
inequality. This approach also enables many IQCs for ∆ to
be incorporated into the analysis. The matrix inequality is
bilinear in γ and the scalings λk. However, it is quasiconvex
and can be efficiently solved via a bisection on γ. This
leads to optimal scalings λk,opt and performance level γopt.
The IQCs can be combined into a single frequency domain
multiplier Πopt :=

∑N
k=1 λk,optΨ

∗
kM 1

γopt
Ψk. Since each Ψk

is assumed to be diagonal (by Assumption 1) the multiplier
Πopt can be factorized as Πopt = Ψ∗optM 1

γopt
Ψopt. This

factorization can be performed using standard state-space
spectral factorization techniques on each diagonal block [16].
This yields a Ψopt that can be used as the IQC filter in the
next synthesis step. It should be noted that there is currently

no clear guideline to select basis functions but based on
experience.

D. Iteration Algorithm

The robust synthesis algorithm basically iterates between
the synthesis step and analysis step as described in Sections
III-B and III-C. The detailed steps including the initialization
and termination are given below. The stopping criteria is
specified by an absolute tolerance εtol > 0.

1) Initialization: Set Ψ(0) := Inv+nw , γ(0) = +∞, i = 1.
2) Synthesis: Given Ψ(i−1), synthesize a controller K(i)

ρ

as described in Section III-B.
3) Analysis: Given K(i)

ρ , analyze the system as described
in Section III-C to obtain an updated RP level γ(i) and
filter Ψ(i).

4) Termination: If γ(i−1) − γ(i) > εtol then set i = i+ 1
and return to Step 2. Otherwise terminate the iteration.

The algorithm can be easily modified to incorporate other
stopping criteria, e.g. maximum number of iterations and/or
relative stopping tolerances.

IV. NUMERICAL EXAMPLE

A simple example is used to demonstrate the applicability
of the proposed method. The objective is to design an LPV
controller Kρ for an uncertain LPV system Gρ. The robust
synthesis interconnection is depicted in Fig. 6.

We

Kρ

∆̄

Gρ
d

e

Fig. 6. Synthesis interconnection

The nominal system Gρ, taken from [17], is a first order
system with dependence on a single parameter ρ. It can be
written as

ẋG = − 1

τ(ρ)
xG +

1

τ(ρ)
uG

y = C(ρ)xG

(21)

with the time constant τ(ρ) and output gain C(ρ) depending
on the scheduling parameter as follows:

τ(ρ) =
√

133.6− 16.8ρ

C(ρ) =
√

4.8ρ− 8.6.
(22)

The scheduling parameter ρ is restricted to the interval [2, 7].
For all the following analysis scenarios a grid of 11 points
is used that span the parameter space equidistantly.

The objective of the LPV controller is to offer good
tracking performance at low frequencies while being robust
against uncertainties in the plant input at high frequencies.



The uncertainty ∆̄ is described by a norm-bounded operator
∆ in conjunction with the frequency weighting

Wu(s) =
s+ 1

s+ 100
(23)

such that ∆̄ = ∆Wu. The tracking objective is specified
weighting the channel from the reference input d to the
control error e with

We(s) =
0.1s+ 10

s+ 1
. (24)

A robust LPV controller is designed using the algorithm
proposed in Section III-C. The results of the control design
are shown in Fig. 7. Two different cases are considered.
In the first, ∆ is bounded by a single IQC(Ψ1,M 1

γ
) with

Ψ1 = I . The second one uses both IQC(Ψ1,M 1
γ

) and the
additional IQC(Ψ2,M 1

γ
) with

Ψ2(s) =

[
D2(s) 0

0 D2(s)

]
, D2(s) =

s+ 100

100(s+ 1)
. (25)

Both cases converge to a solution after 16 and 12 iterations
respectively using as stopping criteria εtol = 0.05. Adding
more IQCs to bound ∆ results in a better robust performance
of the final controller, i.e. γ = 3.54 for case 1 and γ =
2.75 for case 2. Both clearly outperform the nominal control
design which has a robust performance γ = 6.02.

2 4 6 8 10 12 14 16
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D1 = 1, D2 = s+100
100(s+1)

D1 = I

Fig. 7. Results of the Iterative Synthesis Algorithm

V. CONCLUSION

This paper proposed a robust synthesis algorithm for a
class of uncertain LPV systems. The uncertain system is
described as an interconnection of a nominal LPV sys-
tem where the state matrices have arbitrary dependence on
parameters, and a norm bounded uncertainty described by
IQCs. The proposed coordinate-wise algorithm is similar to
the well-known DK iteration for µ-synthesis and therefore
provides a useful and intuitive extension of the standard
DK-synthesis approach to LPV systems. The effectiveness
of this method was shown by a simple numerical example.

Future works will consider more general uncertainties ∆ ∈
IQC(Ψ,M) where Ψ contains full matrix dynamics and
prove the convergent property of the algorithm.
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