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Abstract: This paper describes the LPVTools software suite developed by MUSYN Inc.
LPVTools is a MATLAB toolbox for simulation, analysis, and design of parameter dependent
control systems using the Linear Parameter-Varying (LPV) framework. LPVTools contains data
structures to represent both LFT and gridded (Jacobian-linearization) types of LPV systems. In
addition it contains a collection of functions and tools for model reduction, analysis, synthesis
and simulation of LPV systems. Finally, the toolbox is fully documented and contains several
demonstration examples. The software is freely available for use by the community.

Keywords: Linear Parameter-Varying, Software Tools.

1. INTRODUCTION

LPVTools is a MATLAB toolbox for modeling and design
of Linear Parameter-Varying (LPV) systems. The toolbox
contains data structures to represent LPV systems in both
the LFT and gridded (Jacobian-linearization) framework.
The core of the toolbox is a collection of functions for
model reduction, analysis, synthesis and simulation of
LPV systems. Finally, the toolbox contains full documen-
tation and several demonstration examples. LPVTools was
developed by MUSYN, Inc. (G. Balas and the authors)
but has been made freely available to the community. The
toolbox can is available for download at:

www.aem.umn.edu/~SeilerControl/software.shtml

LPV theory is closely related to gain scheduling via
interpolation of point designs, a standard method used
in industry to develop full-envelope flight control laws.
LPV theory provides a mathematically rigorous approach
to the design of gain-scheduled controllers. This includes
powerful guarantees on the performance and robustness
in the presence of time-varying dynamics and uncertainty.
LPVTools was developed as a result of increased interest
in the LPV approach to modeling and design in aerospace
applications. Specifically, the tooblox was developed to aid
the design of aeroservoelastic control laws for lightweight,
flexible Unmanned Aerial Vehicles (UAVs). Current efforts
include flight control law development for the Mini-MUTT
UAV at the University of Minnesota, Pfifer et al. (2015),
and the X-56A by Lockheed Martin and NASA Armstrong
Flight Research Center.

This paper describes the LPVTools software suite. It is
not meant as a survey of LPV theory and results, but is
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instead focused on the core data structures in LPVTools
and a description of their capabilities. For in an in depth
look at LPV theory and recent advances in the field, the
reader is referred to recent books and survey papers on
the topic, e.g. Briat (2014); Mohammadpour and Scherer
(2012); Lovera et al. (2011) The remainder of the paper
is divided into five sections. First, an overview of the
LPV framework is given in Section 2. Next, the core data
structures are introduced in Section 3. The capabilities
of LPVTools are detailed in Section 4. Finally, a small
example that illustrates the toolbox usage is provided in
Section 5. Conclusions are given in Section 6.

The functionality in this initial release of LPVTools does
not comprehensively cover the existing results in the LPV
literature. In addition, LPVTools does not interact with
other existing software for gain-scheduled control design,
e.g. the hinfgs command in LMILab. Despite these limi-
tations the basic infrastructure in LPVTools should enable
development of new algorithms and comparison of various
techniques.

2. THE LINEAR PARAMETER-VARYING
FRAMEWORK

LPV systems are time-varying, state-space models of the

form:
#(0] _ [A(6(t) Blo(t)] () "
y()] — [Clp®) D(p(t))] [u(t)
where p € R™ is a vector of measurable parameters,
y € R™ is a vector of measurements, z € R™ is the
state vector, u € R™ is a vector of control inputs, and
A:P = Re=Xe B P — RWeXM (P — RWwWX" and
D : P — R™*™ are continous matrix valued functions.

The LPV system depends on a set of time-varying param-
eters p. The trajectories of the parameters are assumed to
take on values in a known compact set P C R", and to



have known bounds on their derivatives with respect to
time: 7 < p < v, where 7 and v € R™. A trajectory is
said to be "rate unbounded” if 7 = co and ¥ = —oo0.

For control design in the LPV framework, it is further
assumed that the trajectory of p is not known in advance,
and that the parameter values are measured and available
in real-time with sensors. The controller produced is itself
a LPV system which is optimized for the parameter
trajectories in p € P, subject to 7 < p < v, and dependent
on real-time measurements of the parameter.

Several methods have arisen for representing the param-
eter dependence in LPV models (Equation 1). LPVTools
implements data structures for two of these: i) Lineariza-
tions on a gridded domain, e.g. as in Becker (1993) or
Wu (1995); and ii) Linear Fractional Transformations
(LFT), e.g. as in Packard (1994) or Apkarian and Gahinet
(1995a.,b). Linearizations on a gridded domain are ob-
tained through Jacobian linearization at each grid point.
Each linearization approximates the system’s dynamics in
the vicinity of a particular grid point, and the grid of
linearizations captures the system’s parameter dependence
implicitly. Hence, linearization based LPV models do not
require any special dependence on the parameter vector.
LFT models, on the other hand, have state matrices that
are rational functions of the parameter. Hence, their de-
pendence on the parameter vector is modeled explicitly.

3. THE LPVTOOLS TOOLBOX

LPVTools is implemented in MATLAB, using object-
oriented programming. The toolbox introduces several
class-based data structures for modeling LPV systems.
These data structures extend the functionality associated
with standard MATLAB data structures from the Control
Systems Toolbox and the Robust Control Toolbox into
the LPV framework!. This is pictorially represented in
Figure 1. The core LPVTools data structures are direct
extensions of existing data structures, and provide a pa-
rameter dependent interpretation of the original object.
Note that LPV systems are time varying, and as such do
not have a valid frequency response interpretation. Hence,
the parameter dependent frequency response objects (pfrd
and upfrd) are simply a convenience to hold frequency
response data at fixed parameter values, and do not imply
a time-varying frequency response.

Each LPVTools object implements the capabilities of its
corresponding standard object, wherever applicable. The
motivation for this approach is to provide a seamless
and intuitive interface between existing MATLAB data
structures and the new LPVTools data structures. The
standard MATLAB data structures become a special case
of the LPV data structures, such that if the parameter
dependence in a LPV data structure is eliminated it reverts
back to a standard Linear Time-Invariant (LTT) MATLAB
data structure.

3.1 Grid-based approach

The LPV system in Equation 1 is conceptually repre-
sented by a state-space system S(p) that depends on a

1 LPVTools requires MATLAB®, Simulink®, the Control Systems
Toolbox®, and the Robust Control Toolbox®.
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Fig. 1. Relation between MATLAB objects.

time-varying parameter vector p in some compact domain
P C R". A grid-based LPV model of this system is a col-
lection of linearizations on a gridded domain of parameter
values. This is pictorially represented in Figure 2, for an
example system that depends on two parameters (in this
case Mach number and altitude). For general LPV systems
this conceptual representation requires storing the state
space system at an infinite number of points in the domain
of p. The grid based LPV approach, as implemented in
LPVTools, approximates this conceptual representation by
storing the LPV system as a state space array defined on
a finite, gridded domain. For each grid point pj there is
a corresponding LTT system (A(px), B(pr), C(pr), D(pr))
which describes the dynamics of S(px) when py is held
constant (note that pi, represents a constant vector cor-
responding to the k-th grid point, while p; is later used to
denote the i-th element of the vector p.) All the linearized
systems on the grid have identical inputs u, outputs y
and state vectors x. Together they form a LPV system
approximation of S(p). This approach is motivated by
the traditional gain-scheduling framework in aircraft flight
control, for which models are typically constructed as
linearizations around various flight operating conditions.
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Fig. 2. LPV models defined on a rectangular grid.

The core data structure for grid-based LPV models is
the pss object (denoting parameter-varying state space



model), which stores the LPV system as a state space
array defined on a finite, gridded domain. As a simple
example, consider an LPV system S(p) that depends on
a single scalar parameter p in the domain p € [a,b]. The
infrastructure requires the user to specify the domain with
a finite grid, e.g. N points in the interval [a, b]. The toolbox
contains an rgrid data object to facilitate the creation
and manipulation of multivariable parameter domains.
The user must also specify the values of the state space
system S(p) at each point in this gridded domain. The
pss object stores the state-space array data using the
MATLAB Control System Toolbox ss object. Thus the
pss can be viewed as the parameter-varying extension of
the standard ss object. To summarize, the LPV system
S(p) is represented by a pss data object which stores the
gridded domain and the array that defines the state-space
data at each point in the domain.

The notions of parameter-varying matrices and parameter-
varying frequency responses arise naturally to complement
the pss objects. LPV systems are time-varying and hence
frequency responses can not be used to represent the
system behavior as parameters vary. However frequency
responses are useful to gain intuition about the system
performance at fixed locations in the operating domain.
LPVTools represents parameter varying matrices and fre-
quency responses by pmat and pfrd data objects, respec-
tively. These two data objects are both stored as a data
array defined on a gridded domain. A pmat stores a double
array, while a pfrd stores an array of frequency responses
(frd object in the Control System Toolbox). Figure 1
shows the relation between the core LPVTools data objects
(pmat, pss, pfrd) and existing MATLAB objects. The first
row of the table (“Nominal”) shows the basic MATLAB
objects: matrices are double objects, state-space systems
are ss objects, and frequency responses are frd objects.
The third row of Table 1 (“Nominal Gridded LPV”) shows
the corresponding core LPV objects. The main point is
that the (pmat, pss, pfrd) objects should be viewed as
parameter-varying extensions of the standard MATLAB
and Control Systems Toolbox objects (double, ss, frd).

The second row of Table 1 (“Uncertain”) shows the equiv-
alent objects used to represent uncertainty: uncertain ma-
trices, state space systems, and frequency responses are
represented by umat, uss, and ufrd objects, respectively.
These objects are part of the MATLAB Robust Control
Toolbox. The Robust Control Toolbox models the uncer-
tainty as a perturbation A wrapped in feedback around
a nominal part P, i.e. uncertainty is represented using a
linear fractional transformation. Real parametric, complex
parametric, and unmodeled dynamic uncertainties can be
modeled. The fourth row of Table 1 (“Uncertain Gridded
LPV”) shows the corresponding parameter-varying objects
with uncertainty: uncertain parameter-varying matrices,
state space systems, and frequency responses are repre-
sented by upmat, upss, and upfrd objects, respectively.
These objects enable the integration of uncertainty into
LPV models.

Jacobian Linearization is the predominant method of
constructing grid-based LPV models. In this case the pss
object is formed by combining a ss array of linearizations
with an rgrid object representing the grid of parameter
values (e.g. the grid of Mach and altitude values in Figure

2). An alternative method of constructing grid-based LPV
models in LPVTools is to use the pgrid atom (denoting a
real scalar parameter defined on a grid of points).

3.2 LFT-based approach

An LPV model in Linear Fractional Transformation (LFT)
form is an interconnection of a block that represents the
plant’s nominal dynamics (linear, time invariant), and a
block that contains the time-varying parameters on which
the system depends.
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Fig. 3. An LPV system in LFT form.

In the LFT-based approach the LPV system in Equation 1
is expressed as the interconnection of the blocks M and
A,. Fy(M,A,) denotes the upper LFT shown in Figure 3,
where M is a constant matrix such that

z(t) w(t)

y(@)| =M |u(t) (2)

(t) x(t)
and A, = diag(pi(t)Lr,,...,pn, ()], ) is a diagonal
matrix such that w = A,z. Where I, indicates a 7;-by-
r; identity matrix, for positive integers r1,...,7,,, and
{p;}}? represent the elements of p. Note that the LFT
form can only be used to model LPV systems whose
state matrices are rational functions of the parameters

(see Cockburn and Morton (1997) for details on LFT
modeling).

A key component of the LFT-based LPVTools infrastruc-
ture is the core LFT data structure object, referred to
as a tvreal (denoting a time-varying parameter). The
tvreal object is used to create a time-varying, real val-
ued scalar object. The tvreal has a range, denoting the
maximum and minimum value that the time-varying scalar
can assume, and a rate-bound denoting the maximum and
minimum rate of change of the time-varying scalar. The
tvreal is used to model individual time-varying param-
eters, and construct parameter dependent LFT matrices
and systems. LPVTools represents LFT-based parame-
ter varying matrices and state-space systems by plftmat
and plftss data objects, respectively. The plftmat, and
plftss objects are constructed using tvreal elements,
using a syntax that is a direct parallel to the ureal syntax
that is used to define umat and uss objects in the Robust
Control Toolbox.

Both plftmat and plftss objects are stored as uncer-
tain objects (i.e. umat and uss, respectively) which in
MATLAB consist of the LFT (M, A,), with A, being
a block of ureal objects. Each plftmat and plftss ob-
ject’s constituent tvreal objects provide the additional
information necessary to handle the A, block like a block
of time-varying parameters. Uncertainty can be integrated
into the plftmat, and plftss objects, allowing these data



objects to model systems with, and without uncertainty.
The plftmat and plftss objects should be viewed as
LFT-based parameter-varying extensions of the standard
MATLAB, Control System Toolbox, and Robust Control
Toolbox objects double, ss, umat, and uss, as seen in
rows five ("Nominal LFT LPV”) and six (” Uncertain LFT
LPV?”) in Table 1.

3.8 Transition Between Grid-based and LFT-based LPV
Models

Transition between LFT-based (i.e. plftmat, or plftss)
and grid-based (i.e. pmat, pss, upmat, and upss) LPV
models is possible using the grid21ft and 1ft2grid func-
tions in LPVTools. The 1ft2grid function transforms
LFT-based LPV models into grid-based LPV models by
evaluating the the LFT-based model at a grid of parameter
values. The grid21ft function transforms a grid-based
LPV model into a LFT-based LPV model, by approxi-
mating the parameter dependence of the underlying data
and expressing it as a rational function of the parameter,
which can then be rewritten in LFT form.

3.4 LPVTools Implementation

It is important to note that all LPV objects are being de-
veloped within MATLAB’s object-oriented programming
framework. A benefit of object-oriented programming is
that key operations can be overloaded to provide seamless,
consistent functionality across a variety of objects. For
example, if A and B are double objects then the syntax
AxB simply multiplies the matrices. If A and B are pmat
objects then the syntax A*B multiplies the parameter-
varying matrices at each grid point in the parameter
domain. The manipulation of parameter-varying objects
is facilitated by this extension of standard operations for
MATLAB objects to meaningful, intuitive operations for
LPV objects. In addition, standard MATLAB syntaxes,
e.g. M(i,j) to index into the (i,7) element of an array,
have been overloaded and extended for parameter-varying
objects. Object-oriented programming enables this over-
loading of key functions and this enables a consistent
interface between LPVTools and MATLAB, the Control
System Toolbox, and the Robust Control Toolbox.

LPVTools provides a suite of LTI synthesis and analysis
tools, in addition to the LPV specific functions described
in Section 4. Fach LPV object overloads functionality
from the corresponding standard object in MATLAB, the
Control System Toolbox, and the Robust Control Toolbox
(see relationship between objects in Table 1). Overloaded
methods include 1qr, loopsens, and loopmargin from
the Control Systems Toolbox, and hinfsyn, wcgain, and
robuststab from the Robust Control Toolbox. These
functions can be used to study the properties of the LPV
system point-by-point in the parameter domain, i.e. the
analysis (or synthesis) is performed on the Linear Time
Invariant (LTI) system that is obtained when the time-
varying parameter p is held at a fixed value. The resulting
controllers are not LPV controllers (i.e. ones that satisfy
the LPV analysis conditions), but a collection of LTI
controllers — one for each grid point.

4. LPVTOOLS CAPABILITIES

LPVTools provides a set of tools for modeling, simulation,
synthesis and analysis in the LPV framework. These tools
include functions for synthesis of output feedback con-
trollers, state-feedback controllers, and estimators. Tools
are provided for analysis of the stability and input-to-
output gain of LPV systems (with and without uncer-
tainty). Tools are provided for performing model reduction
on LPV models. And finally, tools are provided for simu-
lating the time-domain response of an LPV system along
user-supplied parameter trajectories.

4.1 Analysis

The LPV system in Equation 1 processes the inputs u
linearly, but can depend nonlinearly on the time-varying
parameter p. The analysis problem is to determine if the
system is stable, and to quantify the input-to-output gain
of the system. Denote the LPV system in Equation 1
by S(p). Analysis in the LPV framework determines if
S(p) is internally exponentially stable, and whether the
input/output map S(p) from wu(t) to y(t) has certain
properties.

LPVTools implements two methodologies for synthesis and
analysis in the LPV framework. The two methodologies
differ in their formulation of the input/output map S(p).
The first methodology formulates this input/output map
in terms of the induced Ly norm (gain) of the system:

1S (p)ull2
[[ul2

1S(p) 22 = max max (3)
pEP
V< p<v [lull2#0

The second methodology formulates the input/output map
in terms of the stochastic LPV bound on S(p):

1 (T
stoch (S(p)) = lim max F —/ yT(y(t)dt p  (4)
T—oo pEP T Jo
v<p<v
which describes the variance of y when the input w is a
zero mean, white-noise processes with unit intensity.

The following theorem from Wu (1995) describes the LPV
analysis problem when it is formulated in terms of the
induced Ly norm of S(p) and the rate-bounds (v, 7) of the
parameter are taken into account.

Theorem 1. Given an LPV system S(p), described by
Equation 1, with p € P C R™ continuously differentiable,
7 < p <y, and z(0) = 0. If there exists a differentiable
matrix function X : p — R"™*"= guch that X(p) =
XT(p) >0, and

np X
ATX + XA+) (uia) xB c7
‘ p;
i=1 <0 (5)
BTX —~I,, DT
C D —vl,,

where v € RT, and p, stands for the fact that the in-
equality in Equation 5 must hold over the n,—dimensional
polytope of possible p values: [v,,71] X [Vg,Ta] X ... X
[V, Vn,]- Then S(p) is internally exponentially stable and
II1S(p)|l2—2 <~y for all p € P subject to 7 < p < .

The shorthand notation in Equation 5 represents 2™ in-
equalities (all the vertices of the convex hull representing



possible p values) which must hold for all p € P. Theorem
1 implies that the stability of S(p) can be determined, and
its input-to-output gain quantified, by solving for v and
the matrix function X (p) in these 2™ +1 convex feasibility
conditions. The conditions described by Equation 5 are
infinite dimensional, since A(p), B(p), C(p), D(p) and
X(p) are all continuous functions of the parameter p.
LPVTools computes an approximate solution to the infi-
nite dimensional feasibility conditions by converting them
into a finite-dimensional set of Linear Matrix Inequalities
(LMIs). This is accomplished by the following proceedure:

(1) Grid the set P into a set of n, parameter values:
{1517 ﬁ?? ﬁm}

(2) Pick a basis for X (p) so that X (p) = > 2, fr(p) Xk,
where np is the number of basis functions used to
construct X (p), the scalar functions f1,..., fn, : p —
R are the chosen basis functions, and X;,...,X,, €
R™=*"= are constant matrices to be determined.

(3) Solve for v and X1, ..., X, , subject to the (n,2" +1)
LMIs formed at the grid points by Equation 5, and
the condition X (p) > 0.

(4) Validate the LMI solution on a denser gridding of P.

This analysis approach is a direct extension of the grid-
based modeling approach, where the set P is gridded as
a matter of course during the modeling process, such that
S(p) is evaluated at a discrete set of parameter values.

The LPV analysis problem is different when the rate-
bounds are neglected, when its formulated in terms of the
stochastic LPV bound, and when the system is modeled
as a LFT. The analysis conditions for these cases can be
found in the literature, e.g. Wu (1995) and Apkarian and
Gahinet (1995a,b). However, the above formulation illus-
trates the core issues in the LPV analysis problem: Convex
constraints, computational complexity grows O(2"#), and
the necessity for choosing basis functions and representing
them in software.

The choice of basis functions is facilitated by the basis
data structure object in LPVTools. A basis object stores
the value of a chosen basis function fi(p) at each of the
grid points in the domain {1, 2, ...fn,. }. The basis object
also stores the values of the partial derivatives of fi(p) (i.e.

o 6] . .
%, cee 8;:2) at each of the grid point.

4.2 Analysis Functions

Analysis in the LPV framework is implemented through
two main functions: lpvnorm and lpvwcgain. lpvnorm
computes an upper bound on the input-output gain of a
LPV system when it has no uncertainty while lpvwcgain
computes it for an uncertain LPV system. For grid-based
LPV objects 1pvnorm implements both a computation of
the induced Lo norm (as described above) and of the
stochastic LPV bound, based on the derivation by Becker
(1993) and Wu (1995). In the LFT case, 1pvnorm imple-
ments a computation of the induced Ly norm only based
on the derivation by Apkarian and Gahinet (1995a,b).
lpvwcgain computes the upper bound on the induced Lo
norm of an uncertain LPV system (grid- or LET-based).
Its implementation is based on Pfifer and Seiler (2014),
and Veenman and Scherer (2014).

4.8 Synthesis Functions

The LPV analysis conditions described above are used to
derive conditions for controller synthesis. LPVTools im-
plements LPV controller synthesis for both the LFT-based
LPV framework and the grid-based LPV framework. The
synthesis functions generate controllers which optimize the
performance of the closed-loop system while taking into
account the permissible parameter trajectories: p € P,
subject to 7 < p < v.

Several LPV synthesis functions are provided. 1lpvsyn,
lpvncfyn, lpvmixsyn, and lpvloopshape are used to
synthesize LPV output-feedback controllers. 1pvsfsyn is
used to synthesize LPV state-feedback controllers, and
lpvestsyn is used to generate LPV estimators.

In the grid-based LPV framework these functions can be
used to generate controllers and estimators to minimize
either the induced Lo norm (based on results by Becker
(1993) and Wu (1995), with pole-constrained synthesis
based on the derivation by Lee (1997)) or the stochastic
LPV bound (based on results by Wu (1995)). In the LFT-
based LPV framework only lpvsyn is provided, and it
implements an algorithm which minimizes the induced Lo
norm (based on results by Packard (1994), and Apkarian
and Gahinet (1995a,b)).

4.4 Modeling and Simulation

The LPV data structures listed in Table 1 provide the
means to model LPV systems in MATLAB. LPVTools
provides a suite of tools to support the modeling effort.
A range of functions is provided to ease the user’s interac-
tion with the LPV models (e.g. interpolation, sampling).
connect and feedback from the Control Systems Toolbox,
and sysic from the Robust Control Toolbox are over-
loaded to work with the LPV data structures and enable
the assembly of arbitrary interconnections of LPV and
LTI systems. The function 1pvgram provides the ability to
compute the controllability and observability Gramians of
a LPV system. 1pvbalreal provides the ability to create
balanced realizations of LPV models. And the functions
lpvbalancmr, and lpvncfmr enable model reduction of
both stable and unstable LPV systems (based on the work
of Wood et al. (1996)).

LPVTools includes command line tools to perform both
LTI and LPV time-domain simulations. These functions
are implemented for both grid-based and LFT-based ob-
jects. Simulation functions (e.g. step. impulse, initial,
and 1sim) from the Control Systems Toolbox are over-
loaded to work with the LPV data structures. They simu-
late the time-domain response at each grid point, and re-
turn a unique simulation response for each grid point. LPV
simulations are implemented in lpvstep, lpvimpulse,
lpvinitial, and lpvlsim. These functions simulate the
time-domain response of the LPV system along a user
supplied parameter trajectory: p(t) for t € [tinitial, tend)-
LPVTools also includes Simulink blocks for simulation and
real-time implementation. These allow the LPVTools data
structures to be implemented directly in Simulink.



5. APPLICATION: BENCHMARK ACTIVE
CONTROL TECHNOLOGY WING

The model of the NASA Langley Research Center’s Bench-
mark Active Control Technology (BACT) wing will be
used to demonstrate the functionality of LPVTools. The
BACT model has been used to design and test many
types of flutter suppression control strategies including
LPV designs, e.g. work in Barker and Balas (2000). In this
context flutter denotes a phenomenon where aerodynamic
forces acting on the wing excite unstable elastic modes in
the wing structure, causing an unstable oscillation. This
section briefly describes the modeling, design, and analysis
of an LPV active flutter control using the LPVTools soft-
ware tools. The focus in this section is on demonstrating
the functionality and syntax of the LPV software toolbox.
Additional details on the design choices can be found in
Barker and Balas (2000).

The reduced-order BACT model is defined by state space
models on a 4-by-6 grid of Mach and dynamic pressure,
g (kPa). The reduced order model has a total of six
states at each flight condition. Each model has two pair of
complex poles which correspond to the plunge and pitch
modes of the wing. These complex poles are the only poles
near the imaginary axis and the only poles that change
significantly with operating condition. As the dynamic
pressure increases, one complex pair moves further into the
left-half plane, while the other moves towards the right-
half plane and has a positive real part above the flutter
dynamic pressures, as seen in Figure 5.

The BACT model has two inputs: the control input is the
trailing edge flap deflection (rad) and a disturbance input
is fed into a Dryden turbulence model. There are two
measurements available for control: trailing and leading
edge accelerations (cm/sec?). The BACT model data has
been saved in a 4-by-6 array of state space models (an
ss called SSArray) with 2-inputs and 2-outputs. The
commands below create a pss object for the LPV BACT
model.

>> size(SSArray)
4x6 array of state-space models.

Each model has 2 outputs, 2 inputs, and 6 states.

% Create rgrid object for parameter domain
>> machvec = [0.5 0.7 0.78 0.82];

>> gqvec = [5.99 6.51 7.18 8.38 9.58 10.77];
>> Mach = pgrid(’Mach’,machvec, [-0.02 0.02]);
>> gbar = pgrid(’gbar’,qvec,[-0.3 0.3]);

>> Domain = rgrid(Mach,qbar);

% Create pss BACT model

>> BACT = pss(SSArray,Domain)

PSS with 6 States, 2 Outputs, 2 Inputs.

Mach: Gridded real, 4 points in [0.5,0.82].
gbar: Gridded real, 6 points in [5.99,10.8].

The Mach number and dynamic pressure values are repre-
sented by pgrid atom objects. The first argment to pgrid
is the name of the parameter, the second is a vector of
grid points, and the third is a vector containing the upper
and lower limits on the parameter’s rate of variation. In
this case |[M| < 0.02 and |g| < 0.03 kPa/sec where M

denotes Mach. The two pgrid objects are combined to
form the rgrid object Domain, which describes the two
dimensional grid of Mach number and dynamic pressure
values. The rgrid is combined with the BACT ss model
array to form a parameter varying state space model (pss).
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Fig. 4. Generalized Plant for BACT Control Design

Next, the weighted interconnection, shown in Figure 4, is
constructed for the LPV design. The weights and weighted
interconnection used in the design are taken from Barker
and Balas (2000). The weighted interconnection is con-
structed using the commands below.

>> Win = 0.1xtf([1/2 1],[1/200 1]);
>> Wp = eye(2)*(1/12500) ;

>> Wact = 12/pi;

>> Wn = [250 0; 0 250];

>> Wd =1;

>> systemnames = ’Win Wact Wd G Wp Wn BACT’;
>> inputvar = ’[ w; dist; noise{2}; flap_cmd]’;
>> outputvar = ’[ Win; Wp; Wact; BACT+Wn]’;

>> input_to_BACT = ’[G+w; Wd]’;

>> input_to_Win = ’[G]’;

>> input_to_Wact = ’[G]’;

>> input_to_Wd = ’[dist]’;

>> input_to_G = ’[ flap_cmd ]’;
>> input_to_Wp = ’[BACT] ’;

>> input_to_Wn = [ noise ]7;

>> H=sysic;

Notice that the standard sysic interconnection command
has been overloaded to allow interconnections of pss
objects and standard MATLAB system objects. H is a pss
object that specifies the weighted design interconnection,
i.e. the generalized plant, over the (Mach,g) domain.

Next, a LPV controller was synthesized under the assump-
tion that the parameter rate of variation is bounded. This
control synthesis is performed using lpvsyn which solves
a set of parameterized LMIs using parameter varying
Lyapunov functions. The Lyapunov functions are assumed
to be parameter dependent with basis functions: f; = 1,
f2 = Mach, and f3 = g. The following commands define
the basis functions:

>> f1 = basis(1,0);

>> f2 = basis(Mach,1);

>> £f3 = basis(qgbar,1);

>> Xb = [f1;f2;f3]; Yb=Xb;



The first argument to basis specifies the value of the basis
function, the second specifies the partial derivative with
respect to the parameter. The controller is synthesized
using lpvsyn:

>> [Krb,Gamma,Info] = lpvsyn(H,2,1,Xb,Yb);

The first input to lpvsyn is the pss representing the
weighted generalized plant, the second and third are the
number of measurmentes and control inputs available to
the controller, and the fourth and fifth are the basis
functions to be used in the Lyapunov functions.

The software tools can be used to easily analyze and
compare the open and closed loop systems. As mentioned
above, the open-loop BACT wing becomes unstable above
the flutter dynamic pressure. Figure 5 shows a plot of
two of the open loop complex poles across all (Mach,q)
conditions. The figure also shows the closed-loop poles that
appear in the same region of the complex plane. Notice
that the controller stabilizes the poles at all (Mach,q)
conditions. The plot in Figure 5 is generated using the
following commands:

>> CL = 1ft(Krb,BACT);

>> Pol = pole(BACT);

>> Pcl = pole(CL);

>> plot(real(Pol),imag(Pol), ’bx’)
>> plot(real(Pcl),imag(Pcl),’rs’)
>> axis([-10 2 18 30])
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Fig. 5. Open loop (blue x) and closed loop (red square)
poles associated with the plunge and pitch modes of
the wing. Values for all (Mach,q) values shown.

6. CONCLUSION

This paper describes LPVTools, a software suite for mod-
eling, simulation, analysis and synthesis of LPV systems.
A brief description of the LPV framework was provided,
with a key LPV analysis result presented to illustrate
the framework’s potential. The paper then provides an
overview of the core LPVTools data structures for mod-
eling LPV systems, and lists the various capabilities of
LPVTools. The toolbox has been made freely available to
the community. It is hoped that this toolbox will encourage
further advances in LPV systems.
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