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Analytical fault detection algorithms have the potential to reduce the size, power and weight of safety-critical aerospace
systems. Analytical redundancy has been successfully applied in many non-safety critical applications. However, accep-
tance for aerospace applications will require new methods to rigorously certify the impact of such algorithms on the overall
system reliability. This paper presents a theoretical method to assess the probabilistic performance for an analytically
redundant system. Specifically, a fault tolerant actuation system is considered. The system consists of dual-redundant ac-
tuators and an analytical fault detection algorithm to switch between the hardware components. The exact system failure
rate per hour is computed using the law of total probability. This analysis requires knowledge of the failure rates for the
hardware components. In addition, the analysis requires knowledge of specific probabilistic performance metrics for the
fault detection logic. Numerical examples are provided to demonstrate the proposed analysis method.
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1. Introduction

Reliability and safety requirements for commercial flight
control electronics are typically on the order of no more
than 10~° catastrophic failures per flight hour (Bleeg,
1988; Collinson, 2011). Therefore, fault tolerance is
introduced to enable this safety-critical system to continue
operation in the event of component failures. Fault
tolerance is currently achieved mainly through the use
of physically redundant components. For example, the
Boeing 777 flight control electronics consists of three
primary flight computing modules with each module
containing three dissimilar processors (Yeh, 1996; Yeh,
2001). The actuators and sensors have similar levels of
redundancy.

Physically redundant architectures are very reliable
but they increase the system size, weight, power, and cost.
As a result, there have been efforts to develop analytical
redundancy as an alternative approach to achieve fault
tolerance (Goupil, 2011). Recent examples include the
oscillatory monitors on the Airbus A380 (Goupil, 2010)
and the AddSafe project in Europe (ADDSAFE, 2012).
Small unmanned aerial vehicles (UAVs) represent another
safety critical system that can benefit from analytical
redundancy. The reliability of small UAVs is an emerging

issue driven by the desire to integrate and fly such vehicles
in conventional airspace (Vanek et al., 2014). In the
United States, a recent law (United States Congress, 2012)
requires the Federal Aviation Administration (FAA) to
“provide for the safe integration of civil unmanned aircraft
systems into the national airspace system as soon as
practicable, but not later than September 30, 2015.” Small
UAVs cannot carry the payload associated with physical
redundancy and hence analytical redundancy will likely
be required to improve their reliability.

There are several issues that must be addressed
before analytical redundancy finds general acceptance in
aerospace applications. One key issue is the need to
rigorously assess the impact of analytical redundancy on
the overall system reliability. A related issue is the need to
certify the reliability of an analytically redundant system
with aviation authorities, e.g. the FAA in the United States
or the European Aviation Safety Agency. In particular,
the system must not only be highly reliable and safe but
it must also be possible to certify the system reliability
and safety. In a physically redundant configuration, a
failed component is detected by directly comparing the
behavior of each redundant component. Hence, these
architectures tend to detect faults accurately and quickly.
Moreover, their performance can be certified from known
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hardware component failure rates using a failure mode
and effect analysis and a fault tree analysis (Lee et al.,
1985; Krasich, 2000). The reliability of systems that
use analytical redundancy, on the other hand, depends
on the performance of the detection algorithm as well
as the hardware component failure rates. New failure
modes are introduced due to the mixed use of analytical
algorithms and hardware components. Thus different
tools are required to assess the reliability of analytically
redundant systems.

The main contribution of this paper is a mathematical
framework to efficiently compute the system failure rate
per hour of an analytically redundant system. The
proposed framework builds on the prior work in (Aslund
et al., 2007; Gustafsson et al., 2008) as discussed
below. The proposed analysis method is described
for a simple dual-redundant actuator configuration with
an analytical fault detection scheme. This problem
formulation, described further in Section is similar
to the dual-redundant actuator architecture that has been
implemented on the Airbus A380 (Goupil, 2010; Efimov
etal.,2013). Our paper develops a probabilistic method to
assess the reliability of the dual-redundant actuator system
(Section [B). This method first enumerates all failure
modes of the duplex system. Then the system failure
rate per hour is exactly computed using the hardware
component failure rates and probabilistic models of the
fault detection performance.  Section [ applies the
proposed framework to a concrete fault detection and
isolation (FDI) scheme and briefly discusses techniques
for computing the probabilistic FDI performance metrics.
A numerical example is presented to demonstrate the
utility of the proposed approach (Section [3). Finally,
it is noted that this paper expands on the initial results
published by the authors in a conference paper (Hu and
Seiler, 2013).

Before continuing to the main result, the prior work
that is relevant to this paper is briefly reviewed. The
problem formulation in this paper includes an analytical
fault detection scheme to switch between actuators.
Model-based FDI is one method to realize this analytical
redundancy. This technique has wide applications which
span most disciplines of engineering (Isermann and Ballé,
1997) and a thorough treatment can be found in standard
references (Chen and Patton, 1999; Isermann, 2006; Ding,
2008). Data-driven FDI methods provide an alternative
means to detect faults. There has been some direct
comparisons of model-based and data-driven methods,
e.g. (Freeman et al., 2013), but further work is needed to
clarify the advantages of each FDI approach. The analysis
framework proposed in this paper is applicable to either
FDI approach provided certain probabilistic performance
metrics (to be described more precisely in Section[2.T)) can
be computed for the fault detection logic.

The most closely related work to this paper is the

extended fault tree technique contained in (Aslund et al.,
2007; Gustafsson et al., 2008). In the extended fault
tree analysis, the fault detection performance involves
missed detections and false alarms that occur at the
system sample rate. The system failure rate per sample
frame is computed by characterizing false alarms and
missed detections as basic events that are incorporated
into a fault tree. However, the safety requirements are
typically specified over longer time periods, e.g. per
hour (Bleeg, 1988; Collinson, 2011). The possible failure
of the entire system at different time steps introduces
time correlations and new failure modes which should be
addressed properly. The framework described here builds
on the prior work in (Aslund et al., 2007; Gustafsson
et al., 2008) by incorporating events at various time scales.

The proposed approach is complementary to Monte
Carlo simulations. In particular, the Monte Carlo
simulations are commonly used in current industrial
practice to assess system performance via simulations on a
high fidelity model (Robert and Casella, 2004; Asmussen
and Glynn, 2007). A potential drawback is that the failure
rate for safety critical systems is designed to be very low.
Thus a large number of Monte Carlo simulations may
be required to draw statistically meaningful conclusions.
The proposed mathematical analysis provides an efficient
method to exactly compute the system reliability. In
addition, the analysis provides additional insight into the
various design choices. As shown later in the paper,
the analysis decouples the system failure rate into certain
hardware failure rate and FDI performance metrics. This
decomposition also makes further worst case analysis
possible when model uncertainty is significant. The
main limitation of the analysis method is that it is valid
only under specific assumptions about the failure models,
operating conditions, etc. Thus the theoretical analysis
and high fidelity simulations provide complementary
benefits.  This is similar to the current practice for
flight control law validation (Renfrow et al., 1994; Heller
et al., 2001; Belcastro and Belcastro, 2003) which uses a
mixture of high fidelity nonlinear simulations and exact
analyses, e.g. gain/phase margins based on approximate
linearized models.

2. Duplex Actuator System

Consider a dual-redundant actuator system operating in
discrete-time (Figure [T). At each sample time k, the
duplex system attempts to move the control surface to a
“correct” position based on a particular command signal
u(k) given by a flight control algorithm. Fault tolerance
is achieved by the combination of two actuators and a FDI
logic. At each sample time one of the two actuators is in
active mode and the other is in passive mode. The primary
actuator is monitored by the FDI logic, and is used, i.e. is
in active mode, in the absence of a detected fault. The
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FDI logic switches the system to a backup actuator once a
fault is detected in the primary actuator. The FDI logic is
assumed to be an analytical method, e.g. model-based or
data-driven, that relies on the control commands u(k) as
well as a measurement s (k) of the actual control surface
position for the primary actuator. In practice, the FDI
scheme can be designed in a variety of different ways. For
a concrete example, Goupil (2010) used a model-based
parity equation to generate a residual and then applied
a spectral adaptive threshold as a decision function for
detecting a fault. The duplex system shown in Figure I]
is a simplified abstraction of the actual architecture on an
Airbus A380 (Goupil, 2010). The abstraction captures the
essential features of this kind of analytically redundant
architecture. The objective is to assess the reliability of
this duplex system.

2.1. Problem Formulation. The following definition
of reliability was established by the Technical Committee
on Fault Detection, Supervision and Safety of Technical
Processes.

Definition 1. ((Isermann and Ballé, 1997)) Reliability
is the ability of a system to perform a required function
under stated conditions, within a given scope, and during
a given period of time.

Two aspects of this definition should be clarified for
the duplex actuator system. First, the analysis in this
paper is formulated in discrete-time. Hence the given
period of time is a window of length V. Typical aerospace
requirements are specified per hour and hence N may be
large, e.g. N = 3.6 x 10° samples per hour for a system
with a 100 Hz sample rate. Second, the required function
for the duplex system is to generate a “correct” control
surface position. The control laws and aircraft dynamics
typically have low pass characteristics and thus incorrect
operation of the actuation at a single sample time will not
lead to system failure. However, the continued use of a
“bad” control surface position over multiple (/Np) time
frames will eventually cause a failure. To summarize, the
duplex system performs its required function as long as
it does not provide “bad” control surface position for N
consecutive steps. Ps y is defined as the probability that

u(k) Primary 5,(k) _
Actuator l \
Fault Detection| 4(K) ;(I\),
Logic (FDI)
Back-up ®
Actuator 5, (k) il

Switch

Fig. 1. Duplex Actuator System

the system fails to perform this required function over an
N-step window.

The analysis requires models of the actuator
components. Denote the primary and backup actuators by
¢ = 1and ¢ = 2, respectively. Let 6;(k) € {0,1} denote
the status of the 7* actuator (i = 1, 2) at time &: 6;(k) = 0
if the i*" actuator is operational at time k and 6; (k) = 1 if
it has failed. It is assumed that once an actuator fails then
it remains failed, i.e. intermittent failures are neglected.
Due to this assumption it is possible to define a unique
failure time 7} for the i*" actuator (i = 1, 2) as:

k
Ti_{N+1

The notation 7; = N + 1 corresponds to the case where
the actuator remains functional during the entire N-step
window.

if0;(k—1)=0and0;(k) =1 )
if;(k) =0Vk <N

Reliability theory can be used to model the failure
time of the actuators (Singpurwalla, 2006; Rausand and
Hoyland, 2004). In many applications, the mean time
between failure (MTBF) can be estimated from field
data. The analysis in this paper assumes the probability
mass function P[T; = k| is known for both actuators
i = 1,2 and for all time £¥ < N + 1. Finally,
it is assumed that 77 and 75 are independent. This
final assumption implies dissimilar actuators are used
and hence common failure modes are neglected. The
independence assumption can be considered reasonable
and approximately true in many cases. For example,
some control surfaces on an Airbus A380 are operated by
two adjacent dissimilar actuators: an electro-hydrostatic
actuator and a conventional hydraulic actuator (Figure 5
in Goupil (2011)). This assumption simplifies the notation
and computation required for analysis. The correlated
failure case will be briefly discussed later in the paper.

The probability of system failure Pg n also depends
on the fault detection logic. The FDI scheme has a logic
signal d(k) that indicates the status of the primary actuator
at time k: d(k) = 0 if the primary actuator is in active
mode and d(k) = 1 otherwise. Thus the logic uses
the primary actuator, s(k) = s1(k), if d(k) = 0 and
it uses the backup actuator if d(k) = 1. The primary
actuator is turned off (passive mode) and the backup
actuator is turned to active mode once a fault is detected
in the primary actuator. It is assumed that once the fault
detection logic switches to the backup actuator then it
will continue using the backup. Logic that intermittently
switches between actuators is not considered. Again, this
assumption implies that it is possible to define a unique
switching time 7'g as:

_ k ifd(k—1)=0andd(k) =1
TS_{N+1 itd(k) =0k < N 2
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Ts = N + 1 denotes the case where no fault is detected
throughout the entire N-step window.

The system can be in one of four states depending
on the primary actuator status and the fault detection
signal. These four states can be arranged in a confusion
matrix (Egan, 1975; Fawcett, 2006) as shown in Table E}
The entries of the confusion matrix depend on both the
hardware and the FDI logic.

The performance of the FDI logic alone is typically
quantified by (single-frame) conditional probabilities of
false alarm and detection. Specifically in Ding (2008)
and Willsky and Jones (1976), the probability of false
alarm at time k is defined as P[d(k) = 1| 61(k) = 0].
Similarly, the probability of detection at time k is defined
as P[d(k) = 1] 61(k) = 1]. As shown in Section[3] these
single frame conditional probabilities are not sufficient
to compute the system failure probability. Instead,
computation of Pg n requires the FDI performance to be
characterized across multiple time steps using two specific
metrics. The first FDI performance metric is P[Ts <
N | Ty = N + 1]. This is the conditional probability
that the FDI logic switches to the backup actuator at
some point in the N-step window given that the primary
actuator remains operational. In other words, this is a false
alarm probability over the N-step window. The second
FDI performance metric is P[Ts > k + Ny | Ty = k]
defined for £ = 1,2,...,N. This is the conditional
probability that the FDI logic continues to select the
primary actuator at least until time step k + Ny given a
primary actuator failure at time k. In other words, this
is the probability of a missed detection conditioned on a
failure at time k.

The dual-redundant system fails if the FDI logic
selects a failed actuator. In the notation defined above,
the duplex system produces a bad control surface position
at time k if the primary actuator is selected and failed
(d(k) = 0 and 6;(k) = 1) or the backup actuator is
selected and failed (d(k) = 1 and 62(k) = 1). Thus the
system failure probability Ps n can be formally defined
as follows:

Definition 2.  Pgs y is the probability that there exists
ko < N such that for each k € {ko,ko + 1,...,ko +
Ny — 1} one of the following is true:

1. d(k) =0and 6, (k) =1

2. d(k)=1and 65(k) =1

| T @ =1 | (=0 ]
d(k) =1 || True Positive | False Positive
d(k) =0 || False Negative | True Negative

Table 1. Confusion Matrix for fault detection logic

and the actuator ¢ selected at time kg + N — 1 has a failure
time within the NV-step window (7; < N).

By this definition, the system fails if it produces
a bad control surface position for Ny consecutive steps
due to failures in the primary and/or backup actuator
that occur within the N-step window. A system failure
may occur due to a sequence of bad control surface
positions beginning within the window (ky < IN) and
ending outside the window (kg + Ng — 1 > N). The
required detection time Ny is typically much smaller
than the analysis window N. Hence the choice of
whether or not to include these boundary events should
have negligible effect on Pg . Different assumptions
regarding such boundary events can be handled with
essentially notational changes.

The proposed analysis method is developed for the
dual redundant system formulated in this section. This
dual redundant system is an active-passive architecture
in the sense that at all times one actuator is active
(on) while the other is passive (off). The proposed
analysis can be extended to more cases, e.g. active-active
dual redundant systems and triplex (or higher) redundant
systems. The analysis for these extensions depends
on the precise details of how the physically redundant
components interact with the fault detection logic. The
active-passive dual redundant architecture analyzed in this
paper consists of logic to switch between two modes (use
of the primary or back-up actuator). In general, the basic
analysis approach can be extended to more complicated
architectures if the fault tolerant system switches between
several modes with a unique definition of switching time.

2.2 Specific Example. As discussed above, the
analysis in Section only requires the following
information:

1. Actuator Failure Model: P[T; = k] specified for i =
1,2and 1 < k< N.

2. FDI False Alarm: P[Ts < N |T; = N +1].

3. FDI Missed Detection: P[Ts > k + Ny | T1 = k|
defined for k =1,2,..., N.

This section briefly illustrates the notation in the context
of a specific example. The example assumes actuator
failures are governed by a geometric distribution and
the FDI switching logic is independent and identically
distributed (IID) in time.

First, assume the failure time of the ¢*" actuator
has a continuous-time exponential distribution with
parameter \; = WBE (Rausand and Hoyland, 2004).
The continuous-time exponential distribution can be
approximated using a discrete-time geometric distribution
with parameter ¢; := 1 — e~ where A, is the sample
time (Wheeler et al., 2011). If the actuator is operational

th
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at k = 0 then it follows from the geometric distribution
that the probability mass function for the actuator failures
is given by:

o -n- {4

It is important to note that the actuator failure rates can
be modeled by distributions other than the geometric
distribution used here. For example, a discrete Weibull
distribution (Murthy et al., 2004; Nakagawa and Osaki,
1975; Stein and Dattero, 1984) can be used to model
increasing failure rates as the actuator ages. This specific
example uses the geometric distribution but the proposed
approach can accommodate any other discrete failure
distribution. The specific choice of distribution needs to
be validated based on failure rates of fielded components.

Let P := Pld(k) = 1] 61(k) = 0] and
Pp = P[dk) = 1] 6:(k) = 1] denote the
(single-frame) probability of false alarm and detection.
The multiple-frame FDI performance probabilities can
be related to these single-frame probabilities due to the
assumption of FDI logic being IID. First, P[Ts <
N | Ty = N + 1] is the conditional probability that
a fault is declared in the N step window given that
the primary actuator remains operational. The set of
sequences {d(k)}4_, where d(k) = 1 for at least one
k is complementary to the sequence where d(k) = 0
for 1 < k < N. Thus the multiple-frame false alarm
probability can expressed in terms of the single frame
probabilities as:

ifl<k<N
ifk=N+1 3)

P[Ts <N|Ty=N+1=1—(1-Pp)Y @

Next, P[Ts > k + Ny | T = k] is the conditional
probability that a fault is not declared in the first k+ Ny —1
time steps given that the primary actuator (¢ = 1) failed
at time k. This corresponds to a true negative for the first
k — 1 steps followed by Ny steps of false negatives. Thus
this probability is expressed as:

P[Ts > k+ No | Ty = k] = (1 — Pp)*~1(1 — Pp)™°
(%)

3. Probabilistic Analysis

This section provides an exact expression for Ps . The
analysis relies on basic probability theory with the law
of total probability as the main tool. An application of
this law is the following statement: Let the events {T7 =
k},ivjll form a disjoint partition of the sample space. Then
the probability of any other event .A can be expressed as:

PlA] =S PIA| Ty = K|P[T) = k] (6)

This can also be expressed as:

P[A] = S PIAN{T = k)] (7

3.1. General Theory. The dual redundant system fails
to perform its required function if it generates “bad”
control surface position for Ny consecutive steps. Ps ny
is the probability of the system failing to perform this
function in an N-step window. A failure modes and
effects analysis should first be performed to identify
all mutually exclusive failure modes leading to system
failure. There are four mutually exclusive events that lead
to system failure:

1. Event My: The primary actuator fails at some time
k < N and the FDI logic fails to switch within Ny
frames. This is a missed detection, denoted M p.

2. Event Fy: The primary actuator remains operational
during the entire N-step window. The fault detection
logic has a false alarm and switches to the backup
actuator but the backup actuator fails within the
N-step window. This event is a false alarm induced
failure, denoted F'y.

3. Event Dy: The primary actuator fails at some time
k < N. The fault detection logic detects the
failure within Ny frames of the failure and correctly
switches to the backup actuator. The backup actuator
fails within the N-step window (either before or after
the detected failure in the primary actuator). This
event is a proper detection, denoted D, but results
from failure in both actuators.

4. Event FEy: The primary actuator fails at some time
k < N. The fault detection logic raises a false
alarm prior to time %k and switches to the backup
actuator but the backup actuator fails within the
N-step window. This event is an early false alarm,
denoted E .

The four events are mutually exclusive and hence:
Ps N = P[My| + P[Fn] + P[Dn] + P[Ex]  (8)

The remainder of the section provides expressions
for these four failure events. The first event is
the missed detection My. The probability of a
missed detection event can be expressed as P[My| =
P{Th <N} n {Ts>T1+ No}]. Apply the law of
total probability (Equation [6)) to obtain:

P[My] =S}, P[Ts > k + No | Ty = k|P[T} = K]
)

The second event is the false alarm F'y. The false alarm
event can be specified as P[Fy] = P{Th = N+ 1} n

@ c
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{Ts < N} n {Ix < N}|. The actuator failures are
independent from each other. Moreover, the switching
logic is independent of the backup actuator. Hence this
probability is:

P[FN] =P[Ts < N|Ty = N + 1]
P[Ty = N + 1] P[T> < N] (10)

The third event Dy involves a primary actuator
failure and a true detection that causes a switch to the
backup actuator. A failure of the backup actuator then
leads to a system failure. Thus P[Dy] = P{T} <
N} n {Tl < Ts < Ty +N0} n {TQ < NH
Similarly, the fourth event E also involves a primary
actuator failure but in this case a false alarm causes a
switch to the backup actuator prior to the primary actuator
failure. The probability of this event can be expressed as
PEN]=P{T1 < N} N {Ts <T1} N {T> < N}]. The
events Dy and E are mutually exclusive and combined
as:

P[DN] —|—P[EN] = an
P[{Tl SN} n {TS<T1 +N0} N {TQSN}]

Apply the law of total probability to rewrite this as:

P[DN] +P[EN] = (12)
SN PHTy =k} N {Ts < Ty + Ny} N {Ty < N}

The actuator failures and the the switching logic are
independent and hence this can be expressed as:

P[Dy]+ P[EN] = (13)
Sp_P[Ts < k+ No | Ty = k|P[Ty = k]P[T» < N]

Finally, we can compute the total system failure
probability (Equation [8) by combining the probabilities
for the basic failure events (Equations [0} [TI0] and [T3).
This yields the following expression for the system failure
probability:

Psn =38 | P[Ts > k+ No | Ty = k|P[T) = k|
(14)

+P[Ts <N |Ty =N +1]P[Ty = N+ 1]P[Ty < N]
+ 3N | P[Ts < k+ Ny | Ty = k]P[Ty = k]P[T» < N]

This equation provides an intuition for the basic causes of
system failure. The first term is due to a a missed detection
of a failed primary actuator. The second term refers to the
case where the primary actuator is functioning, the FDI
scheme triggers a false alarm and then the backup actuator
fails. Finally, the third term accounts for the case where
the primary actuator fails and the FDI scheme triggers an
alarm but the backup actuator also fails. Computing this

system failure probability only requires the information
specified in Section [2] . Specifically, the system failure
probability can be computed from Equation [T4]as long as
the actuator failure P[T; = k|, FDI false alarm P[Ts <
N | Ty = N + 1] and FDI missed detection P[Tg >
k + No | Ty = k] probabilities are all known.

The system failure probability in Equation[T4]can be
re-arranged into a more useful and intuitive form. Note
that Tsg < k + Ng and Ts > k + Ny are complementary
events. This yields the following relation:

P[Ts<k+N0‘lek]zl—P[T52k+No‘T1:
15)

Substitute this for the last term Equation [T4] and regroup
to obtain:

Ps.y = P[Ty < N|P[Ty < N]+ (16)
P[Ts < N|T, = N + 1]P[T} = N + 1]P[T; < N+
SN P[Ts > k+ No | Ty = k|P[Ty = k|P[Ty = N + 1]

This equation provides another intuition for the basic
causes of the system failure. The first term does not
depend on the FDI performance and refers to the case
where both actuators fail. It provides a lower bound for
the system failure rate Pg n. No matter how well the
FDI logic performs, the dual redundant system can not
have a failure rate lower than this term. The second
term is identical to the second term in Equation[T4] This
term refers to the case where the primary actuator is
functioning, the FDI logic triggers a false alarm and then
the backup actuator fails. The third term is due to a
missed detection of a failed primary actuator given the
condition that the backup actuator does not fail. The
three terms are due to three mutually exclusive failure
modes. Equation[I6has an advantage that it decouples the
causes of the system failure based on hardware component
failures (term 1) and FDI performance (terms 2 and 3).
This allows the effect of the FDI performance on the total
system reliability to be fully separated from the reliability
of the hardware components. This further enables the
FDI logic to be designed and analyzed based on the
probabilities of false alarm and missed detection.

As described in Section 2.1} the analysis is based
on the assumption that 77 and 75 are independent.
The approach in this paper can, in theory, be extended
to include correlated failures. The final results to
compute Pg n with correlated failures can be found in
the Appendix. This extension requires knowledge of
the joint probability mass function for the failure times
Ty and T, of the two actuators. Estimating this joint
mass function would be impractical in most cases and
this limits the utility of these generalizations. Finally,
it is important to note that the analysis is exact in
theory but sources of error will be introduced in practice.
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Specifically, the proposed framework requires knowledge
of the actuator (hardware) failure probabilities along with
the FDI performance metrics (probabilities of false alarm
and missed detection). Less accurate estimates of these
performance metrics (either conservative or optimistic)
will thus result in a less accurate estimate of the overall
system reliability. Similar issues arise when constructing
conventional fault trees that deal only with hardware
failures.

3.2. Simplifying Approximations. The FDI false
alarm metric P[Ts < N | Ty = N + 1] requires a
single calculation. On the other hand, the FDI missed
detection metric P[Ts > k + Ny | T1 = k| depends
on k and hence N computations are required. In certain
circumstances, the following approximation can be used
fork=1,2,...,N:

PlTs > k+ No | Th =k] =~ P[Ts > 1+ No | Ty = 1]
(17

This approximation enables the FDI missed detection
metric to be evaluated for all kK = 1,2,..., N using only
one calculation at k = 1. P[Ts > 14+ Ny | Th = 1]
is the conditional probability that d(k) = 0 for all k =
1,2, ..., N given that the primary actuator fails at the first
time step (77 = 1). This can be viewed as a missed
detection probability over a detection window with size
Ny. For many model-based FDI systems consisting of
residual generation and decision logic, this approximation
will hold if the FDI false alarm probability is very small.
A rigorous derivation justifying this approximation is
omitted since it is not the main focus of this paper.

The formula for the system failure probability Py x
simplifies by using this approximation. First make the
following definitions:

g; == P[T; < N] (18)
Pp:=P[Ts <N|T, =N +1] (19)
Pp:=1-—P[Ts>1+Ny | Ty =1] (20)

Each of these definitions has a clear meaning. ¢; is the
it" actuator failure probability per hour and Pp is the
false alarm probability per hour. Pp is the probability of
detection of a fault within the Ny-step detection window
conditioned on a primary actuator fault occurring at k =
1. The “hat” denotes that these probabilities are valid over
multiple time steps, i.e. they are not simply single time

frame probabilities.

With this notation and the assumption P[Ts > k +
No | Ty = k] = 1 — Pp, the system failure probability

(Equation [T6) is approximated as:

Ps,n =~ qid2 + Pria(1 — ¢1) + (1 — Pp)di (1 — Go)
1)

Equation [21]is the approximate form of Equation [T6] and
it provides an intuition for the basic causes of system
failure. For example, the first term in Equation is
(1G> and this represents the failure probability due to
faults in both actuators. The second term Pp(jg(l —q1)
accounts for the case where the FDI scheme raises a false
alarm and then the backup actuator fails. The third term
(1—Pp)G1(1—go) is due to a missed detection of a failed
primary actuator. A similar approximation can be derived
for the system failure probability in the form given by
Equation [T4]

With the simplifying approximation, Equation
can be used to incorporate missed detections and false
alarms as basic events in the extended fault tree analysis as
described in (Aslund et al., 2007; Gustafsson et al., 2008).
If the simplifying assumption in Equation[T7]fails then the
exact formula in Equation (16| (or the alternative form in
Equation (14} should instead be used to compute Pg .

3.3.  Specific Example. This section demonstrates
the calculation of Pg n using the probabilities for the
actuator and FDI performance (Equations [3] - [5) for the
example in Section[2.2] Recall that the example assumes
actuator failures are governed by a geometric distribution
with a single frame failure rate of ¢; (Equation [3). The
probability of an actuator failure over N steps is thus
explicitly given by P[T; < N| = 1 — (1 — ¢;) for
i = 1,2. The FDI switching logic is assumed to be
IID in time with single-frame probabilities of false alarm
and detection denoted by Pr and Pp, respectively. For
this example the multiple-step probabilities of missed
detection (Equation [9), false alarm (Equation [I0), and
combined detection / early false alarm (Equation
events can be explicitly computed as:

Ny 1= (1= Pp)N(1 —q)V
1—(1—-Pp)(1—aq)

P[My] = q:(1 - Pp)

(22)
PlFy]=(1-(1-Pr)V)(1—d1)do (23)
P[DN] + P[En] = (G1 — P[MN]) G2 (24)

where the notation §; := P[T; < N| =1 — (1 — ¢;)
introduced in Equation [T§] has been used. As derived in
Section the exact system failure probability Ps y is
given by the sum of Equations[22]-

The exact system failure probability for this example
can be simplified as described in Section [3.2] if the
approximation condition holds. For this example, the
multiple-step false alarm and detection probabilities

& c
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defined in Equations |19] and [20] are given by Pr=1-
(1 — Pp)N and Pp = 1 — (1 — Pp)No. To verify the
approximation condition, first notice

P[Ts > k+ Ny | Ty = k] = (1 — Pe)*'(1 — Pp)
(25)

Moreover, it is straightforward to show:

(1—Pp)(1—Pp)<(1—Pp)*'(1—-Pp)<1—Pp
(26)

Thus Pr < 1 implies that the approximation condition
PlTs > k+No | Ty = k] ~ 1 — Pp = P[Tg >
14+ No | Ty = 1] is valid. For many FDI schemes
the false alarm metric is low and pp < 1 holds. The
approximation condition implies that P[My] ~ (1 —
PD)(jl. Thus the total system failure probability Pg x
given by the sum of Equations 22] - 24} can be written
in the simplified form as:

Ps n =~ 4142 + Prga(1—¢1) + (1 = Pp)di(1 — G2
27

This is identical to the simplified formula in Equation [21]
The main point is that various terms can be explicitly
computed from the single-step probabilities q;, Pr and
Pp. It is also important to stress that this simplified
formula is only valid when the approximation assumption
holds. If the approximation is invalid then the more
complex formula in Equations 22] - 24] must be used to
compute the exact failure probability.

4. Model-based FDI Systems

Section [3.3] described the calculation of the system
reliability for a simple, but abstract example. The
purpose of this section is to provide additional details
for a more concrete FDI system. Specifically, the FDI
logic in Figure [I] can be either model-based or data
driven. Section [4.1] describes the computation of FDI
metrics for a specific model-based FDI logic. Section[4.2]
then discusses further issues related to more general
model-based FDI architectures. Data-driven methods
can be evaluated within the general theory of Section [3]
However, this requires the calculation of multiple-step
false alarm and missed detection performance metrics for
the data-driven FDI logic and this issue is beyond the
scope of this paper.

4.1. Residual-Based FDI. The FDI logic monitoring
the primary actuator is assumed to be a model-based
algorithm. A typical model-based FDI scheme is
compromised of two parts: a filter that generates a
residual (k) and a decision function which determines
the logic signal d(k) that indicates the status of the

primary actuator. There are many approaches to design
the FDI filter, e.g. observers, parity equations, parameter
estimators, and robust filters (Chen and Patton, 1999;
Isermann, 2006; Ding, 2008). The filter output, r(k), is a
random variable and the objective is to design the filter to
achieve a decoupling property: r(k) has zero mean when
the primary actuator is functioning properly (61 (k) = 0)
and non-zero mean when a fault occurs (61(k) # 0).
The decision logic generates the status signal d(k) based
on (k). Again, there are many different approaches to
design the decision function, e.g. thresholding, statistical
tests, and fuzzy logic (Isermann, 2006; Ding, 2008).

This section considers the concrete FDI logic shown
in Figure 2] Suppose the actuator dynamics are perfectly
known. An estimated control surface position can be
computed based on the control input u (k) and the actuator
model Act,,ode- The real control surface position s (k)
is directly measured. The residual r(k) is generated
from the difference between the measured and estimated
control surface positions. Assume any disturbances on
the primary actuator are negligible. Moreover, the noise
affecting the measurement s; (k) is modeled by an IID
Gaussian process n(k) with zero mean and variance o2.
Finally, the fault on the primary actuator that occurs when
01(k) = 1 is modeled by an additive bias f subject to
s1(k). Given these assumptions, the FDI residual r(k) is
modeled as:

r(k) = n(k) + 61(k) f (28)
The decision logic uses a constant thresholding:
1 if |r(4)| > H forsome j < k
d(k) := { 0 els|e(j)‘ ’ (29)

In other words, a fault is declared when the residual
magnitude exceeds the threshold H. Note that this
decision logic does not have intermittent switching, i.e.
d(k) remains at 1 once the residual exceeds the threshold.
This fault detection logic is IID in time and hence the
system failure probability Ps n can be computed using
the results in Section 33l Recall the definition of
the single-frame false alarm and detection probabilities:
Pp := Pld(k) = 1| 0:(k) = 0] and Pp := P[d(k) =

u(k) E

Decision
Logic

_________________________________

Fault Detection Logic (FDI)

Fig. 2. Fault Detection Logic (FDI)
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1| 61(k) = 1]. The residual is Gaussian at each time and
hence:

S| 2
P = ]_ — eiﬁdr 30
r /_H V2o 0
H 1 2
=5
Pp=1 —/ e 202 dr 31
g V2mo

These single-frame probabilities can be accurately and
efficiently computed using the error function erf in
Mat lab. Then the FDI false alarm and missed detection
metrics can be computed by Equation[dand[5] The system
failure probability Pg n involves these FDI performance
metrics and the hardware component failure rates. Pg
can be computed by the sum of Equations 22] - 24] as
described in Section[3.3]

4.2. Further Issues. As mentioned above, the FDI
logic can be designed in many different ways. For
different designs the computation of FDI metrics can be
more complicated than the case presented in Section {.1]
This section briefly discusses three additional issues in
computing the probabilistic performance metrics for the
FDI logics. In addition, guidelines are provided for using
the proposed analysis framework with more complex FDI
architectures.

One difficulty introduced by other model-based FDI
design techniques is the time-correlations introduced in
the residuals. The simple architecture considered in
the previous subsection resulted in IID residuals. More
general filtering architectures will cause the residuals to be
correlated in time. Monte Carlo simulations provide one
approach for estimating FDI metrics in the presences of
such time correlations. A straight-forward application of
Monte Carlo simulations can be time-consuming because
false alarms and missed detections occur infrequently.
Various rare event simulation techniques, e.g. importance
sampling and splitting technique (Rubino and Tuffin,
2009), can be used to more efficiently compute FDI
metrics. The implementation of rare event simulation
techniques is problem-dependent and requires experience.
Alternatively, there are some existing theoretical tools
that can be used to compute the multiple-frame FDI
performance metrics for systems that have time-correlated
residuals. The theoretical tools are more efficient but
can be applied only under restricted assumptions. For
example, the finite state Markov chain approximation can
be used to efficiently compute the FDI metrics for the
more specific case that the residual is governed by a
first order process (Brook and Evans, 1972; Lucas and
Saccucci, 1990). For non-Gaussian residuals, it is possible
to apply extreme value theory (Embrechts ez al., 1997) or
a Poisson clumping heuristic (Aldous, 1989) to roughly
estimate FDI metrics. However the accuracy of these

approximations requires proper justification.

A second certification difficulty is that the
performance of the model-based FDI is impacted by
the accuracy of the models. Hence worst-case analysis
is also required to determine the impact of model
uncertainty and disturbances on the FDI performance.
Worst-case analysis is important for understanding the
trade off between robustness against model uncertainty
and the good disturbance rejection. For example, the
full-state observer-based FDI designed by Patton and
Chen (1991) can completely reject the disturbance when
the model is known perfectly. However this sensitivity
of the FDI performance to model uncertainty must be
analyzed. The framework presented in Section [3.1]
enables the worst case analysis of false alarm metrics
and missed detection metrics to be separated from the
hardware failure rates. Monte Carlo simulations can
again be used to obtain sample-based lower bounds on
the worst-case FDI metrics. Further research is needed to
develop theoretical tools capable of obtaining (rigorous)
upper bounds on the worst-case FDI metrics.

The third and final issue of importance is that all
analysis tools should be validated using experimental
data. Specifically, the available analysis tools (simulations
and/or theoretical techniques) rely on simplifying
assumptions to some degree. Any new analysis techniques
should be compared against real data to ensure the
validity of the results. In the aerospace domain, this
would correspond to the use of flight data to obtain
empirical estimates of FDI missed detection and false
alarm probabilities. These empirical estimates should
be compared against analysis results in order to gain
confidence in the analysis techniques. The main benefit
of this approach is that flight tests are expensive and can
be performed only on a limited set of flight conditions
and trajectories. Validating the analysis results using the
limited flight data would enable confident application of
the analysis techniques to many flight conditions where
there may not be flight data available. In summary,
analysis tools should be justified based on real data so that
they can finally meet the needs for practical applications.

5. Numerical Example

This section provides a numerical example to demonstrate
the proposed analysis method.

5.1. Problem Setup. The dual-redundant system is
assumed to run at a 100Hz sample rate (A; = 0.01sec)
with primary and back-up actuators that both have a
mean time between failure of MTBF = 1000 hours.
Hence failure rates are approximated using discrete-time
geometric distributions with ¢; = 2.78 x 1079 (i = 1, 2).
For simplicity, use the same notation for both actuators
and set g := ¢; for the single-step failure rate and § :=
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P[T; < N] = 1— (1 - q)¥ =~ 1073 for the N-step
(per-hour) failure rate. The actuator system fails if it
commands a bad surface position for at least No = 20
consecutive samples. It is assumed that the actuation
system uses the FDI logic described in Section 4.1} The
objective is to compute the probability of failure for the
dual-redundant system, Pg x, using a window of length
N = 3.6 x 10°. This corresponds to the per-hour system
failure probability at the specified 100Hz sample rate.

The reliability of single and triple-redundant
actuation systems provide useful benchmarks. An
actuation system based on a single actuator with
MTBF = 1000 hours has a per-hour failure probability
of 1073, In other words the reliability of this architecture
is given simply by the reliability of the actuator itself.
Alternatively, a triple-redundant actuation system could
be used to improve the reliability. For example, the
rudders on the Boeing 777 use a triple-redundant actuation
system (Yeh, 1996; Yeh, 2001). A triple-redundant
architecture will fail if any two of the three actuators
fail. In this case the system failure probability per
hour is 3(1 — §)¢*> + @ ~ 3 x 1075 where ¢ is
the per-hour failure probability of a single actuator with
MTBF = 1000 hours. The system failure probability
for the dual-redundant architecture with the analytical FDI
will be compared to these two extreme cases.

5.2. Effects of Thresholds and Fault Levels. The
system failure probability Ps ny can be computed from
the results in Sections (3| and for specific values of
the residual variance o2, fault level f, and threshold H.
The numerical procedure is briefly summarized. First, the
single-frame false alarm and detection probabilities, Pg
and Pp are computed using Equations 30 and 31] Note
that the single-frame FDI probabilities appear to depend
independently on o2, f, and H. Equations and

can be non-dimensionalized so that only the ratios £ and

g appear in the integrals. Thus the remainder of the
analysis only considers the effect of % and f on Pg n.
Next, the exact probabilities for the basic failure events
can be computed from Equations 22] - 24| using P, Py,
q, No, and N. There is no need to use the approximations
(Equation [2T) as the exact equations can be efficiently
evaluated. The exact system probability Pg  is then
given by the sum of these basic failure event probabilities
(Equation 8)). These steps are equivalent to evaluating the
general result in Equation [T4]

Figurjeﬁ] shows Pg n as a function of the normalized
threshold < for two values of the normalized fault level
% =1 and 10. The vertical axis is a log-scale to highlight
the changes in system performance as a function of the
threshold. For small thresholds the system will rarely have
a missed detection but will often trigger a false alarm. As
a result, for sufficiently small thresholds the system has

o

Ps n ~ 1073 for all fault levels, i.e. the duplex system
has similar reliability to the single actuator architecture.
For large thresholds the system will rarely have a false
alarm but it will also frequently have missed detections
when failures occur. Thus the duplex system also has
similar reliability as the single actuator system for large
thresholds.

For intermediate values of the threshold, the system
failure probability depends on the ratio of the fault to
noise level. For large fault levels (g = 10) the threshold
can be chosen to achieve a system failure probability
near 1075, This probabilistic performance is even better
than that achieved by the triplex actuation system. This
result can be explained as follows. Roughly one of the
actuators (and its corresponding probability of failure) in
the triplex system has been replaced by a perfect model in
the dual-redundant system. In practice, the actuator model
used by the analytical FDI logic will have some error and
this model uncertainty will degrade the performance of the
analytical dual-redundant system.

For small fault sizes relative to the noise (g =1)
the system has Pg n > 1073 for some thresholds, i.e.
the performance of the duplex system is even worse than
that achieved by a single actuator. The results shown in
Figure 3| were generated with the exact formulas for Ps n
but the approximations presented in Equation [21] provide
some insight for the g = 1 results. Specifically, the
approximation in Equation[27|can be expressed as:

Psy~@+(1—Pp+Pp)il—q) (32

where Pp =1 — (1 — Pp)N and Pp =1 — (1 — Pp)™o.
If PF > PD then Pg n > ¢. Thus the dual redundant
system fails more often than a single actuator if the N-step
false alarm probability exceeds the detection probability.
This analysis highlights an important distinction between
the false alarm and detection probabilities. Specifically,
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Fig. 4. Optimal performance P§ x and threshold H™ vs. g

when the per-frame probabilities Pr and Pp are both
small then the N-step probabilities are approximately
PF ~ NPr and PD ~ NoPp. The false alarm
probability depends on the time scale of the entire analysis
(N steps) while the detection probability only depends on
the required detection time (/N steps). The typical case is
N > Ny and hence a very low per-frame false alarm rate
(Prp < Pp) is required to ensure a good overall system
reliability.

5.3. Optimized Thresholds. The results in Figure
indicate the importance of proper threshold selection.
As an example, Figure (3| shows that for 5 = 10 the
optimal threshold is H* = 8.4 and this yields the
optimal performance of Pg, ~ 1075 for this fault
level. More generally, let H *(g) denote the threshold
that minimizes Pg y for a given fault level g Figure
shows the optimal performance Pg y and threshold H*
as a function of the fault level. As expected, the
optimal performance Pg , decreases monotonically with
increasing fault level. Figure [ also shows the limits of
performance for the specific model-based FDI scheme
described in Section @ In particular, for small fault
levels (g < 2) the failure probability of the duplex
system is similar to that of a single actuator system even
if the optimal threshold is chosen. This implies that
more advanced filter techniques and decision functions are
required if the fault level is small relative to the noise.

5.4. Relation to ROC Curves. A receiver operating
characteristic (ROC) curve (Egan, 1975) is one tool for
selecting the threshold in detection systems. The ROC
curve graphically illustrates the FDI performance as the
threshold H varies. The solid line in FigureE]is a standard
single-frame ROC curve for the fault level - = 3.5. This
solid line shows the single-frame detection probability Pp
vs. the single-frame false alarm probability Pr for a range

of thresholds H. The desired performance is to have low
false alarms (Pr = 0) and high detection rate (Pp ~ 1).
This corresponds to the upper left corner on the plot.

A key point of the analysis in this paper is that the
total system probability Ps n depends on multiple-step
false alarm and detection performance. For comparison,
Figure [5] also shows the multiple frame ROC curve for
the fault level g = 3.5. Specifically, the dashed line
is a plot of the N-step detection probability Pp vs.
the N-step false alarm probability Pp for a range of
thresholds H. The qualitative shape of the single-frame
and multiple-frame curves is similar but the underlying
dependence on the threshold (not shown) is significantly
different. Specifically, the optimal threshold for 5 =
3.5 is given by H* =~ 5.0 yielding an optimal system
failure probability of Pg  ~ 4.1 x 10~*. This optimal
threshold corresponds to the following single and N-step
performance: Pp = 4.9 x 10~7, Pp = 0.06, Pr = 0.16,
and Pp = 0.73. These performance metrics are shown
by the squared locations in Figure [5] on the respective
single and N-step ROC curves. As discussed in the
previous subsection, false alarms must be very small in
order to obtain a good system reliability. These results
emphasize this point as the optimal performance in this
example is obtained with a very small single-step false
alarm probability.

6. Conclusions and Future Work

This paper analyzed the reliability of a dual-redundant
actuator system with an analytical fault detection
scheme. The system failure probability per hour can
be exactly computed provided that certain probabilistic
information is known for actuator failures and fault
detection performance. An numerical example with a
simple model-based fault detection logic was given to
demonstrate the approach. The proposed approach can be
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combined with high-fidelity Monte Carlo simulations to
assess system reliability. Future work will consider a more
realistic example, e.g. the duplex actuation system on the
Airbus A380. This will require the analysis framework
to incorporate intermittent faults as well as advanced fault
detection filters and decision functions. The future work
will also evaluate the reliability estimates calculated using
the proposed approach using empirical data (flight tests
and bench tests) obtained from a small UAV. This will
provide additional confidence in the practical utility of the
proposed method.
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Appendix A
Correlated actuator analysis

This appendix summarizes the key results when the failure
times for the primary and backup actuators (77 and T5)
are correlated. The duplex system failure rate Pg n
can be computed for the correlated case given the joint
probability mass function P[Ty = 4,75 = k] for all
1 < j,k < N + 1. The FDI logic only monitors the
primary actuator and hence the FDI performance does not
depend on T5. Therefore, a result similar to Equation [T4]
can be obtained following the framework in Section 3.1}

Psn =S P[Ts > k+ No | Ty = k]P[Ty = k]
(A1)
+ P[Ts <N |Ty=N+1]P[Ty =N +1,T, < N]
+ 3N P[Ts < k+ No | T, = k|P[T, = k, Ty < N]

Equation[T6]can also be extended as:

Ps,n = P[Th1 <N, T, < N]+ (A2)
P[Ts <N|Ty=N+1]P[Ty =N +1,T, < N+
YN P[Ts >k+ Ny | Ty =kP[T) =k, T =N +1]

The discussions in Section [3.1] provide similar insights
regarding the basic failure modes for this correlated case.
The main difficulty in applying these results for correlated
failures is that it would be difficult to determine the joint
probability mass function for the actuator failure times.
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