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New regulatory safety standards will soon require unmanned aircraft systems to meet
high levels of reliability. There is potential to increase the reliability of such systems
without necessarily increasing the number of hardware components. This paper motivates
a mix of physical and analytical redundancy in order to increase the system-level reliability
of a small unmanned aircraft. The aircraft discussed in this paper has a split rudder for
fault-tolerant control. Hardware faults, such as a stuck rudder, need to be detected and
isolated in real-time in order for the controller to be reconfigured. In this paper, flight
dynamics principles are used to design a model-based filter for detecting and isolating
stuck faults in the split rudder of the aircraft. A classical controller is developed in order
to make the aircraft robust to stuck rudder faults. The performance and robustness of
the filter is evaluated, in closed-loop, through high fidelity simulations. The results in this
paper highlight the potential for increasing the reliability of safety-critical aviation systems
through analytical redundancy.

Nomenclature
V' Airspeed [m/s]
h  Altitude [m]
a  Angle of attack [deg]
Ié; Angle of sideslip [deg]
o) Roll attitude [deg]
0 Pitch attitude [deg]
) Heading angle [deg]
D Roll rate [deg/s]
q Pitch rate [deg/s]
r Yaw rate [deg/s]
T Throttle setting [unitless]
6.,a Deflection of top rudder [deg]
68,4 Deflection of bottom rudder [deg]

r. Deflection of right aileron [deg]
L., Deflection of left aileron [deg]

deie  Deflection of elevator [deg]

Subscripts

F DI Denotes a simulated signal within the FDI algorithm.
cmd Denotes a commanded signal.

real Denotes a real signal or system.

ref Denotes a reference signal.

trim Denotes the trim value of a signal.
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I. Introduction

This paper describes a model-based fault detection and isolation (FDI) filter designed to detect rudder
faults on a small unmanned aircraft system (UAS). Recently, UASs have found increasing civilian applica-
tions, such as law enforcement, search & rescue, and precision agriculture. While UASs are projected to
operate increasingly in airspace typically reserved for manned aircraft, their current reliability metrics do
not meet the certification standards set by the Federal Aviation Administration (FAA) for manned aircraft.
In 2012, the United States Congress passed H.R.658 [1] - the FAA Modernization and Reform Act - in order
to facilitate the safe integration of UASs into the national airspace. In particular, section 332 of H.R.658
mandates the FAA to ”provide for the safe integration of civil unmanned aircraft systems into the national
airspace system as soon as practicable, but not later than September 30, 2015.” While the FAA works on
creating new certification standards to include the operation of UASs in the national airspace, aircraft de-
signers will need to work towards increasing their reliability. Model-based detection and isolation of faults
has the potential to increase the system-level reliability of UASs while operating within the limits of their
typical design constraints.

To put this challenge in perspective, consider the current safety standards set by the FAA for manned
commercial aircraft: in order for a commercial aircraft to be certified, there should be no more than one
catastrophic failure per one billion hours of flight operation. Airframe manufacturers, such as Boeing,
meet the 1079 failures-per-flight-hour standard by utilizing hardware redundancy in their designs. For
example, the Boeing 777 has 14 spoilers each with its own actuator; two actuators each for the outboard
ailerons, left & right elevators, and flaperons; and three actuators for the single rudder [2]. In addition,
the computing platform, electrical and hydraulic power lines, and communication paths have triple layer
redundancy. On the other hand, most civil UASs have reliabilities that are orders of magnitude below
the 1079 level required for manned commercial aircraft. For instance, the UAV Research Group at the
University of Minnesota (UMN) [3] operates an Ultra Stick 120 aircraft (described further in section I1.A)
with single-string, off-the-shelf components. A comprehensive fault tree analysis yielded a failure rate of
2.2 x 1072 failures-per-flight-hour # for this aircraft [4]. UASs have such low reliability because most, if not
all, of their on-board components are single-string, i.e. there are single points of failure on the UAS that
can lead to a system-level catastrophic failure. Hardware redundancy is required to improve UAS reliability
but must be used judiciously due to design constraints on size, weight, and power. Methods that provide
analytical redundancy, such as the FDI filter discussed in this paper, have the potential to bridge the gap
between commercial aircraft, that almost entirely use hardware redundancy, and current UASs, that are
almost entirely single-string designs.

Some new commercial aircraft, such as the Airbus A380, come equipped with a limited degree of analytical
redundancy [5]. For example, a model-based fault detection algorithm is used to detect oscillatory failure
modes in the electrical flight control system of the A380 [6]. In addition to model-based fault detection
techniques, several data-driven approaches exist. Detailed descriptions of the various model-based and data-
driven fault detection methods can be found in existing literature [7-10]. The performance of model-based
and data-driven fault detection algorithms are compared in [11,12]. A detailed survey of various fault
detection, isolation, and reconfiguration methods is presented in [13]. In addition, the performance of an
FDI filter depends on whether the system is in closed-loop or open-loop control. Signal-based methods are
applied to synthesize FDI filters and their performance is analyzed under closed-loop control in [14].

It is worth emphasizing that analytical redundancy is not a panacea for increasing the reliability of
UASs. After a fault has been detected and isolated, there is still a need to reconfigure the controller in order
to prevent loss of aircraft (LOA). Often, a successful reconfiguration can only be achieved with hardware
redundancy. For example, if a stuck control surface on a UAS would normally lead to LOA, no degree of
analytical redundancy can change that outcome. An attempt is made in this paper to reach a middle ground
by including both hardware and analytical redundancy on a small UAS. Specifically, hardware redundancy
is provided by splitting the rudder of the UAS into two pieces in order to ensure some limited yaw control
authority even if there is a fault in one of the rudders. Analytical redundancy is provided through a model-
based FDI filter that detects and isolates faults in the split rudder. The experimental platform, the simulation
environment used to evaluate the FDI filter, and the flight control law of the UAS are described in section
II. In contrast to the some of the literature reviewed above, a physics-based approach is followed in order
to characterize the fault modes and their effects. Although more advanced signal-based methods exist for

2This analysis provides a theoretical estimate of the reliability and no loss of aircraft has occurred to date.
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synthesizing FDI filters, understanding the physics of the fault is critical in order to effectively apply the
more advanced methods. In particular, the principles of flight dynamics [15,16] are used to understand
rudder faults and are used as guidelines to architect the FDI filter in section III. Finally, the performance
and robustness of the FDI filter is assessed, in simulation, in section IV.

II. Infrastructure for Simulation and Flight Tests

II.A. Experimental Platform

The airframe is a commercial, off-the-shelf, radio-controlled aircraft called the Ultra Stick 120 [17], shown
in Figure 1(a). The Ultra Stick 120 has a wingspan of 1.92 m and a mass of about 7.4 kg. The UMN
UAV Research Group has retrofitted the airframe with custom avionics [3,18,19] for enabling research in
the areas of real-time control, guidance, navigation, and fault detection. The avionics include a sensor suite,
a flight control computer, and a telemetry radio. The airframe comes equipped with the standard suite of
aerodynamic control surfaces - flaps, ailerons, elevator, and rudder - each actuated by its own servo motor.

A comprehensive reliability analysis was performed to identify the critical components on the Ultra Stick
120 [4]. In particular, two standard reliability analyses were performed: fault tree analysis (FTA) and failure
modes & effects analysis (FMEA). These analyses identified the most critical components on the aircraft
that should be supplemented with hardware redundancy. Through simulation, it was concluded that a stuck
rudder and/or a stuck elevator would result either in a loss of mission (LOM) or LOA depending on the fault
level, airspeed, and altitude. In order to mitigate the degradation in performance during LOM and prevent
LOA, the airframe was modified by splitting the rudder and elevator into two parts, each actuated by its
own servo motor [20]. It was reasoned that if one of the two rudders got stuck in flight, the other rudder
would be able to provide some limited yaw control authority, thereby allowing for the reconfiguration of the
surfaces and effectively increasing the reliability of the airframe. A similar reasoning can be made for the
split elevator. The split rudder is shown in Figure 1(b). The rudder was split in such a way that the top
and bottom pieces have equal side force and yawing moment derivatives.

Including the split tail surfaces, this aircraft has a total of eight aerodynamic control surfaces. While each
surface is independently actuated, the flight software allows for them to be coupled symmetrically (such as
the elevators) or anti-symmetrically (such as the ailerons). In addition, these redundant surfaces allow for the
testing and validation of reconfigurable control laws after a fault has been detected in the surfaces. From an
infrastructure standpoint, this aircraft serves as the test platform for all the safety-critical reliability research
that is being undertaken by the UMN UAV Research Group. The focus of this paper is restricted to the
detection and isolation of stuck faults in either of the rudders. Consequently, the commanded maneuvers,
controller outputs, and plant outputs considered in this paper were chosen based on their effect on the
lateral-directional aircraft dynamics.

(a) Baseline Ultra Stick 120 (b) Modified aircraft with split rudder

Figure 1: The baseline and modified Ultra Stick 120 aircraft.
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II.B. Simulation Environment

The UMN UAV Research Group has developed a high-fidelity simulation environment for the Ultra Stick
120 with extensive documentation [3]. This simulation environment was built using Matlab/Simulink and
contains models for the aircraft subsystems. The rigid body dynamics are implemented using the standard
six degree-of-freedom, nonlinear aircraft equations of motion [21]. The aerodynamic stability and control
derivatives were identified from wind tunnel experiments [22,23]. The simulation models the forces & mo-
ments and the propwash generated by the electric motor and propeller pair. The simulation also includes
first-order, rate and position limited actuator models for the servo motors. The sensor models for the inertial
measurement unit, air data probes, and magnetometer include band-limited white noise for each measure-
ment. The simulation environment also contains subsystems that model environmental effects, such as wind
gusts, atmospheric turbulence, and the Earth’s gravitational & magnetic fields. In particular, the Discrete
Wind Gust Model and the Discrete Dryden Wind Turbulence Model are added from Matlab’s Aerospace
Blockset. Finally, closed-loop flight control laws and navigation & guidance filters are also included.

The nonlinear aircraft model can be trimmed and linearized at any flight condition within the flight
envelope of the aircraft. The simulation environment and the flight control computer allow for extensive
software-in-the-loop and hardware-in-the-loop simulations of the aircraft model. The entire simulation envi-
ronment, details about the aircraft fleet, components, wiring, and data from numerous flight tests have been
made open-source and can be freely downloaded from the website of the UMN UAV research group [3].

In Section III, a model-based FDI filter is developed that, when implemented on the experimental plat-
form, would compare the measured response of the real aircraft with the simulated response of the aircraft
model. When no faults are injected, the measured and simulated responses of the aircraft would not perfectly
match because of several unmodeled effects. The aircraft, actuator, and sensor models have model uncer-
tainty. The first-principles-based aircraft equations of motion do not completely capture all the dynamics of
the aircraft. Several parameters of the aircraft, such as the inertia, geometry, and aerodynamic coefficients,
also have some degree of uncertainty. In flight, the aircraft is subjected to several sources of exogenous
disturbances, such as steady winds, wind gusts, and atmospheric turbulence. In addition, all measurements
obtained through flight tests are corrupted with sensor noise.

II.C. Flight Control Law

A classical flight control law has been designed and validated by the UMN UAV Research Group. This control
law serves as the baseline for any flight test involving closed-loop control. The control law has a standard
two-tiered structure that consists of an outer loop for guidance and an inner loop for attitude control.
The outer loop tracks desired airspeed (Vi.s), altitude (h,cy), and heading angle (¢,.f) and generates
the following commands: desired throttle (7¢ma), desired pitch attitude (8y.s), and desired roll attitude
(¢res). While 7.pq is sent to the throttle actuator, 8, and ¢,y are tracked separately by the inner loop.
A longitudinal dynamics inner loop tracks 6,.; and generates the elevator deflection command (deze,cma)-
A lateral-directional dynamics inner loop tracks ¢,.s and generates aileron (dqii,cmaq) and rudder (8,yud,emd)
deflection commands. A positive control surface deflection is associated with: a trailing-edge down deflection
of the elevator; a trailing-edge down deflection of the right aileron, coupled with a trailing-edge up deflection
of the left aileron; and a trailing-edge left deflection of the rudder. Specifically for the ailerons, dqi1,cmd =
+0pit.emd = 75fm’cmd. More details about the baseline flight control architecture can be found in [18,24].

From the closed-loop aircraft response with the baseline controller, it was observed that stuck faults
injected at the rudder resulted in a nonzero sideslip angle in steady-state. Since nonzero sideslip is almost
never desirable, the lateral-directional dynamics inner loop was modified in order to make the controller
robust to rudder faults. Thus, only this particular loop and the modifications made to it will be elaborated
in this section. Figure 2 shows the modified lateral-directional dynamics inner loop. The bottom part of
the figure 2 shows the roll attitude (¢,.s) tracker implemented as a proportional-integral (PI) control law
in the block K. The error between ¢,y and ¢ is the input to the PI law. A separate loop tracks p with a
proportional gain K. The output of the roll attitude tracker is 641 cma. The feedback of d4if cma to Ky is
used for integrator anti-windup in the PI controller K.

The top part of figure 2 shows that additive faults are injected at the input to the plant. One of the
key control objectives is to have zero sideslip in steady-state under healthy and faulty conditions. In order
for the controller to be robust to faults in either of the two rudders, integral action on [ is required. A (8
tracker is implemented as a PI law with anti-windup protection in block Kg. Since a nonzero sideslip angle
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Figure 2: The lateral-directional dynamics inner loop.

is almost never desirable in flight, 8, is set identically equal to zero. The yaw rate (r) is tracked with a
proportional gain K. It should be noted that the modified flight control law does not treat the split rudders
as separate control surfaces, i.e. the same rudder deflection command is sent to the actuators of both the
top and bottom rudders. The robustness of the modified controller to faults injected at either of the two
rudders is evident in the results presented in section IV. In general, it should be noted that while making
the controller robust to faults is desirable, it also makes the detection and isolation of those faults more
difficult because the controller masks the faults in the closed-loop response. The challenges associated with
detecting and isolating faults when the aircraft is in closed-loop control are discussed in Section III.

III. Fault Detection and Isolation Filter

The objective of this research is the real-time detection, isolation, and estimation of faults at either the
top or the bottom rudder of the Ultra Stick 120. Each component of the FDI filter (detection, isolation, and
estimation) requires a different output variable or control command to be compared with that generated by
the model. The following sections discuss the implementation of the FDI filter, models for the rudder fault
modes, and the architecture of the FDI filter. The challenges associated with detecting and isolating faults
with the aircraft in closed-loop control are also discussed.

III.A. FDI Filter Implementation

The model-based FDI filter compares measured outputs and control commands with their simulated coun-
terparts. Figure 3 is a block diagram representation of how the FDI filter is implemented for real-time
operation. The blocks P,.q, and Prpr represent the real and simulated aircraft dynamics. These dynamics
are depicted as generalized blocks for simplicity. The generalized plant contains the aircraft, actuator, and
sensor dynamics as well as the flight control law. In other words, figure 2 is condensed into the P blocks
in figure 3. Both P,.q and Prp; take in the same vector-valued reference signal (ref) as an input, where
ref = [Brefs Pref])T. Since Preqr and Prpr share the same flight control law (within each P block), they
would respond similarly to the reference commands ref. However, P,..,; has model uncertainty, represented
by the A block, and is affected by wind gusts & turbulence (d), sensor noise (n), and fault injections (f).
None of these unmodeled effects (A, d, n) or faults (f) enter the Prps block. It is worth mentioning here
that the FDI filter needs to be robust to the unmodeled effects (A, d, n) so that false alarms are not declared
frequently. In addition, the FDI filter should be responsive to the faults (f) so that there are no missed
detections. The generalized outputs of the P blocks are the closed-loop plant measurements (y) and control
commands (u). With reference to figure 2, y = [8, ¢, v, p, 7|7 and « = [§,ud,cmd; dait,emd)’ - The model-based
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FDI algorithm consists of the generalized plant model (Prps) and the FDI filter, and is enclosed by the
dashed box. At a high level, the FDI filter works by comparing the y and w signals coming from each P
block and is designed to be sensitive only to the fault signals (f). Ideally, the FDI filter should reject the
effects of A, d and n.

ITI.B. Fault Modeling

In this research, only stuck faults are injected at the top and bottom rudders of the real aircraft (Preqr).
The faults are injected after a certain preset time has elapsed, but the controller has no a priori knowledge
of the fault injection. To gain a better understanding of the flight dynamics, P,..q; is initially simulated
using the nonlinear, high-fidelity model and Pgrp; uses a linear model obtained by linearization at one
flight condition. The difference between the high-fidelity nonlinear model and the lower fidelity linear model
approximately captures the effect of model uncertainty (A). Some relevant results are presented in this
section to demonstrate the closed-loop response of the real aircraft to the injected faults. These results will
help motivate the architecture of the FDI filter in the next section. In the following results, sensor noise and
turbulence effects are added, but steady winds and wind gusts are not.

The aircraft is trimmed at an altitude of 100 m and an airspeed of 23 m/s, and is commanded to fly
straight and level along a heading reference of 155°. The trim conditions of the aircraft are: Birim = Gtrim =
Dirim = Ttrim = 0, Yerim = 185°, rydtrim = 0, and g4y ¢rim = 0.3°. Figure 4 shows the response of Py.q
after a +25° (positive saturation limit) stuck fault is injected, in simulation, at the top rudder at t = 5s. The
fault injection time step is marked by a vertical dashed line. The signals shown are y,ca = [, ®,%,p,7]T
and Urear = [Srud,emds Oail,emd)” - Along with 8pud.cmd, the actual surface deflection (8¢,,) is also shown.
The response of 6f,, shows that the top rudder is stuck at +25° after ¢ = 5s. For the first five seconds
of the simulation, all the signals in y,cq; and u,.q; are at their respective trim values. The high frequency
oscillations seen on all the signals are due to the effects of sensor noise and atmospheric turbulence.

From the six subplots shown in figure 4, it can be seen that all the signals in y,eq; and w,.q; depart from
their respective trim values immediately after the fault is injected at ¢ = 5s. All the signals show some
distinct transient properties. With the top rudder stuck positively (trailing edge deflected left), a positive
side force is generated on the vertical stabilizer. This positive side force results in a positive rolling moment
and a negative yawing moment. As a result, the aircraft immediately yaws to the left (r < 0) and rolls to
the right (p > 0). As previously mentioned in section II.C, the lateral-directional dynamics controller has
proportional gains on p and r. Consequently, the yaw rate and roll rate transients show up as spikes and
subside quickly. The spikes in the body angular rates lead to slower changes in the Euler angles, with ¢
increasing and v decreasing from their respective trim values. The ¢ and 1 signals reach their respective
maximum and minimum values within a few seconds. As mentioned previously, the ¢ signal is tracked by
a PI control law. Although the PI law results in the error decay being sluggish, it guarantees zero steady-
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state tracking error. The v signal is tracked by a proportional gain in the outer loop (not discussed in this
paper, see [18]) and has an error decay rate similar to that of ¢. In addition, the rudder fault results in an
immediate buildup of positive sideslip (8). The § tracker, which is also implemented as a PI law, results
in an asymptotic convergence of 3 to Br.y = 0. As a result of the integral control on 8 and ¢, all the ypcq
signals return to their respective trim values in steady-state (¢ > 40s). A key property of stuck rudder faults
is that they cannot be detected simply by monitoring the steady-state response of y,.4;. The detection logic,
described in detail in section III.C, uses the transient response of y,¢q; to detect rudder faults.

The simulation results show that the closed-loop system is robust to the worst-possible top rudder fault
of 25°. The flight control law treats the injected fault as a disturbance and compensates by commanding
the bottom rudder to deflect in the opposite direction, as seen in the response of 6,44 cma. In steady-state,
Srud,cmd asymptotically converges to —df,,. This equal, but opposite, deflection of the bottom rudder
produces a negative side force and a positive yawing moment that counteracts the effect of the top rudder.
Some interesting observations can also be made about the aileron deflection command (0441,¢ma). The buildup
of positive sideslip immediately after the onset of the fault produces a negative rolling moment due to the
effect of the sideslip on the vertical stabilizer. To compensate for this negative rolling moment, the controller
commands the ailerons to deflect in the negative direction, as seen in the response of d447,cmaq. In steady-state,
however, d4i1,cma does not converge to its trim value. This phenomenon is explained in greater detail in the
following paragraphs.

A similar simulation was performed with the bottom rudder stuck at +25°. It was observed that the
response of Ypeqr and 6ryd,ema Were almost identical to the case of the top rudder fault. Hence, these plots
are not reproduced in this paper. In fact, faults of equal magnitude and direction in the top and bottom
rudders result in very similar responses in the yreq; and ,yd,cma signals. The difference is so small that
the source of the fault cannot be identified from either the transient or steady-state response of y,¢q; and
Orud,cmd- The only signal from which equal faults in the top and bottom rudders can be differentiated is
dqil,emd- Hence, only the 0441 cma signal is reproduced for the bottom rudder fault.

Figure 5 shows the response of d4ii,cma to both top and bottom rudder faults of +25°. Although the
transient response of 41 cma for top and bottom rudder faults are quite similar, a clear separation can be
seen as steady-state is approached (¢t > 40s). In steady-state, the integral control in the g tracker drives the
sideslip angle to zero by deflecting the healthy rudder in a direction opposite to the faulty rudder. Since the
top and bottom rudders have slightly different rolling moment derivatives (due to their different moment
arms), their net contribution to the rolling moment is non-zero. Since the top rudder has a larger rolling
moment derivative than the bottom rudder, the net rolling moment contribution depends on the direction
in which the top rudder is deflected in steady-state. If the top rudder is deflected positively in steady-state,
the net rolling moment would be positive, and the controller would compensate by deflecting the ailerons
positively, i.e. 6qi1,emd > Oail,trim- This phenomenon can be seen in figure 5: for a top rudder fault of 4-25°,
the steady-state value of 0441,cmd is greater than its trim value.

On the other hand, if the top rudder is deflected negatively in steady-state, the net rolling moment would
be negative, and the controller would compensate by deflecting the ailerons negatively, i.e. S4it,emd < Sail,trim.-
For a bottom rudder fault of +25°, the top rudder is deflected negatively in steady-state and results in a
net negative rolling moment. As shown in figure 5, the controller compensates by deflecting the ailerons
negatively in steady-state. The isolation & estimation filter, described in detail in section III.C, makes use
of this phenomenon to isolate and estimate rudder faults.

III.C. FDI Filter Architecture

The FDI filter, that was enclosed by the dashed box in figure 3, is shown in greater detail in figure 6. The
FDI filter takes in four vector-valued inputs: the real & simulated plant outputs (yrear, y#pr) and the real &
simulated controller commands (uyeqi, urppr). These four signals are processed in real-time by the filter and
a report is generated. The filtering of the fault is a three-stage process involving detection, isolation, and
estimation. The isolation and estimation stages are combined into a single block in figure 6. The performance
of each stage can be quantified using appropriate metrics. The detection stage detects the occurrence of a
rudder fault and has three main performance metrics: detection time, probability of missed detection, and
probability of false alarm [25,26]. The isolation stage pinpoints the source of the fault, i.e. it determines if
the fault was injected at the top or the bottom rudder. A boolean flag is used to quantify the correctness
of isolation. The flag is set to 1 if the source of the fault is isolated correctly and is set to 0 otherwise. The
estimation stage generates an estimate of the fault magnitude and direction. The estimation error serves as
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a performance metric for the estimation stage. The arrow connecting the detection block to the isolation &
estimation block in figure 6 indicates that the isolation & estimation filter is activated only if a fault is first
detected by the detection logic. In section III.B, the principles of flight dynamics were invoked to analyze the
fault effects shown in figures 4 and 5. In this section, the understanding of the fault effects is used alongside
traditional linear analysis tools to construct both the detection logic and the isolation & estimation filter.

Detection Logic
It was concluded in section II1.B that rudder faults would need to be detected based on the transient response
of Yreqr- Specifically, the difference between the transient responses of y,eq; and ypp; is used to detect
rudder faults. The detection logic takes in y,eq; and ypp; as inputs and generates a vector-valued residual
signal (e,) by subtracting each signal in ypp; from its respective counterpart in y,.q. Mathematically,
ey = Yreal — YrpI = [AB, Ad, Ay, Ap, Ar]T, where A denotes a difference between the real signal and the
simulated F'DI signal. As mentioned previously in section III.A, y,cq; and yrpr will be similar because
they share the same flight reference commands. Consequently, the mean of e, will be small in the absence
of a fault and under nominal conditions. Conversely, in the presence of a rudder fault, some components
of this residual vector will be nonzero in transient and/or steady state. In addition, e, will contain high-
frequency components due to the effects of sensor noise and atmospheric turbulence, and lower frequency
components from wind gusts and model uncertainty. The detection logic analyzes the transient response of
ey and is designed to be robust to model uncertainty, wind gusts, atmospheric turbulence, and sensor noise,
but sensitive to the injected faults. This is possible because stuck rudder faults have a unique and detectable
signature compared to wind gusts and maneuvers.

As mentioned previously, detection time is a standard metric to assess the performance of the detection
logic. The detection time is the time that elapses between the injection of a fault and its successful detection.
Faults that are injected at the rudder show up after some time in the y,¢q; and u,..q; signals because of time
lags inherent in the closed-loop aircraft dynamics. A deeper analysis of the results presented in section
II1.B reveal that rudder faults show up first in the body angular rates p & r and only later in 3, ¢ and ).
This makes physical sense because of the presence of integrators between p & r and (5, ¢ & . In order to
detect faults quickly, the transient response of the residuals Ap and Ar are analyzed. In order to make the
detection logic more reliable, the residual AS is also analyzed, along with Ap and Ar. In this detection logic,
measurements from the airdata sensor () and the inertial measurement unit (IMU) (p & r) are used in fault
detection. By analyzing residuals from two different sensors, actuator faults can be detected with higher
confidence levels. Simultaneous faults in both sensors systems that mimic a rudder fault is very unlikely.

A standard technique in fault detection [8] is to raise a flag when the residual crosses a specified threshold.
If the threshold is set too low, false alarms may be declared frequently. Conversely, if the threshold is
set too high, there may be frequent missed detections. There is literature that shows how the threshold
can be set analytically in order to balance the probabilities of false alarm and missed detection [27,28].
However, in this paper, the thresholds for each residual are simply set based on the characterization of the
sensor noise. As previously mentioned, the sensor noises are modeled as band-limited white noise derived
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Table 1: Standard deviations and thresholds of residuals based on sensor noise characterization.

Source Signal o Threshold
Airdata sensor Ap 0.1812° Tg = 4303
IMU Ap  0.4051° T, = t4o,
IMU Ar 0.4051° T, =470,

from independent and identically distributed (iid) zero-mean Gaussian distributions [3]. The thresholds for
each residual (1, Ty, T,) are set equal to some multiple of their respective standard deviation, based on
simulation results. The standard deviations (o) of the Gaussian distributions for each of the sensors and the
corresponding thresholds are shown in Table 1.

Within the detection logic, three separate flags (F;, ¢ € {8, p, r}) are maintained for the residuals Ag,
Ap, and Ar. The residuals AS, Ap, and Ar are monitored at 50 Hz - the same sample rate used by the
flight control law. Each flag is set equal to zero if the corresponding residual is within the limits defined
by its threshold. The flags are set equal to +1 if the residual exceeds the positive threshold and -1 if the
residual drops below the negative threshold. In summary, for i € {3, p, r}, and at each sample time k,

+1 Zf ey,i(k) > +T;
Fi(k) =90 if ley,:(k)| <T; (1)
-1 if 6y,i(k) < -T;

The results presented in section II1.B show that rudder faults result in a unique and detectable combina-
tion of transients in 3, p, and r. For example, a positive rudder fault (irrespective of whether it is injected in
the top or bottom rudder) results in 8 increasing, p increasing, and r decreasing from their respective trim
values. Conversely, a negative rudder fault (irrespective of whether it is injected in the top or bottom rudder)
results in S decreasing, p decreasing, and r increasing from their respective trim values. This pattern also
shows up in the transient response of the e, signals and, by extension, the flag variables (F;, i € {8, p, r}).
In particular, positive rudder faults result in the following flag variable pattern: [Fg, F,, F,| = [+1, +1, —1].
Conversely, negative rudder faults result in the pattern, [Fg, F,, F,] = [-1, =1, +1].

The detection logic monitors the three flags at each sample time for either of these two patterns. Further,
a global detection flag variable is maintained in the detection logic with a default value of zero. The global
flag is set equal to +1 if the [+1, +1, —1] pattern is observed, and to -1 if the [—1, —1, +1] pattern is
observed, for five consecutive sample times. After performing extensive simulations, it was observed that
rudder faults, depending on their sign, either produce the [+1, 41, —1] or the [-1, —1, +1] pattern over
several sample times. This is in contrast to the effects of turbulence and sensor noise that may produce the
patterns for one or two sample times. By checking for consistency in the pattern over five consecutive sample
times, the logic is made robust and false alarms are avoided. This logical check over five consecutive sample
times corresponds to a special case of an up/down counter that is commonly used in commercial avionics
to avoid false alarms. In conclusion, a global flag of +1 indicates a positive rudder fault and -1 indicates a
negative rudder fault.

Embedded in this unique sign pattern of the flag variables is some phase characteristics of the signals 3,
p, and r. Linear analysis tools can be exploited to understand the uniqueness of these phase characteristics.
Specifically, the frequency responses of 3, p, and r due to injected rudder faults can be compared with those
due to wind gusts. Nominally, the aircraft is trimmed at an altitude of 100 m and an airspeed of 23 m/s.
A linear closed-loop model is obtained at this nominal trim point. Figure 7 shows the Bode magnitude and
phase plots of the closed-loop frequency response of 8 and p, at the nominal trim point. The lines marked
druq represent rudder fault injections and those marked Wind(y) represent wind gusts directed along the
body y-axis of the aircraft. In order to draw proper conclusions, the transfer functions that are used to
generate these Bode plots are normalized. The normalization is done such that the transfer functions related
to 8 match at a frequency of 1 rad/s. This normalization only affects the Bode magnitude plot and does
not affect the phase plot.

It is seen in Figure 7 that the gain variations with frequency, in the plotted frequency range, are similar
between rudder faults and wind gusts. The main takeaway from Figure 7 is that there is a significant phase
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Figure 7: Bode magnitude and phase plots comparing the closed-loop frequency responses of 8 and p due to
rudder faults with wind gusts. Trim altitude is 100 m and airspeed is 23 m/s.

difference between the responses induced by rudder faults and wind gusts. The bandwidth of the actuators
that control the rudders is 8 Hz (50 rad/s). For this analysis, wind gusts between 1 m/s and 15 m/s, that
persist over a distance of 1 m, are considered. This corresponds to a frequency range of 6 rad/s to 90 rad/s.
The overall frequency range of interest is 1 rad/s to 100 rad/s and is highlighted by the gray boxes in the
phase plots. More specifically, in the frequency response of p, it is observed that there is a phase difference
of at least 180° between d,,4 and Wind(y), over the frequency range of interest. A phase difference of
approximately 180° is also observed in the frequency response of §, but only near 1 rad/s. A similar phase
difference is also seen in the frequency response of r, but is omitted from this paper. For frequencies where
there is only a small phase difference in any one signal among £, p, and r, a sufficiently large phase difference
can be found in at least one of the other two signals. By using all three signals for fault detection, it is
ensured that the filter is sensitive to rudder faults and insensitive to external aerodynamic disturbances.

In applying the detection logic to the residuals, it might be desirable to filter out the high frequency
components by using a low-pass filter. However, this has the drawback of introducing a phase lag between
the filtered residual and the raw residual and, thereby, delaying the detection. In order to be able to detect
faults as soon as possible, the raw residuals are directly fed to the detection logic. The global flag and the
detection time stamp are included in the report generated by the FDI filter.

Isolation & Estimation Filter
After a fault is detected, the isolation & estimation filter pinpoints the source of the fault and generates an
estimate of the fault level. The isolation & estimation filter takes in w,.cq; and uppy as inputs and generates a
vector-valued residual signal (e,) by subtracting each signal in upp; from its respective counterpart in t,eq;-
Mathematically, e, = Ureqs —Urpr = [Abrud,cmds Aéau,cmd}T, where A denotes a difference between the real
signal and the simulated F'DI signal. As mentioned previously, t,eq; and uppy; will be similar because they
share the same flight reference commands. Consequently, the mean of e, will be small in the absence of a
fault and under nominal conditions. Conversely, in the presence of a rudder fault, some components of e,
will be nonzero in transient and/or steady state. It was concluded in section IIL.B that the only signal from
which equal faults in the top and bottom rudders can be differentiated is dqit,cma. As shown in figure 5, the
transient response of 041, cma to top and bottom rudder faults are similar. However, the steady-state value
of d4i1,cmd depends on the source of the fault. The isolation filter monitors the steady-state behavior of the
aileron command residual (Adgi1 cma) and identifies the source of the fault.

The control command residual e, also contains high frequency components due to the effects of sensor
noise and atmospheric turbulence. In addition, e, contains lower frequency components from wind gusts and
model uncertainty. The isolation & estimation filter analyzes the steady-state response of e, and is designed
to be robust to model uncertainty, wind gusts, atmospheric turbulence, and sensor noise, but sensitive to the
injected faults. The aileron command residual is computed as: Adgir,cmd = Sail,emd — Oail,trim- However, it
is seen in figure 5 that the steady-state value of 0441 cma for top and bottom rudder faults is very close to the
trim value. This implies that the signal-to-noise ratio (SNR) of Adyii ema Will be very small in steady-state.
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In order to properly detect the steady-state value of the aileron command residual, Adgs cmq would need to
have a higher SNR. In order to boost the steady-state SNR of Adgii,emd, the high frequency components of
the residual need to be removed through a low-pass filter. Although the low-pass filter would introduce a
phase lag, the magnitude of the phase lag would not be too large because the mean of the residual only has
low frequency components as steady-state is approached.

The low pass filter is chosen to be a first-order lag: H(s) = ﬁ The time constant of 2s implies that
frequencies above 0.08 Hz are filtered out by H. The aileron command residual (Adg,cma) is filtered using
H(s) and is analyzed at each sample time by the isolation filter. At each time step, the preceding fifty
time steps are analyzed in order to check if the residual has reached steady-state. The residual (Adgis,cma) 1S
declared to be in steady-state only if the preceding fifty time steps satisfy the following statistical constraints:
i) mean < 0.35, ii) range < 0.015, and iii) standard deviation < 0.005. In addition, it is concluded from
simulation that the lateral-directional dynamics of the closed-loop plant (the P blocks in figure 3) has a time
constant of 12 seconds. This implies that steady-state is reached roughly 36s after the fault is detected.
This information is also used in the isolation filter to ensure that steady-state is not declared earlier than
expected. Once steady-state has been declared for Adgii ema, the estimation filter is activated.

The estimation filter generates an estimate of the magnitude and direction of the injected fault. As
mentioned previously in section III.B, after a fault is injected, the controller responds by deflecting the
healthy rudder in the opposite direction. Consequently, a direct measure of the fault level is —6,yq,cma after
steady-state is reached. It is observed that d,q,cmd reaches steady-state at approximately the same time as
Abgil,cmd- As shown in figure 4, 6,u4,cma also contains high frequency components. Since the fault level is
estimated near steady-state, 6,yq,cmd 1S also filtered without the penalty of phase lag. At this point, estimates
are available for the fault level and for Adgi; cmd. Using the signs of these two estimates, the source of the
fault and its direction can be isolated. This isolation can be summarized into an isolation matrix, as shown
in Table 2. The isolation matrix is a one-to-one mapping between the causes (fault modes) and the effects
(output responses). If the set of output responses is restricted to only those shown in the isolation matrix,
the mapping becomes one-to-one & onto and can, hence, be inverted. For any entry in the matrix, a positive
sign implies an increase from its trim value and a negative sign implies a decrease from its trim value. In
the results presented in section IV, several difference fault levels are considered, including the case of the
rudder stuck at 0°. As an example, consider the case where 044, cma < Oait,trim and the steady-state value
of Oyud,ema 1S positive (row 3 in table 2). This combination of effects has a unique cause: a negative fault in
the top rudder, i.e. d%,, < 0. Thus, the isolation & estimation filter simultaneously isolates the source of the
fault and generates an estimate of the fault magnitude and direction. In the following section, simulation
results are presented for different rudder fault levels and the performance and robustness of the FDI filter is
assessed.

Table 2: Fault Isolation Matrix

Control commands Plant outputs
Fault mode | (steady-state response) (transient response)

Orud,cmd Oqil,emd B ] (% D T
6Lua >0 - + + + - + -
62,a <0 + + - - + - +
5t <0 + - - - + - -
62a >0 - - + + - + -

IV. Results

The FDI filter, that was developed in section III.C, is applied to the aircraft model described in section
II.B. With reference to figure 3, during flight tests, P,eq represents the actual aircraft dynamics and
Prpr represents the analytical model used by the FDI filter. In order to simulate faults, P,y is initially
represented by the nonlinear, high-fidelity model and Prp; uses a linear model obtained by linearization at
one flight condition. Three different sets of plots are presented in this section to illustrate the performance
and robustness of the FDI filter. In all three sets of plots, P,y is affected by atmospheric turbulence and
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sensor noise. In particular, the first set of plots illustrate the robustness of the filter to wind gusts. The
second set of plots illustrate the robustness of the filter to model uncertainty and commanded maneuvers.
The third set of plots show two performance metrics of the FDI filter - detection time and fault estimate -
as a function of the injected fault level. All the results presented in this section are simulated.

Robustness to wind gusts
For the first set of plots, the aircraft is trimmed at an altitude of 100 m and an airspeed of 23 m/s, and is
commanded to fly straight and level along a heading reference of 155°. The trim conditions of the aircraft
are: Btrim = ¢t7‘im = Ptrim = Ttrim = 0, wtrim = 15507 6rud,trim =0, and 6ail,trim = 0.3°. It should be noted
here that both P,.,; and Prp; use the same trim conditions. The first set of plots that will be discussed
here are shown in figure 8. Figure 8 contains five subplots that all share the same horizontal time axis from
0 to 60s. The top three subplots show the time history of the e, residuals, specifically, A3, Ap, and Ar.
The bottom two subplots show the time histories of the e, residuals, specifically, Ad;yd,emd and Adgir emd-

A wind gust of length [dz, dy, dz] = [1,1, 1] and amplitude [du, dv, dw] = [0,1.5,0] is injected at t = 5s.
The wind gust length [dx, dy, dz] indicates the distance, measured in the Earth-fixed reference frame, along
which the wind gust affects the aircraft. The wind gust amplitude [du,dv,dw] = [0,1.5,0] indicates the
perturbation velocities, measured along the body-fixed reference frame, induced by the wind gust. Physically,
this models a wind gust striking the aircraft on its starboard side and directed toward its port side. This
wind gust direction was chosen because it excites the lateral-directional dynamics of the aircraft - the same
dynamics excited by rudder faults - and thus tests the robustness of the FDI filter. The Discrete Wind
Gust Model, imported from Matlab’s Aerospace Blockset, is used to apply this wind gust in simulation.
More details about this wind gust model and its parameters can be found in the Matlab documentation. In
addition, a fault of +10° is injected at the bottom rudder at ¢ = 20s. The wind gust injection time is marked
by the green tab at ¢ = 5s and the rudder fault injection time is marked by the maroon tab at t = 20s on
the horizontal axis.

The residuals e, are shown in blue color in the top three subplots in figure 8. Overlaid on top are the flag
variables (Fg, Fp, F)) of the detection logic, described in section III.C. The variation of the flag variables
between the values -1, 0, and +1 can be seen in the plots. Starting at ¢ = 0, all the e, residuals have zero
mean because Yreqr and yppr are very similar. As seen in the plots, the e, signals contain high frequency
components due to the effects of atmospheric turbulence and sensor noise. At t = 5s, a wind gust is injected
in simulation that affects only the real aircraft P,eq;. The model simulated within the FDI algorithm (Prpy)
does not see the effect of the wind gust. Consequently, the residual signals in e, diverge from zero, as seen
in the plots. The sideslip angle increases immediately due to the increased lateral velocity induced by the
starboard side wind gust. This increase in the sideslip angle shows up as a spike in the AS residual which
triggers the flag Fjg to a value of +1. The wind gust produces a large negative side force on the vertical
stabilizer, which translates to a negative rolling moment and a positive yawing moment. As a result, the
aircraft rolls to the left (p < 0) and yaws to the right (r > 0). These perturbations show up as spikes in the
Ap and Ar residuals, with Ap peaking negatively and Ar peaking positively. This, in turn, triggers their
respective flags as: F), = —1 and F,. = +1. As seen from the plots of the three flags, overlaid on the e,
residuals, the wind gust results in the following flag pattern: [Fg, F,, F,] = [+1, —1, +1]. Since this pattern
does not match with either of the patterns in the detection logic, the global flag variable is not triggered and
remains at its default value of 0 and a fault is not triggered. This fact is indicated by the green color of the
plots of the three flags. Thus, the wind gust is successfully rejected by the detection logic as a true negative.

The wind gust subsides by ¢ = 15s and the means of all the e, residuals return to zero. At ¢t = 20s, a
fault of 4+10° is injected in the bottom rudder. Subsequently, all the e, residuals diverge from zero. The
positive bottom rudder fault produces a positive sideslip in the aircraft, along with a positive roll rate, and a
negative yaw rate. The closed-loop aircraft response to a positive bottom rudder fault is quite similar to that
of the positive top rudder fault, that was explained in detail in section III.B. As a result, the A residual
increases, triggering its flag to +1. The Ap residual also increases, resulting in F}, = +1. In addition, the
Ar residual decreases, resulting in F,. = —1. The flag pattern of [Fs, F,, F,| = [+1, +1, —1] is detected by
the detection logic and the global flag is set to +1. The fault is detected at ¢ = 20.44s, implying a detection
time of 0.44s. The fact that the global flag turns +1, is indicated by the red color of the individual flags
after ¢ = 20.44s. Once the global flag reaches a nonzero value for five consecutive sample times, it is held at
that value for all future times, as seen in figure 8.

After the fault is detected, the detection logic triggers the isolation & estimation filter. This filter makes
use of the e, residuals, shown by the blue colored plots in the bottom two subplots of figure 8. The injected
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fault is seen in the actual deflection of the bottom rudder: 5ffud is stuck at +10° V¢t = 20s. The flight control
law responds to this fault by commanding the top rudder to deflect in the opposite direction, as seen in
the decrement of Adyyd,cmd, and by commanding the ailerons to initially deflect negatively, as seen in the
negative values of Adgcmq. The filtered e, residuals are shown by the dashed red lines overlaid on the
residuals. The isolation filter monitors the steady-state value of the filtered Adgs,cma residual. It is observed
that Adgim,cma reaches steady state at about ¢ = 55.56s (marked with a maroon tab). This implies an
isolation time of approximately 35s, the same as the settling time of the closed-loop plant. The generated
estimate of the fault is +9.4°, implying an estimation error of 0.6°. Overall, it is seen that the FDI filter is
robust to the wind gust, but responsive to the actual fault injection.

Robustness to model uncertainty and commanded maneuvers
In the seconds set of plots, the robustness of the FDI filter is assessed in the presence of a greater level of
model uncertainty and with commanded maneuvers. One way of introducing additional model difference is
by setting different trim airspeeds for P,.,; and Pppy. The linear model that is used in Ppp; is generated
at a nominal airspeed of 23 m/s. However, the nonlinear model that is used in P,y is trimmed at an
off-nominal airspeed of 25 m/s. In addition to the off-nominal flight condition, a doublet heading maneuver
is commanded. The combination of the off-nominal flight condition and the doublet maneuver tests the
robustness of the FDI filter to conditions commonly experienced during flight tests.

While P,.q; and Prp; have different trim airspeeds, they have the same trim altitude of 100 m. Although
the different trim airspeeds result in different longitudinal trim states, the lateral-directional trim states are
unaffected. Under trim conditions, the aircraft is commanded to fly straight and level along .y = 155°.
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Figure 9: Signals yreqi & yrpr and residuals e, for a maneuver at an off-nominal flight condition. A ¢
doublet of +10° is injected for ¢ € [5s, 15s] and a top rudder stuck fault of —10° is injected at ¢ = 20s.
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Figure 9 contains six subplots that all share the same horizontal time axis from 0 to 40s. The three subplots
on the left show the responses of y,cq; (solid blue) and yrpr (dashed red). Specifically, the variables used in
the detection logic, 3, p, and r, are plotted. The three subplots on the right show the time histories of the
ey residuals (AB, Ap, Ar) in solid blue. Their respective flags are shown either in green or in red depending
on whether a fault is detected. At ¢t = 5s, a doublet heading maneuver is commanded: VYref = Yerim + 10°
for ¢t € [5s,10s], Yref = Yirim — 10° for ¢t € [10s, 15s], and ¢ref = Yirim for t > 15s. The duration of the
doublet maneuver is marked using the green tabs at ¢ = 5s and t = 15s. The @ doublet maneuver excites
the lateral-directional dynamics of the aircraft. In addition, a fault of —10° is injected in the top rudder at
t = 20s. The rudder fault injection is marked using a maroon tab at ¢ = 20s. As explained in the following,
the FDI filter does not respond to the off-nominal 1 doublet, but responds to the injected fault.

Since both Pr.q; and Prpy are fed the same reference commands, they both respond similarly to the v
doublet. Consequently, the mean variations in ¥, and ypp; are similar and the e, residuals have close
to zero mean even during the v doublet. The v doublet does cause two of the residuals, AS and Ap to
exceed their respective thresholds and this triggers their flags, as seen in figure 9. However, since F, does
not get triggered, the global flag remains at its default value of zero. After the fault is injected, the three
left subplots show the y,eq; signals diverging from their ypp; counterparts. The negative fault in the top
rudder produces a negative sideslip, a negative roll rate, and a positive yaw rate. These variations can be
seen in the plots of the y,.q; as well as the e, signals. The A and Ap signals become negative and the Ar
signal becomes positive. This results in the individual flags becoming: [Fg, F,, F,] = [-1, —1, +1]. This
flag pattern is detected, the global flag is set to -1, and a fault is detected at 20.54s. The fault detection is
indicated by the red color of the individual flags Vt > 20.54s. The performance of the isolation & estimation
filter is not shown in figure 9. However, from simulation, it is observed that the isolation time is 35s after
the fault is detected, and the estimation error is 0.4°.

Performance metrics of FDI filter
The variation of two specific performance metrics of the FDI filter - detection time and fault estimate - as a
function of the injected fault for the top and bottom rudders are shown in figure 10. In generating these two
plots, both P, and Prpp; were trimmed at the nominal airspeed of 23 m/s and commanded to straight
and level flight. In addition, P,.,; was subject to atmospheric turbulence and sensor noise, but not wind
gusts. The top and bottom rudders on the Ultra Stick 120 have a range of motion of £25°, as shown on
the horizontal axis. It is seen in the left subplot that faults of larger magnitudes have lower detection times
as compared to faults of smaller magnitudes. This makes physical sense because a larger fault will induce
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Figure 10: Variation of detection time and fault estimate with the injected fault level.

16 of 18

American Institute of Aeronautics and Astronautics



larger transients in the residual vector e,. Larger transients in e, will result in the residuals crossing their
respective thresholds sooner and triggering the global flag faster. Another interesting observation is that top
rudder faults are detected faster than bottom rudder faults over a large range of the fault level. At lower
fault levels, the detection time for top rudder faults is no worse than the detection time for bottom rudder
faults. This observation, too, makes physical sense. Since the top rudder has a larger rolling moment arm
as compared to the bottom rudder, a top rudder fault will cause larger transients in Ap and lead to faster
detection.

It is also seen that faults between —7° and +7° are undetectable because they do not trigger the global
flag. This is because the flag patterns encoded in the logic are not observed for at least five consecutive
sample times. The detection logic has four unique parameters that govern its sensitivity to rudder faults: the
three thresholds (T, Ty, T,) and the number of consecutive frames over which the flag pattern needs to be
observed. Presumably, these undetectable faults may become detectable if the thresholds are made smaller
and/or the number of frames reduced. However, the improved performance of the FDI filter will come with
the price of reduced robustness. By making the FDI filter sensitive to smaller fault levels, it is likely that
wind gusts, turbulence, and sensor noise may trigger false alarms. This trade-off between performance and
robustness translates to balancing the probabilities of false alarm and missed detection. An FDI filter that
is very robust and that hardly ever generates false alarms is also likely to have a larger number of missed
detections, and vice-versa.

The variation of the fault estimate with the fault level is shown in the right subplot of figure 10. For
a perfect isolation filter, this plot would correspond to a straight line with unit slope passing through the
origin. However, the isolation filter developed declares steady state at a finite time, and hence results in some
nonzero estimation error. Consequently, the plot is slightly skewed from the ideal. For positive rudder faults,
the estimates generated by the filter for top and bottom rudder faults are very close and their respective
plots almost lie on top of each other. For negative rudder faults, the estimates generated by the filter for top
and bottom rudder faults are slightly different: top rudder faults appear to have worse estimation errors than
bottom rudder faults. Since fault levels between —7° and +7° are undetectable, the isolation & estimation
filter is never triggered and the fault estimate is zero in that range.

It is worth noting here that the problem of fault detection deals with naturally stochastic processes, such
as turbulence and sensor noise. Therefore, while presenting results, it is not sufficient to simply present the
results of a single simulation run. In order to account for the stochastic nature of the residuals, Monte Carlo
simulations would need to be performed. Future work will involve these Monte Carlo simulations in order
to better characterize the performance and robustness of the FDI filter.

V. Conclusion

The aircraft discussed has a split rudder for fault-tolerant control. A detection and isolation problem was
formulated for stuck faults injected in one of the two rudders. The proposed flight control law was shown
to be robust to simulated stuck rudder faults. In addition, a model-based fault detection, isolation, and
estimation filter was designed using flight dynamics principles. Through simulation, the model-based filter
was shown to be sensitive to stuck rudder faults, yet robust to off-nominal flight conditions, wind gusts,
atmospheric turbulence, and sensor noise. The filter was evaluated on the basis of two performance metrics:
detection time and estimation error. It was observed that the detection time for stuck faults decreased as
the fault magnitude increased. In addition, the estimation error decreased as the estimation time increased.
A certain range of stuck rudder faults was observed to be undetectable. Future work will involve validating
the simulation results through flight tests and expanding the scope of the filter to cover other aircraft fault
modes.
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