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The objective of this paper is to construct a low-order model of a wind farm that can
be used for control design and analysis. There is a potential to use wind farm control to
increase power and reduce overall structural loads by properly coordinating the turbines
in a wind farm. To perform control design and analysis, a model of the wind farm needs
to be constructed that has low computational complexity, but retains the necessary dy-
namics. This paper uses an extension of dynamic mode decomposition (DMD) to extract
the dominant spatial and temporal information from computational fluid dynamic simula-
tions. Specifically, this extension of DMD includes input/output information and relies on
techniques from the subspace identification literature. Using this information, a low-order
model of a wind farm is constructed that can be used for control design.

Nomenclature

A Rotor Area, [m2]
β Pitch angle, [rad]
Cp Power coefficient, [unitless]
P Power captured by the turbine, [W ]
ρ Air density, [kg/m3]
u Wind speed, [m/s]
R Rotor radius, [m]
λ Tip-speed ratio, [unitless]

I. Introduction

In the United States, many states have a Renewable Portfolio Standard (RPS) or Goal. For example,
Minnesota has a RPS target of 25% renewable energy by 2025.1 Wind energy will be a significant factor in
achieving this goal. Wind farm control can be used to increase wind energy efficiency by maximizing power
in wind farms that are already installed. In can also be used to mitigate structural loads to maximize the
lifetime of the turbines and better integrate wind energy into the energy market.

Currently, turbines in a wind farm are operated to maximize their own performance. Many studies have
been done showing that operating all turbines at their optimal operating point leads to sub-optimal perfor-
mance. Properly coordinating turbines in a wind farm has the potential to increase the overall performance
of a wind farm.2 Designing wind farm control strategies requires a model of the wind farm that has low
computational complexity, but retains the necessary dynamics. A variety of wake models exist in the litera-
ture that are useful for studying wind farm control. The simplest models are the Park model3 and the eddy
viscosity model.4 These models provide a quick, preliminary description of the wake interactions in a wind
farm. Several high fidelity CFD models have been developed as well.5,6 These high fidelity models are more
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accurate tools and can be used for evaluating wind farm controllers. However, they are computationally
expensive. These low- and high-fidelity models have been used to evaluate wind farm control strategies. The
analysis provides conflicting results based on the wake model chosen for control design. For example, control
strategies designed using simple static models often report significant improvements in wind farm perfor-
mance.2 However, an analysis of such control strategies using high fidelity simulations results in minimal to
no improvements in wind farm performance.

Improving models for wind farm control requires a better understanding of the aerodynamic interactions
in a wind farm. Techniques developed by the fluids and controls communities are both relevant for this
task. First, some studies have been done to understand the dominant turbulent structures generated in CFD
simulations and in experiments.7 Proper orthogonal decomposition (POD) and dynamic mode decomposition
(DMD) are two popular techniques in the fluids literature that compute the dominant modes of the flow.
These modes have been used to construct reduced-order models that can be used for control, such as balanced
POD and DMD with controls.8–11 Some of these methods require computing the adjoint of system, which
is not readily available in most CFD codes and is not available during experiments. The controls/system
identification has an alternative set of techniques to identify models from input/output data, e.g. subspace
identification techniques such as N4SID.12 The methods generate reduced-order black box models to represent
the input/output measurements from the system. In this framework the states have no physical meaning.

This paper formulates a new technique to construct a reduced-order model from simulations or experi-
ments using an extension of DMD. The model reduction approach has two main advantages. First, it relies
on input/output data from a forced response and does not require the construction/simulation of the system
adjoint. Second, the reduced-order model is constructed in a way that retains the physical meaning of the
states. In other words, the reduced order state can be mapped back to approximate the full-order state of
the system. The method addressed in this paper projects the states onto a reduced order subspace using the
dominant modes of the system and then uses direct N4SID to define the reduced-order dynamic model of
the system. For simplicity, this paper will use a medium-fidelity model, described in Section II, to highlight
some of the advantages of this approach with the intention of extending this work to high-fidelity models
in future work. Section III reviews POD and balanced POD (BPOD), a popular method for constructing
reduced-order models in the fluids literature. In addition, this section addresses standard DMD that fo-
cuses on identifying dominant spatial and temporal modes in the flow of autonomous systems. The main
contribution of this paper is extending DMD to include inputs and outputs and can be used to construct
a low-order model that approximates the dynamics and input/output characteristics of a wind farm. The
results of this low-order model are presented in Section IV. Specifically, BPOD and DMD with inputs and
outputs are compared and advantages/limiatations are addressed. Finally, conclusions and suggestions for
future work are given in Section V.

II. Problem Formulation

A. Wind farm modeling

Consider a wind farm with Nturb number of turbines located on an arbitrary grid with arbitrary locations
defined by (xi, yi) where i refers to the turbine i in the wind farm. Each turbine has an input axial induction
factor, ai. The axial induction for a single turbine is defined as ai := 1− ui

Uin
, where ui denotes the average

horizontal speed across the rotor plane of turbine i, and Uin denotes the average inflow velocity. In addition,
the power of each turbine can be measured, Pi. The power generated by each turbine depends on the inflow
wind speed as well as the axial induction factor. The power captured from turbine i, Pi [W ], is given by:

Pi =
1

2
ρAu3iCP,i (1)

where ρ [kg/m3] is the air density, A [m] is the area swept by the rotor, ui [m/s] is the wind speed per-
pendicular to the rotor plane, and CP,i is the power coefficient, which is a function of the axial induction
factor:13

CP,i = 4ai(1− ai)2 (2)

Individual turbines typically try to maximize their own power by operating at an optimal axial induction
factor. The optimal induction factor corresponding to the optimal power coefficient for a single turbine is
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a = 1
3 . See additional details and references on single turbine control.13

The turbines operating at the front of the wind farm disturb the flow through the wind farm and this
impacts turbines operating downstream. The wind farm control problem can be thought of as a multi-input,
multi-output system where the axial induction factors at each turbine would be the actuator inputs and the
power measured at each turbine would be the outputs. By properly coordinating the turbines in a wind farm,
there is the potential to maximize power and reduce overall structural loads. A few control strategies have
been investigated in the literature including yaw control and axial-induction-based control.2,14 This paper
specifically focuses on axial-induction-based control. Section IV.B briefly outlines axial-induction-based
control. However, the main contribution of this paper is in the development of an accurate reduced-order
model.

B. Governing Equations

The actuator disk model is considered in this paper.15,16 This model solves the 2D unsteady, incompressible,
Navier-Stokes equations. The typical operating wind speeds in a wind farm do not exceed 25 m/s. This is low
relative to the speed of sound at sea level (∼300 m/s) and hence it is sufficient to assume incompressibility.17

Let (u, v) denote the streamwise and spanwise velocity components and (x, y) denote the downstream and
spanwise distances. Under these assumptions, the dynamics for (u, v) are governed by the following partial
differential equations:

∂u

∂x
+
∂v

∂y
= 0 (3)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx (4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(5)

where ν [m2/s] is the kinematic viscosity and fx [N/m3] is a volume force on the Nturb turbines in the x
direction. The loading of each turbine is defined linearly. Specifically, assume that all spatial units have been
nondimensionalized by the turbine diameter D. If the hub of the upstream turbine i is placed at x = xi and
y = yi then the rotor plane lies within yi − 1

2 ≤ y ≤ yi + 1
2 . The forcing term introduced by the turbines is

then given by:

fx(x, y, t) :=

{
kCT,i(t)|y − yi| if x = xi & |y − yi| ≤ 0.5

0 else
(6)

where k := ρAU2
in and CT,i is the thrust coefficient of the turbine i. The thrust coefficient for each turbine

is a function of the axial induction factor and is defined as CT,i(t) = 4ai(t)(1− ai(t)) where ai(t) is the time
varying single input to the turbine i. This linear profile is smallest at the rotor hub and grows linearly at
the blade tips. The loading magnitude, as specified by the input ai(t), can be changed on a real turbine via
blade pitch or changing the tip speed ratio via generator torque control.13,18

These equations are solved using standard CFD methods.19 Specifically, a central differencing scheme
was used for the 2D actuator disk model. The grid is defined by Nx points in the streamwise x direction
and Ny point in the spanwise y direction. For this actuator disk model, the typical spacing between grid
points is δx = 0.05 and δy = 0.05 with a typical time step of δt = 0.01. Fig. 1a and 1b show an example of
a 4× 4 wind farm where mean streamwise and spanwise velocity are computed for the actuator disk model.
In these figures, the turbines are separated by 3D in the spanwise y direction and 4D in the streamwise x
direction. The velocities are normalized by U∞.
The boundary conditions of this model are:

u(x = 0, y, t) = u(x, y = 0, t) = u(x, y = L, t) = U∞

v(x = 0, y, t) = v(x, y = 0, t) = v(x, y = L, t) = 0
(7)
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Figure 1. Mean streamwise (left) and spanwise (right) velocity computed using the actuator disk model for a
4× 4 wind farm with 3D spacing in the y direciton and 4D spacing in the x direction

where L is the total spanwise distance. In this example, L = 15D, the streamwise distance is 20D, Nx = 401,
Ny = 301, the kinematic viscosity is ν = 1.461×10−2 m2/s, and U∞ = 8 m/s. This would amount to 240,000
states for this particular example by having 2 states (u, v) per grid point. More realistic, higher fidelity codes
will have even larger state dimensions. Note that the viscosity is significantly larger than the typical kinematic
viscosity of air. This leads to a small Reynolds number, approximately 100, which is not realistic in wind
farms. However, for the purposes of this paper, we are restricting our flow to a low Reynolds number to
demonstrate the feasibility of the reduced-order modeling approach proposed in this paper. Future work will
include simulating wind farms with the appropriate Reynolds number, approximately 106.

Note the turbines are modeled as actuator disks. The wakes directly behind real turbines are dominated
by tip vortices that are generated based on the blade geometry. The blades are not modeled in this simulation
and as a result, this model cannot accurately depict this near wake region. However, this model captures the
effects of the flow far downstream, greater than 3D, where the flow is less dependent on turbine geometry.
Therefore, this model is useful for studying the far wake of a turbine in steady and unsteady flows. It should
be noted that changing wind speed and direction are not addressed in this paper. It is envisioned that
these issues could be handled via parameter varying models, i.e. models are constructed at each operating
condition and then stitched together. Additional work is being done in this area and this would enable the
design of gain-scheduled controllers in a similar manner as done at the single turbine level.20

C. Linearized Equations

The first step in producing a model suitable for controls is to linearize the equations of the actuator disk
model. For the purposes of this paper, the actuator disk equations will be linearized around a base flow
of U = (U(x, y), V (x, y)) where U(x, y) and V (x, y) define the baseflow that corresponds to all turbines
operating at their peak efficiency.

The linearized governing equations about the baseflow, after some algebraic manipulation, can be rewrit-
ten as:

d

dt

[
u′

v′

]
= A

[
u′

v′

]
+Ba(t) (8)

where u′ ∈ R(NxNy)×1 denotes the fluctuations from the baseflow in the streamwise direction, v′ ∈ R(NxNy)×1

denotes the fluctuations from the baseflow in the spanwise direction, A ∈ R(2×NxNy)×(2×NxNy) contains the
spatial discretization information of the flow field, B ∈ R(2×NxNy)×Nturb contains the location of the turbines,
and a(t) ∈ RNturb×1 is the input to the turbines with Nturb denoting the number of inputs, which in this
case is the number of turbines.

The wind farm output is the vector of all power produced by all turbines denotes P ∈ RNturb . Recall
that the power Pi produced by turbine i is given in (1). Linearizing (1) for each turbine yields the following
measurement equation:
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P =
[
C 0

] [u′
v′

]
+Da(t) (9)

where C ∈ RNturb×(NxNy) contains the locations of the measurements with Nturb number of outputs, and
D ∈ RNturb×Nturb contains information about the turbine efficiency. More details on the linearization can be
found in Schmid et. al.21 In this representation, the linearized system is given by a dynamic system of the
form:

ẋ = Ax+Ba

y = Cx+Da
(10)

where x :=

[
u
′

v
′

]
. This linearized model contains 2×NxNy states and is not suitable for control design and

analysis. The model reduction techniques described in the next section can be used to obtain a low-order
model of the wind farm.

III. Reduced-order modeling

The following subsections briefly summarizes several existing techniques for reduced-order modeling.
These are used for comparison with the proposed Inputs/Outputs DMD technique.

A. Balanced Truncation

A standard model reduction approach is balanced truncation.22–24 Consider the linearized actuator disk
model (10). To perform balanced truncation on this problem, the controllability and observability Gramians
need to be computed to understand the influence of the states on the inputs and outputs of the system.
Specifically, the controllability Gramian specifies the minimum control energy required to reach any specific
state. States that require less energy to reach are more controllable and hence have a greater influence on the
input/output dynamics. Similarly, the observability Gramian specifies the energy in the output measurement
when the system evolves from a given initial state (with zero input). States that produce more energy in
the output are more observable and hence have a greater influence on the input/output dynamics. The
Gramians can be computed by solving the Lyapunov equations:

AWc +WcA
∗ +BB∗ = 0

A∗Wo +WoA+ C∗C = 0
(11)

where Wc is the controllability Gramian and Wo is the observability Gramian.
The Gramians are defined by specific coordinates. These coordinates define in which directions the

strongest states are aligned. The controllability and observability Gramians can have different coordinates.
This makes it difficult to choose states to retain since a state may be strongly observable, but not controllable
and vice versa. A transformation can be applied to align the properties of the controllability and observability
Gramians, which allows you to retain states that are strongly controllable and/or observable. A coordinate
transformation T can be constructed to diagonalize both the controllability and observability Gramians:

T−1Wc(T
−1)∗ = T ∗WoT = Σ = diag(σ1, ..., σn) (12)

where σ are the Hankel singular values that are independent of the coordinate transformation. Under this
transformed system, the states that are significantly influenced by the inputs are also the states that have
a significant impact on the outputs. However, this approach becomes intractable for large systems (state
dimension larger than 1000) as it requires the solution of the two Lyapunov equations (11). See additional
details.24,25
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B. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) provides a low-order approximation that is capable of capturing the
dominant turbulent structures in the flow. Specifically, POD can be used to extract dominant spatial features
from both simulation and experimental data that can be used to dynamically reconstruct the structures in
a flow field.26 This can be done by projecting the velocity field on to a set of orthogonal basis functions.
A projection matrix is constructed to minimize the error between the evolving state x(t) and a low-order
projection: ∫ Tmax

0

‖x(t)− Prx(t)‖2 dt (13)

where Tmax is the total simulation time, x(t) is the simulated variable, and Pr is the projection matrix. The
projection matrix can be defined in terms of the basis functions:

Pr =

r∑
k=1

ϕkϕ
∗
k (14)

where ϕk are the POD modes and r represents the reduced order of the system. The eigenfunctions of the
flow field are shown to produce the optimal projection that minimizes the total error between the full system
and the reduced order system.8,9, 26,27

The POD modes of the flow can be computed from the snapshots of the nonlinear system, x(t). A data
matrix of the snapshots is formed by X0 = [x(t1), x(t2), ..., x(tm)] where m is the number of snapshots.
The POD modes are then computed by taking the singular-value decomposition of the data matrix, i.e.
X0 = UΣV T . The POD modes are contained in U . Transition sentence is needed here

POD modes are good at representing specific datasets. However, POD modes do not necessarily provide
a good description of a dynamically evolving flow driven by a forcing input.

Balanced Proper Orthogonal Decomposition

The combination of POD modes and balanced truncation can be used to implement a method known as
balanced proper orthogonal decomposition (BPOD).8,9, 27 Consider the linearized actuator disk system (10).
The solution x(t) is found by solving ẋ = Ax where the inputs have been set to 0. The initial conditions are
defined as the columns of B. One simulation needs to be run for each input. This system will be referred to
as the forward system for the remainder of this paper.

In addition to computing the solution for the forward system, the solution to the adjoint system can be
found by integrating the system:

ż = A∗z (15)

with the initial conditions defined as the columns of CT . As with the forward system, one simulation needs
to be run for each output. Physically, the adjoint system is used to evaluate the sensitivity of the system
due to some perturbation.28–31

Using the solutions, x(t) and z(t), the data matrices are formed with the snapshots gathered in the
simulations.

X = [x1(t1), ..., x1(tm), ..., xp(t1), ..., xp(tm)]

Y = [z1(t1), ..., z1(tm), ..., zp(t1), ..., zq(tm)]
(16)

where m is the number of snapshots, p is the number of inputs, and q is the number of outputs. At this
point, the BPOD modes can be computed from the singular value decomposition of Y ∗X:

Y ∗X =
[
U1 U2

] [
Σ1 0

0 Σ2

][
V1

V2

]
(17)

where Σ1 is a matrix (r × r) and r is the reduced order of the system. The transformation matrices, T and
S, can be defined as:
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T = XV1Σ
− 1

2
1

S = Σ
− 1

2
1 U∗1Y

∗
(18)

The reduced order system is now:

ẋr = SATx+ SBf

y = CT
(19)

Note that for a SIS system, the X and Y matrices are n×m matrices where n is the state dimension, which
is typically very large, i.e. tens of thousands or more, while m is the number of snapshots, which is typically
on the order of hundreds. The Lyapunov equations in (11) are of dimension n and directly solving these
equations is prohibitive as solving a Lyapunov equation scales with O(n3).32 The product of Y ∗X requires
O(m2n) operations which scales linearly in n. The resulting matrix is only m ×m and hence the singular
value decomposition in (17) can be performed at a reasonable computational cost. However, a linearized
simulation needs to be run for every input and the adjoint system needs to be run for every output. This is
particularly an issue if you want a model where the output is the full state, i.e. y = x.

C. Dynamic Mode Decomposition

This section briefly reviews the use of DMD to construct reduced order dynamic models from nonlinear
systems.21 This method attempts to fit a discrete-time linear system to a set of snapshots from simulation
or experiments. Consider a system modeled by the following discrete-time, nonlinear dynamics (such as the
actuator disk):

xk+1 = f(xk) (20)

where x ∈ Rn is the state vector. A collection of snapshot measurements {xk}mk=0 ⊂ Rn is obtained for the
system either via simulation or experiments.

The objective is to approximate the system on a low dimensional subspace. Assume there is a matrix A
that relates the snapshots in time by:

xk+1 = Axk (21)

The DMD method attempts to fit the snapshots in time using a low rank matrix A. DMD is different from
POD in that it constructs both the low dimensional subspace as well as the model (matrix A) from the
snapshot data. This can be used to construct DMD modes that correspond to specific modal frequencies.

The problem is first simplified by assuming that an r-dimensional subspace of Rn has been selected. An
orthonormal basis for this subspace is specified by the columns of a matrix Q ∈ Rn×r with QTQ = Ir. The
truncated, reduced order model takes the form:

zk+1 = (QTAQ)zk := Fzk (22)

The state matrix F := QTAQ ∈ Rr×r describes the dynamics on the reduced order subspace. Solutions zk
to this reduced order model can be used to construct approximate solutions to the full order model (21)
as xk ≈ Qzk. This is equivalent to the following low-rank approximation for the full-order state matrix:
A ≈ QFQT . The reduced order state matrix, F , can be found by taking the snapshots of (21) and forming
the following data matrices:

X0 = [x1, x2, ..., xm−1] (23)

X1 = [x2, x3, ..., xm] (24)

where xk are the snapshots and m is the number of snapshots. The optimal choice for the reduced order
state matrix, F , can be found by minimizing the error of the Frobenius norm.
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min
F∈Rr×r

‖X1 − (QFQT )X0‖2F (25)

The optimal F that minimizes this least squares cost is given by:

Fopt := QTX1(QTX0)† (26)

the † denotes the pseudo-inverse.
The typical, sub-optimal choice for the projection subspace, Q, is the POD modes of X0. Specifically,

let X0 = UΣV T be the SVD of X0. The linear system can be approximated on a subspace defined by the
first r POD modes of X0, i.e. Q := Ur where Ur are the first r columns of U . The optimal reduced order
state-matrix for this choice is:

Fopt := UT
r X1(UT

r X0)† = UT
r X1VrΣ−1r (27)

The corresponding low rank approximation for the full-order state matrix is

A ≈ UrFoptU
T
r = UrU

T
r X1X

†
0 (28)

This model provides information about the dynamic modes of the system. Specifically, let Fopt have an
eigenvalue decomposition TΛT−1 where T , Λ ∈ Cr×r. Λ = diag(λ1, . . . , λr) has the (possibly complex)
eigenvalues of Fopt on the diagonal. The matrix T := [t1, . . . , tr] contains the corresponding eigenvectors,
i.e. Fopttj = λjtj . The DMD modes are given by ψj = Urtj for j = 1, . . . , r. Equation 28 and the eigenvalue
relation Fopttj = λjtj imply that Aψj = λjψj . Thus these modes have the property that if x0 = ψj then
xk = λkjψj for k = 0, 1, . . .. In other words, each mode ψj provides spatial information regarding a specific
temporal frequency λj for the system.

One limitation of this approach is that it cannot produce input/output models. For example, the dynamics
and the modes will be disrupted by external forcing, i.e. DMD is not robust to perturbations in the system.

D. Inputs/Outputs DMD

An extension of the DMD approach is made here to include inputs and outputs. DMD has previously
been looked at in the context of control.11 This approach projects the full-order model onto the output
subspace. By using the output subspace, the inputs are accounted for when fitting the data to a linear
system. The approach specified in this paper combines DMD with standard subspace ID,12 often used in
the control literature, to constrict an input/output model suitable for control. This Inputs/Outputs DMD
implementation will be referred to as IODMD for the remainder of the paper. Again, consider a discrete-time
nonlinear system:

xk+1 = f(xk, uk)

yk = h(xk, uk)
(29)

where x ∈ Rn, u ∈ Rnu , and y ∈ Rny are the state, input, and output vectors. Assume that the system has
an equilibrium condition described by (x̄, ū, ȳ) such that

x̄ = f(x̄, ū) (30)

ȳ = h(x̄, ū) (31)

If the state is initialized at x0 = x̄ and the input is held fixed at uk = ū for k = 0, 1, . . . then the state
will remain in equilibrium at xk = x̄ for k = 0, 1, . . .. In addition, the output will remain at yk = ȳ for
k = 0, 1, . . .. A collection of snapshot measurements are obtained via simulation or experiments by exciting
the system near this equilibrium point. The snapshots include measurements of the state {xk}mk=0 ⊂ Rn,
input {uk}mk=0 ⊂ Rnu , and output {yk}mk=0 ⊂ Rny . Define perturbations of these measurements from the
equilibrium condition:

δxk+1 := xk+1 − x̄ (32)

δuk+1 := uk+1 − ū (33)

δyk+1 := yk+1 − ȳ (34)
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The proposed IODMD attempts to fit the snapshot measurements in time by:

δxk+1 = Aδxk +Bδuk

δyk = Cδxk +Dδuk
(35)

The state matrices (A,B,C,D) are real matrices with dimensions compatible to those of (x, u, y). The
intent is to apply the method for systems where the state dimension is extremely large (n > 10000) but
with moderate input and ouptut dimensions (nu, ny < 100). The state is projected onto a low dimensional
subspace in order to make the computations tractable.

Similar to standard DMD, the problem is first simplified by assuming that an r-dimensional subspace
of Rn has been selected. An orthonormal basis for this subspace is specified by the columns of a matrix
Q ∈ Rn×r with QTQ = Ir. As in the previous section, the state can be projected onto the subspace defined
by Q. This yields a reduced order state z := QT δx ∈ Rr. A truncated model can be expressed in terms of
this reduced-order state:

zk+1 = (QTAQ)zk + (QTB)δuk := Fzk +Gδuk

δyk = (CQ)zk +Dδuk := Hzk +Dδuk
(36)

The state matrices of the reduced order system have dimensions F ∈ Rr×r, G ∈ Rr×nu , and H ∈ Rny×r.
The form of (36) is equivalent to the following low rank approximations for the full order state matrices:[

A B

C D

]
≈

[
QFQT QG

HQT D

]
=

[
Q 0

0 Iny

][
F G

H D

][
QT 0

0 Inu

]
(37)

The optimal choice for the reduced order state matrices (F,G,H,D) given a specific subspace is spanned by
Q. Snapshots are taken from the nonlinear system (29) and the states, inputs, and outputs are recorded as:

X0 = [x1, x2, ..., xm−1] (38)

X1 = [x2, x3, ..., xm] (39)

U0 = [u1, u2, ..., um−1] (40)

Y0 = = [y1, y2, ..., ym−1] (41)

The optimal (reduced-order) state matrices are obtained by least squares. This is the direct N4SID
subspace method for estimating state matrices given measurements of the (reduced-order) state, input, and
output. Again, a sub-optimal, but useful, choice for the projection space is given by the POD modes of
X0. Specifically, let the SVD of X0 be given by X0 = UΣV T . The state of the linear system can be
approximated on a subspace defined by the first r POD modes of X0, i.e. Q := Ur. The optimal reduced
order state-matrices for this choice is:[

F G

H D

]
opt

=

[
UT
r X1

Y0

][
ΣrVr

U0

]†
(42)

As with standard DMD, an eigenvalue decomposition of Fopt can be used to construct DMD modes that
provide spatial modes associated with a specific temporal frequency for the system. This new methodology
also yields input/output information for the model. This proposed method is a tractable implementation
of the existing direct N4SID (subspace) method that can be applied for very large systems. This is not
simply a black-box (input-output) approach because the state of the reduced order system zk can be used
to approximately reconstruct the full order state by δxk ≈ Urzk. Moreover, the approach only requires
input/output/state data from the model. Construction and simulation of an adjoint system, as in balanced
POD, is not required. Finally, the pseudo-inverse and matrix multiplications in (42) are tractable even if
∼ 1000 modes are retained. Thus (F,G,H,D) can be computed retaining many modes (possibly as many
modes as there are snapshots) and then standard balanced truncation can be used to reduce down to a small
number of modes.
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IV. Example: Wind Farm Control with Two Turbine Array

The results section of this paper focuses on obtaining a low-order model for a two-turbine array shown
in Fig. 2a. The dynamic system (10) becomes a single-input-single-output system. In this two-turbine
example, the downstream turbine is held constant at an optimal operating point. The single input in this
scenario is the axial induction factor of the upstream turbine. The single output is the power measured at
the downstream turbine. Fig. 2b shows computed mean streamwise velocity. The turbines are located at
5D and 10D. The simulation used Nx = 300 points between [0, 15D] in the streamwise x direction and
Ny = 100 points between [0, 5D] in the spanwise y direction. This yields a total of 30,000 grid points with
two velocities (u, v) defined at every point resulting in 60,000 states. The simulation is run for 10 s and
has a time step of 0.01 s. A direct application of the standard balanced truncation technique requires the
solution of the Lyapunov equations in (11). This is computationally intractable for this system. IODMD is
implemented to obtain a reduced order model that retains the input/output behavior of the system.
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Figure 2. Left: Two-turbine setup. Right: Mean streamwise velocity computed using the actuator disk model

The remainder of this section focuses on formulating low-order models using BPOD and IODMD for
this two-turbine SISO system. BPOD and IODMD are compared and the advantages and disadvantages are
highlighted for both methods.

BPOD Implementation

The unforced linearized equations for the actuator disk model are simulated in time. The input, a, in (10)
is set to zero. The initial condition is defined as the columns of B, which has the dimensions of the number
of states by the number of inputs. Similarly the adjoint system is simulated using the columns of the CT

matrix as the initial condition. Because this is a single-input-single-output system, the forward and adjoint
systems are only simulated once, one for each input/output. The data is collected in the X and Y matrices
described in (16) and the BPOD modes are found by computing the SVD of Y ∗X. The reduced-order model
can be obtained using the transformation matrices, see (19).

IODMD Implementation

In contrast to the BPOD implementation, the full nonlinear system, rather than the linearized system, is
simulated with some forcing input. Specifically, the nonlinear actuator disk model is simulated using a sine
sweep input, a, to the front turbine. This input will vary the thrust the front turbine exerts on the flow. Fig.
3 shows the computed POD modes for the nonlinear actuator disk model. Note that modes 1 and 2 capture
the low frequency, high energy structures in the model. The velocities are normalized by U∞. Physically,
when considering the flow behind the turbine, the lower POD modes correspond to larger frequency events
such as large eddies generated in the wake of the turbine.

Comparison of BPOD and IODMD

Fig. 4a and 4b show the frequency response of the full order actuator disk model and the frequency response
of the reduced order model constructed using BPOD and IODMD. Specifically, Fig. 4a shows the frequency
response of the system using 1000 snapshots with IODMD. All 1000 modes are retained in this case, while
only 10 modes are retained in BPOD. As mentioned previously, the reduced-order model obtained from
IODMD can have many modes and then standard balanced truncation can be used to reduce the model
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Figure 3. First four POD modes of the actuator disk model.

down to a lower order. In this case, Fig. 4b shows the 1000 state IODMD model in Fig. 4a reduced to 10
states with balanced truncation in Fig. 4b. This is in good agreement with BPOD.

Figure 4. Frequency response of IODMD compared to BPOD and the full order system. Left: IODMD using
1000 snapshots and retaining 1000 modes. Right: IODMD applying balanced truncation to reduce the model
to 10 states.

Note, there is a small, but noticeable mismatch between the reduced order models and the full order model
at frequencies below 0.2 Hz in both Fig. 4a and 4b. The accuracy of the reduced order models at these low
frequencies can be improved by increasing the simulated time Tmax. Specifically, these snapshots are collected
over a certain time interval [0, Tmax]. Thus very low frequencies are not captured by these snapshots, i.e.
roughly frequencies below 1

Tmax
rad/s are not captured in the BPOD snapshots. The simulated time in

this example is 10s. In addition, the sampling of snapshots from the simulation limits the high frequency
component of the reduced order model. For this case, the sampling frequency was 10−2 and 100 Hz is the
highest frequency this model can capture. Thus the reduced order model provides a good input/output
model for frequencies in this middle band.

The two methods match the full order linear model up until the upper frequency bound. The advantage
of IODMD is that there is no need to compute the adjoint. In addition, the states of the reduced-order
model can be used to compute the full state at a given time. Typical subspace identification methods, such
as N4SID, construct a black-box input/output model where the states lack physical meaning. This new
methodology addresses some of the limitations of BPOD and subspace ID to produce a reduced-order model
of the fluids system that can be used for control.
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V. Conclusion

This paper used a new technique of IODMD to construct a low-order model that can be used for wind
farm control design and analysis. This approach takes advantage of characterizing the dominant dynamics
in the flow and provides a low-order approximation of the flow. Using this low-order approximation, a
reduced order model can be constructed that retains the input-to-output behavior seen in the full order
model. This reduced order model has a low computational intensity and contains the necessary dynamics
that are important for wind farm control. This new technique avoids computing the adjoint as is done in
BPOD and the states of the reduced order model maintain some physical meaning.

Future work includes extending this model reduction technique to high-fidelity models, such as large-eddy
simulations. In addition, preliminary wind farm controllers will be developed using these low-order models
and validated in high-fidelity simulations and field tests. Preliminary wind farm controllers will be presented
in the final version of this paper.
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