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Abstract— This paper is concerned with the filter design

problem for linear parameter varying (LPV) discrete-time

systems with nonlinearities described by integral quadratic

constraints. The LPV system is considered to have an arbitrary

dependence on the time-varying parameters, not necessarily

rational. The filter designed assures a bound to the worst case

gain from the disturbance input to the filtering error. The

development of the proposed approach is based on the existence

of a quadratic storage function. The conditions are given in

terms of linear matrix inequalities and are derived through

congruence transformations and change of variables. Numerical

examples illustrate the applicability and performance of the

proposed method.

I. INTRODUCTION

There has been a considerable study of uncertain systems

mainly because mathematical models cannot describe real

systems exactly. In this context, several tools have been

developed to represent the uncertainties in control systems.

One may cite, the linear fractional transformation (LFT),

the norm-bounded uncertainties, the polytopic uncertainties

and the integral quadratic constraints (IQC) [1]. One ad-

vantage of the IQC approach is the fact that IQCs can be

used to model uncertain and nonlinear components, such as

saturation and time-delay. The IQC approach was originally

introduced in [2] based upon the frequency domain. This

approach requires the nominal part of the uncertain system

to be linear time-invariant (LTI). Hence, it is not directly

applicable for time-varying uncertain systems, e.g. uncertain

linear parameter varying (LPV) systems. In this case, a

time domain IQC interpretation combined with dissipativity

theory is required as discussed in [3].

An important topic in the control literature that is affected

by the presence of nonlinearities in the plant is the filtering

problem. In [4] the problem of filter design had been

considered for linear time-invariant (LTI) continuous and

discrete-time uncertain systems. The approach was based

on the use of IQCs and the solution was obtained with

the aid of the S-procedure applied in the H∞ problem.

In [5], the H∞ filter design problem was considered for

continuous-time linear systems with uncertainties described

by IQCs. In this case, a frequency-dependent linear matrix

inequality (LMI) condition was obtained and the solution

was determined with a dense frequency grid. In [6] the
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optimal filter for the nominal system was computed via LMIs

and in [7] the presence of polytopic uncertainties in the

plant have been considered in the filter design. Representing

the uncertainties with LFT, the method in [8] provided

conditions for filter design extending the well-known results

for polytopic systems. In [9] the robust estimation problem

for continuous-time LTI systems with uncertainties have been

investigated using dynamic IQCs with a frequency domain

formulation. The connections between frequency domain

IQCs and time-domain IQCs with dissipation inequalities

were first introduced in [10]. Then, the robustness problem

for continuous-time LPV systems was addressed in [3] (worst

case gain) and the control synthesis problem was considered

in [11] with time-domain IQCs. In the discrete-time case,

however, the use of time-domain IQC remains less studied.

This paper presents new conditions for filter design of

LPV (with unbounded rates of variation in the parameters)

discrete-time systems, considering a time-domain interpreta-

tion for the IQC. The proposed method differs from existing

LPV filter synthesis results, for instance, [12] and [13], that

do not take into account the presence of uncertainties in the

plant. Moreover, thanks to the grid approach employed in

this paper, the LPV system can present arbitrary dependence

on the time-varying parameters. The worst case gain from

the input disturbance to the filtering error have been used

as the performance criteria. First, an augmented system

considering the dynamics of the plant, the IQC and the filter

are described. Then, the bounded real lemma for discrete-

time systems with time-domain IQC is introduced. The filter

design condition is obtained through classical congruence

transformations and change of variables. The approach is

based on the use of a quadratic storage matrix and dissipation

inequalities. The conditions are given in terms of LMIs. If

the time-varying parameters can be measured or estimated on

line a parameter dependent filter can be obtained, if this is not

the case, a robust filter can be provided as well. Numerical

examples illustrate the applicability of the proposed method.

The paper is organized as follows. Section II present some

preliminary results concerning the time-domain IQC and the

problem formulation, describing the interconnection of the

plant, the uncertainties and the filter to be designed. The

robustness analysis for discrete-time systems with IQCs is

presented in Section III. The main results are presented in

Section IV. Section V is devoted to numerical examples and

Section VI concludes the paper.

Notation. Capital letters refer to matrices and lowercase

letters indicate vectors. For matrices and vectors (T ) indi-



cates the transpose. Sn denotes the set of n × n symmetric

matrices. For a symmetric matrix A, A > 0 (A ≥ 0)

means that A is positive definite (positive semi-definite).

Identity matrices are denoted by I and null matrices are

denoted by 0. The block diagonal matrix is expressed by

diag(X1, X2, . . . , Xn). The symbol ⋆ means a symmetric

block in matrices. ℓn2 [0,∞) is the space of sequences v :

N → R
n satisfying ||v||2 < ∞ where

||v||2 :=

[
∞∑

k=0

v(k)T v(k)

] 1

2

Let vT denote the truncation of the signal v by setting vT = 0

for k ≥ T . Moreover, let ℓ2e denote the extended space of

signals v such that vT is in ℓ2 for all T ≥ 0.

II. PRELIMINARIES AND PROBLEM FORMULATION

Before introducing the main problem let us present some

useful results on the time-domain IQC that will be used to

represent the uncertainties in this paper.

A. Time-domain IQC

In the time-domain an IQC is defined by a symmetric

matrix M and a stable linear system Ψ. A bounded causal

operator ∆ : ℓn2e → ℓm2e satisfies an IQC defined by (Ψ,M)

if the following inequality holds for all v ∈ ℓn2e [0,∞), w =

∆(v) and T ≥ 0:

T∑

k=0

z(k)TMz(k) ≥ 0 (1)

where z(k) is the output of the linear system Ψ:

xψ(k + 1) = Aψxψ(k) +Bψ1v(k) +Bψ2w(k)

z(k) = Cψxψ(k) +Dψ1v(k) +Dψ2w(k)
(2)

with xψ ∈ R
nψ and z ∈ R

nz . Figure 1 provides a graphic

interpretation of the IQC. The input and output signals of ∆

are filtered through Ψ. If ∆ ∈ IQC(Ψ,M) then the output

signal z(k) satisfies the (time-domain) constraint in (1) for

any finite horizon T ≥ 0.

Ψ
z

wv
∆

Fig. 1. IQC interconnection.

Example 1. Consider a causal nonlinear operator ∆ satisfy-

ing the bound ||∆|| ≤ b. The norm bound on ∆ implies that

||w||2 ≤ b||v||2, for w = ∆(v) and v ∈ ℓnv2 . This constraint

can be rewritten as
∞∑

k=0

[
v(k)

w(k)

]T [
b2 0

0 −1

] [
v(k)

w(k)

]
≥ 0

Note that the constraint above is over an infinite horizon.

It follows from the causality of ∆ that this constraint holds

over all finite horizons T ≥ 0 as defined in (1). In this

way, a norm bounded uncertainty can be handled by the IQC

approach considering (2) as

z(k) =

[
1

0

]
v(k) +

[
0

1

]
w(k)

and M =

[
b2 0

0 −1

]
.

B. Problem formulation

Consider the following discrete-time LPV plant Pρ:

xP (k + 1) = AP (ρ)xP (k) +BPw (ρ)w(k) +BPd(ρ)d(k)

g(k) = CPg (ρ)xP (k) +DPgw (ρ)w(k) +DPgd(ρ)d(k)

y(k) = CPy (ρ)xP (k) +DPyw (ρ)w(k) +DPyd(ρ)d(k)

v(k) = CPv (ρ)xP (k) +DPvw (ρ)w(k) +DPvd(ρ)d(k)
(3)

where xP ∈ R
nP is the plant state vector, d ∈ R

nd is

the disturbance input vector, w ∈ R
nw /v ∈ R

nv are the

inputs/outputs associated with the uncertainty, y ∈ R
ny is

the measured output available to the filter and g ∈ R
ng is the

signal to be estimated. The parameter ρ is time-varying and

belongs to a known compact set Cρ ∈ R
nρ . The parameters

can vary arbitrarily in Cρ, i.e., there is no bound on the rates

of variation of the parameters. The plant (3) is assumed

to be asymptotically stable for d = 0. Consider the IQC

dynamics Ψ with state-space realization given as in (2).

Define the augmented state vector xG =
[
xTP xTψ

]T
∈ R

nG ,

nG = nP + nψ to write the system Gρ :

xG(k + 1) = AGxG(k) +BGww(k) +BGdd(k)

z(k) = CGzxG(k) +DGzww(k) +DGzdd(k)

y(k) = CGyxG(k) +DGyww(k) +DGydd(k)

g(k) = CGgxG(k) +DGgww(k) +DGgdd(k)

(4)

with

AG =

[
Ap(ρ) 0

Bψ1CPv (ρ) Aψ

]
, BGd =

[
BPd(ρ)

Bψ1DPvd(ρ)

]
,

BGw =

[
BPw(ρ)

Bψ1DPvw(ρ) +Bψ2

]
,

CGz =
[
Dψ1CPv (ρ) Cψ

]
, DGzd = Dψ1DPvd(ρ),

DGzw = Dψ1DPvw(ρ) +Dψ2, CGy =
[
CPy (ρ) 0

]
,

DGyd = DPyd(ρ), DGyw = DPyw(ρ), DGgd = DPgd(ρ)

CGg =
[
CPg (ρ) 0

]
, DGgw = DPgw(ρ).

If the parameters can be estimated or measured on line a LPV

filter can be designed. Let us consider the interconnection of

the augmented system Gρ in (4) with the LPV filter Fρ:

xf (k + 1) = Af (ρ)xf (k) +Bf (ρ)y(k)

q(k) = Cf (ρ)xf (k) +Df (ρ)y(k)
(5)

where xf ∈ R
nf is the filter state vector and q ∈

R
nq (nq = ng), is the estimated output. By defining



x =
[
xTG xTf

]T
∈ R

2nG and the estimator error e = g − q

one can write the augmented system

x(k + 1) = Ax(k) +Bww(k) +Bdd(k)

e(k) = Cex(k) +Deww(k) +Dedd(k)

z(k) = Czx(k) +Dzww(k) +Dzdd(k)

(6)

with

A =

[
AG 0

BfCGy Af (ρ)

]
, Bd =

[
BGd

Bf (ρ)DGyd

]
,

Bw =

[
BGw

Bf (ρ)DGyw

]
,

Ce =
[
CGg −Df (ρ)CGy −Cf (ρ)

]
,

Ded = DGgd −Df (ρ)DGyd , Dew = DGgw −Df (ρ)DGyw ,

Cz =
[
CGz 0

]
, Dzd = DGzd , Dzw = DGzw .

Figure 2 summarizes the connected augmented system (6),

composed by the LPV plant Pρ, the IQC dynamics Ψ, the

LPV filter Fρ and the uncertainties ∆. The system has inputs

w(k) and d(k) with outputs e(k) and z(k).

Ψ

w

−

g

z

FρPρ ed

qy

v
∆ G̃

Fig. 2. Connected system composed by the LPV plant Pρ, the IQC

dynamics Ψ, the LPV filter Fρ and the uncertainties ∆.

III. ROBUSTNESS ANALYSIS

The worst case induced ℓ2 gain from the disturbance d to

the output error e is defined as

sup
∆ satisfying IQC(Ψ,M)

||Fu(G̃,∆)|| (7)

where Fu represents an upper LFT and G̃ denotes the

interconnection of the LPV plant Pρ with the LPV filter Fρ.

Theorem 1 (Bounded real lemma): Assume Fu(G̃,∆) is

well posed for all ∆ satisfying the IQC(Ψ,M). If there exists

a matrix P ∈ S
nx and a scalar λ > 0 such that

P > 0 (8)



ATPA− P ATPBw ATPBd

⋆ BT
wPBw BT

wPBd
⋆ ⋆ BT

d PBd − I




+
1

γ2



CT
e

DT
ew

DT
ed


 [

Ce Dew Ded

]

+ λ



CT
z

DT
zw

DT
zd


M

[
Cz Dzw Dzd

]
< 0 (9)

Then, the worst case gain of the augmented system (6) is

bounded by γ.

Proof: Equation (9) is a strict inequality, so there exist

ǫ > 0 such that the following perturbed matrix inequality

holds


ATPA− P ATPBw ATPBd

⋆ BT
wPBw BT

wPBd
⋆ ⋆ BT

d PBd − (1− ǫ)I




+
1

γ2



CT
e

DT
ew

DT
ed


 [

Ce Dew Ded

]

+ λ



CT
z

DT
zw

DT
zd


M

[
Cz Dzw Dzd

]
≤ 0

Multiplying by
[
x(k)T w(k)T d(k)T

]
on the left and by[

x(k)T w(k)T d(k)T
]T

on the right, yields

x(k + 1)TPx(k + 1)− x(k)TPx(k)− (1− ǫ)d(k)T d(k)

+
1

γ2
e(k)T e(k) + λz(k)TMz(k) ≤ 0 (10)

A storage function can be defined as V (k) = x(k)TPx(k)

and condition (8) implies that this storage function is positive

definite. Moreover, one can rewrite (10) as

V (k + 1)− V (k)− (1− ǫ)d(k)T d(k) +
1

γ2
e(k)T e(k)

+ λz(k)TMz(k) ≤ 0

By summing the last inequality

T−1∑

k=0

V (k + 1)−

T−1∑

k=0

V (k)− (1− ǫ)

T−1∑

k=0

d(k)T d(k)

+
1

γ2

T−1∑

k=0

e(k)T e(k) + λ

T−1∑

k=0

z(k)TMz(k) ≤ 0

considering that x(0) = 0, one has

V (T )− (1− ǫ)

T−1∑

k=0

d(k)T d(k) +
1

γ2

T−1∑

k=0

e(k)T e(k)

+ λ

T−1∑

k=0

z(k)TMz(k) ≤ 0

V (T ) > 0 implies that

T−1∑

k=0

e(k)T e(k) ≤ (1− ǫ)γ2
T−1∑

k=0

d(k)T d(k), ∀T ≥ 0

Let T → ∞ to obtain the bound ||e||2 < γ ||d||2
Remark 1: It is important to remember that the matrices

that appear in condition (9) can depend arbitrarily on the

time-varying parameters ρ and for this reason the conditions

must be satisfied for all ρ ∈ Cρ. If ρ enters affinely in the

conditions, it suffices to check the LMI in the vertices of



Cρ. In other cases, the grid approach can be used to evaluate

the conditions in a finite set of points that is a subset of the

space of the parameters. ⋆
Theorem 1 presents a LMI condition that can be extended

to include more than one IQC, for this end it suffices to

include the dynamic of the IQCs in (2) and modify the last

term of condition (9) as

N∑

k=1

λkz
T
kMkzk (11)

where N is the number of IQCs. Moreover, in some cases,

as for instance in Example 1, a more general structure [14],

[15] can be considered. It is possible to proof that ||∆|| ≤ b

in Example 1 satisfies IQCs defined by

M =

[
b2X 0

0 −X

]
(12)

where X ∈ S
N is a positive definite matrix. For this end,

one must choose Ψ as

Ψ =

[
Γ 0

0 Γ

]

where Γ =
[
Ψ1 . . . Ψk

]T
.

IV. MAIN RESULTS

Theorem 2: Assume Fu(G̃ρ,∆) is well posed for all ∆

satisfying the IQC(Ψ,M). If there exist matrices P1 ∈ S
nG ,

Y ∈ S
nG , P3 ∈ S

nG , P2 ∈ R
nG×nG , Āf (ρ) ∈ R

nG×nG ,

B̄f (ρ) ∈ R
nG×ny , C̄f (ρ) ∈ R

ng×nG , Df (ρ) ∈ R
ng×ny and

a scalar λ > 0 such that the LMIs

P1 − Y > 0 (13)

and (14) are satisfied for all ρ ∈ Cρ, then, the worst case

gain is bounded by γ and the filtering matrices are given by
[
Af (ρ) Bf (ρ)

Cf (ρ) Df (ρ)

]
=

[
P−1
2 0

0 I

] [
Āf (ρ) B̄f (ρ)

C̄f (ρ) Df (ρ)

] [
−P−T

2 P3 0

CGyP
−T
2 P3 I

]

Proof: The matrix P is considered to have the following

structure:

P =

[
P1 P2

PT2 P3

]
(16)

By applying Schur complement in (9) one has




−P 0 0 ATP CT
e

0 0 0 BT
wP DT

ew

0 0 −I BT
d P DT

ed

PA PBw PBd −P 0

Ce Dew Ded 0 −γ2I




+ λ




CT
z

DT
zw

DT
zd

0

0



M

[
Cz Dzw Dzd 0 0

]
< 0

Then, multiplying it by Q on the right and by QT on the

left, with Q = diag (T, I, I, T, I),

T =

[
I I

−P−1
3 PT2 0

]

and defining

Y = P1 − P2P
−1
3 PT2

Āf (ρ) = P2

(
Bf (ρ)CGy −Af (ρ)P

−1
3 PT2

)

B̄f (ρ) = P2Bf (ρ)

C̄f (ρ) = −Cf (ρ)P
−1
3 PT2 +Df (ρ)CGy

(17)

one has condition (14). The first step to get the filtering

matrices is to reconstruct the storage matrix (16). It can be

made by assigning values for the matrices P2 or P3. After

that, the relations in (17) can be used. For details about filter

reconstruction the reader is referred to [16].

If the parameters are not available to be measured on line

a robust filter can be designed. Theorem 2 can be adapted

to deal with this case. It suffices to consider the robust filter

in the following form

xf (k + 1) = Afxf (k) +Bfy(k)

q(k) = Cfxf (k) +Dfy(k)
(18)

The next corollary states a condition for the robust filter

design.

Corollary 1: Assume Fu(G̃ρ,∆) is well posed for all ∆

satisfying the IQC(Ψ,M). If there exist matrices P1 ∈ S
nG ,

Y ∈ S
nG , P3 ∈ S

nG , P2 ∈ R
nG×nG , Āf ∈ R

nG×nG , B̄f ∈

R
nG×ny , C̄f ∈ R

ng×nG , Df ∈ R
ng×ny and a scalar λ > 0

such that (13) and (14) are satisfied for all ρ ∈ Cρ, then, the

worst case gain is bounded by γ and the filtering matrices

are given by

[
Af Bf
Cf Df

]
=

[
P−1
2 0

0 I

] [
Āf B̄f
C̄f Df

] [
−P−T

2 P3 0

CGyP
−T
2 P3 I

]

Proof: Follows straightforward the steps in the proof

of Theorem 2.

Remark 2: The conditions presented in Theorem 2 and in

Corollary 1 deal with LPV systems using time-domain IQCs.

The frequency domain approach has been used in [17] to

handle the problem of designing gain scheduling estimators

for continuous-time LPV systems. However, in their formu-

lation, the LPV system is restricted to have a linear fractional

dependence on uncertainties. ⋆

V. NUMERICAL EXAMPLES

The objective of the examples is to illustrate the pos-

sible scenarios where the proposed approach can be em-

ployed. The routines were implemented in MATLAB, ver-

sion 8.3.0.532 (R14) using the packages Yalmip [18] and

SeDuMi [19].






−Y −Y 0 0 ATGY ATGP1 + ĀTf CT
Gg

− C̄T
f

⋆ −P1 0 0 ATGY ATGP1 + CT
Gy

B̄T
f CT

Gg
− CT

Gy
DT
f

⋆ ⋆ 0 0 BT
Gw

Y BT
Gw

P1 +DT
Gyw

B̄T
f DT

Ggw
−DT

Gyw
DT
f

⋆ ⋆ ⋆ −I BT
Gd

Y BT
Gd

P1 +DT
Gyd

B̄T
f DT

Ggd
−DT

Gyd
DT
f

⋆ ⋆ ⋆ ⋆ −Y −Y 0

⋆ ⋆ ⋆ ⋆ ⋆ −P1 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −γ2I




+XTM(λ)X < 0 (14)

X =
[
CGz CGz DGzw DGzd 0 0 0

]
(15)

Example 2. Consider the discrete-time LPV system de-

scribed by

AP (ρ) =

[
0 −0.5

1 1

]
+

[
0 0

1 1

]
ρ, |ρ| ≤ 0.4

BPd =

[
−6 0

1 0

]
, BPw =

[
0

1

]
,

CPg =
[
1 0

]
, DPgd =

[
0 0

]
, DPgw = 0,

CPy =
[
−100 10

]
, DPyd =

[
0 0

]
, DPyw = 0,

CPv =
[
0 1

]
, DPvd =

[
0 0

]
, DPvw = 0,

(19)

and a LTI norm bounded uncertainty ||∆|| ≤ b. Let us

consider three different IQCs (Ψ1,M1), (Ψ2,M2), (Ψ3,M3)

described by

Ψ1 = I, ,Ψ2 =

[ 1
z−α

0

0 1
z−α

]
, Ψ3 =

[
1

z−β
0

0 1
z−β

]
(20)

M1 = M2 = M3 =

[
b2 0

0 −1

]

All the experiments in this example have been performed

with α = 0.1 and β = 0.4. First, the design of strictly

proper robust filters (Df = 0) for LPV system is considered.

The bounds for the worst case gain obtained using different

configurations are presented in the first part of Table I. It

can be seen that the use of more than one IQC connected

as in (12) provide better results than considering each IQC

separately as in (11). In this case the solver did not find

feasible solution for b > 0.06. It is important to remember

that the parameters can vary arbitrarily fast and this can be

one of the reasons why it is not possible to include more

uncertainty in the problem.

The second part of Table I presents the bounds obtained

by employing a parameter dependent filter. A filter with an

affine structure have been used

Zf (ρ) = Zf0 + ρZf1 (21)

where Zf represent the filtering matrices. As expected, the

LPV filter can further reduce the conservativeness of the

bounds obtained, indicating that whenever the time-varying

parameters are available to be measured on line this is the

wisest choice to be made. In this situation, the use of three

IQCs (20) connected as in (12) proved to be the best choice

to reduce the conservatism of the worst case bounds.

Last, the design of proper LPV filters as in (21) have been

performed. The bounds are shown in the third part of Table I.

TABLE I

BOUNDS γ FOR THE WORST CASE GAIN OBTAINED FOR THE DESIGN OF

ROBUST AND LPV FILTERS BY USING MULTIPLE IQCS CONNECTED AS

IN (11) AND (12). THE PARAMETERS α = 0.1 AND β = 0.4 HAVE BEEN

USED.

b 0.01 0.02 0.03 0.04 0.05 0.06

IQC Robust filter - strictly proper

1, 2 as in (11) 11.12 11.72 12.54 13.88 16.45 27.36

1, 2 as in (12) 11.11 11.69 12.49 13.74 16.24 26.28

1, 2, 3 as in (12) 11.10 11.66 12.43 13.65 16.07 25.87

LPV filter - strictly proper

1, 2 as in (11) 9.16 9.49 9.92 10.54 11.72 16.48

1, 2 as in (12) 9.16 9.48 9.89 10.48 11.48 15.01

1, 2, 3 as in (12) 9.08 9.30 9.55 9.87 10.34 11.85

LPV filter - proper

1, 2, 3 as in (12) 1.60 1.64 1.69 1.74 1.82 2.09

The use of different basis functions in the IQC formulation

as 1
(z−α)n for instance, could provide different results.

Example 3. In order to compare the proposed conditions with

existing approaches that can deal with LTI systems let us

consider a discrete-time LTI plant with matrices as in (19),

ρ = 0 and a LTI norm bounded uncertainty ||∆|| ≤ b with

IQC (Ψ1,M1) as in (20).

For b = 0.35 and the IQC (Ψ1,M1) as in (20), Corollary 1

yields a bound to the worst case γ = 4.26, that is the same

bound provided by the conditions in [7], [20] and [21] when

considering quadratic Lyapunov matrices in their approaches.

Figure 3 presents the behavior of the worst case gain γ

obtained by Corollary 1 with b = 0.35, IQCs (Ψ1,M1) and

(Ψ2,M2) as in (20) for different values of α. Two different

situations have been considered. First the IQCs have been

considered separately as in (11) (black dashed line) and then,

a more general formulation for the IQCs as in (12) was

employed (blue solid line).

The D-K synthesis [22] can also deal with the presented

problem, and a robust performance can be guaranteed, that



−1 −0.5 0 0.5 1
2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

α

γ

Fig. 3. Behavior of the worst case gain γ obtained by Corollary 1 with

b = 0.35, IQCs (Ψ1,M1) and (Ψ2,M2) as in (20) for different values

of α. IQCs gathered as in (11) (black dashed line) and IQCS gathered as

in (12) (blue solid line).

is, the worst case gain of the closed loop system is less than

γ for all ||∆|| ≤ 1/γ. For this example, a sixth order robust

filter can be computed by the D-K approach with a bound

γ = 2.86, that is less conservative then the ones in Figure 3.

However, by using the more general formulation in (12) with

Ψ1, Ψ2 and Ψ3 as in (20), with α = 0.1 and β = 0.4, one

has γ = 2.17 that is approximately 25% smaller than the

bound obtained with the D-K synthesis.

VI. CONCLUSIONS

This paper presented conditions for filter design of LPV

(with unbounded rates of variation) uncertain systems. Time-

domain IQCs have been used to represent the uncertainties

which are present in the LPV plant, since the frequency is not

adequate to treat LPV systems. The filter design conditions

were derived by using a quadratic storage function. This

strategy allowed designing both LPV and robust filters for

LPV systems. Two different strategies to connect the IQCs

have been employed. It has been shown that the use of

multiple IQCs and the design of LPV filters can reduce the

conservativeness of the worst case gain bounds. Moreover,

the proposed strategy can outperform the bounds obtained

with the DK-synthesis for the LTI case. As future research,

the authors are investigating how to consider LPV systems

with bounded rates of variation.
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