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Varying Systems Using Integral Quadratic Constraints
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SUMMARY

This paper considers the robustness of a feedback connection of a known linear parameter varying (LPV)
system and a perturbation. A sufficient condition is derived to bound the worst-case gain and ensure robust
asymptotic stability. The input/output behavior of the perturbation is described by multiple integral quadratic
constraints (IQCs). The analysis condition is formulated as a dissipation inequality. The standard approach
requires a non-negative definite storage function and the use of “hard” IQCs. The term “hard” means the
IQC:s can be specified as time-domain integral constraints that hold over all finite horizons. The main result
demonstrates that the dissipation inequality condition can be formulated requiring neither a non-negative
storage function nor hard IQCs. A key insight used to prove this result is that the multiple IQCs, when
combined, contain hidden stored energy. This result can lead to less conservative robustness bounds. Two
simple examples are presented to demonstrate this fact.
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1. INTRODUCTION

This paper considers the robustness of an uncertain linear parameter varying (LPV) system. The
uncertain system is represented as a feedback connection of a known LPV system and a perturbation.
The class of “gridded” LPV systems is considered in this paper. For this class the state matrices are
arbitrary functions of the scheduling parameter, e.g as in [29, 30]. This is more general than LFT-
type LPV systems whose state matrices have a rational dependence on the scheduling parameter
[1, 13, 18]. Integral quadratic constraints (IQCs) are used to model the uncertain and/or nonlinear
components. IQCs, introduced in [11], provide a general framework for robustness analysis. An IQC
stability theorem was formulated in [11] for a feedback interconnection of a linear time-invariant
(LTI) system and a perturbation. The stability theorem involved with frequency domain conditions
and was proved using a homotopy method.

The uncertain systems in this paper involve a nominal LPV system and hence the frequency
domain conditions are not applicable. Instead, a time-domain approach is used. This time-domain
approach involves “hard” IQCs that are specified as integral constraints that hold over all finite time
intervals. These hard IQCs can be used to formulate an alternative time domain stability theorem
based on dissipativity theory [27,28]. This approach was used in [15] to derive a sufficient condition
for robust performance of an uncertain LPV system. This result, summarized in Section 2, requires a
nonnegative storage function. In addition, a combined IQC is parameterized as a conic combination
of individual hard IQCs. This approach is correct but can lead to unnecessary conservatism for
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two reasons. First, the frequency domain condition derived in [11] for nominal LTI systems can
be converted to a related dissipation inequality type constraint by the KYP Lemma but without the
non-negativity constraint on the storage function. Second, conic combinations of hard IQCs is not
the most general parameterization, e.g. it does not include the alternative parameterizations in [19].

The main contribution of this paper is to provide a less conservative condition to assess the
worst case gain and robust asymptotic stability of an uncertain LPV system. This result, stated
as Theorem 1 in Section 3, differs in two respects from the prior result in [15]. First, the main result
involves a dissipation inequality but it does not enforce the storage function to be non-negative.
Second, the main result allows for more general IQC parameterizations. In particular, the IQC need
not be hard, i.e. it need not specify a valid finite-horizon integral constraint. Instead, the main result
replaces the standard dissipation inequality assumptions with a milder technical assumption on the
combined multiplier. This technical assumption essentially implies that the combined multiplier has
a special J-spectral factorization [3]. This is used to show that the combined multiplier has some
hidden stored energy. As a result, the analysis condition can be reformulated into a valid dissipation
inequality with a single hard IQC and a non-negative storage function.

This main result Theorem 1 directly generalizes the result in [15]. This can lead to less
conservative analysis results as demonstrated by examples in Section 4. This extends the results
in [21] developed for a nominal LTI system and a single IQC. It was shown in [21] that the non-
negativity constraint on the storage function can be dropped in the time domain approach if a J-
spectral factorization is used for the IQC multiplier. The main result here extends these results to
LPV systems and multiple IQCs. Another closely related prior work is [23] which provides an IQC
dissipation inequality condition after a loop transformation. Moreover, it uses a specific, unique
factorization. This paper avoids such a transformation and focuses on non-unique factorizations.

2. BACKGROUND

2.1. Notation

R and C denote the set of real and complex numbers, respectively. RIL, denotes the set of rational
functions with real coefficients that are proper and have no poles on the imaginary axis. RH, is
the subset of functions in RIL, that are analytic in the closed right half of the complex plane.
Cm>n RLZ*™ and RHZ " denote the sets of m x n matrices whose elements are in R, C, R,
RH,, respectively. A single superscript index is used for vectors, e.g. R™ denotes the set of n x 1
vectors whose elements are in R. 8™ denotes the set of n x n symmetric matrices. R* describes
the set of nonnegative real numbers. For z € C, z denotes the complex conjugate of z. For a matrix
M € C™* ", MT denotes the transpose and M* denotes the complex conjugate transpose. The
para-Hermitian conjugate of G € RL.*", denoted as G*, is defined by G~ (s) := G(—5)*. Note
that on the imaginary axis, G™ (jw) = G(jw)*. L} [0, c0) is the space of functions v : [0, 00) — R”
satisfying ||v||2 < oo where

0.5

[v]l2 := [/ v(t)Tu(t) dt} (1)
0
Given v € L]0, 00), vr denotes the truncated function:
() = o(t) fort<T 2)
0 fort > T

The extended space, denoted Lo, is the set of functions v such that vy € Lo forall T > 0.

2.2. Problem Statement

This paper considers the robustness of uncertain LPV systems. The uncertain system is described
by the feedback interconnection of an LPV system G and an uncertainty A as shown in Figure 1.



This feedback interconnection with A wrapped around the top of G is denoted F, (G, A). The LPV
system G is a linear system whose state space matrices depend on a time-varying parameter vector
p: RT — R™ as follows:

#a(t) = Aa(p(t) 7(t) + Ba(p(0)) [ 56
2] = Cotpw) zatt) + Dale) [ 4]

where z¢ € R"¢ is the state, w € R™ and d € R™¢ are inputs, and v € R" and e € R" are
outputs. The state matrices of G have dimensions compatible with these signals, e.g. Ag(p) €
R"exna  In addition, the state matrices are assumed to be continuous functions of p. The state
matrices at time ¢ depend on the parameter vector at time ¢. Hence, LPV systems represent a special
class of time-varying systems. The explicit dependence on ¢ is occasionally suppressed to shorten
the notation. Moreover, it is important to emphasize that the state matrices are allowed to have an
arbitrary dependence on the parameters. This is called a “gridded” LPV system and is more general
than “LFT” LPV systems whose state matrices are restricted to have a rational dependence on the
parameters [1,13, 18].
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Figure 1. Feedback Interconnection

The parameter p is assumed to be a continuously differentiable function of time and admissible
trajectories are restricted to a known compact set P C R"». In addition, the parameter rates of
variation p : Rt — P are assumed to lie within a hyperrectangle P := {geR™ |y, <q <D, 0=
1,...,n,}. The set of admissible trajectories is defined as

Ti={p:R" > R™ : peC, p(t) € Pand j(t) € PVt >0} 4)

The parameter trajectory is said to be rate unbounded if P = R"».
Throughout the paper it is assumed that the uncertain system has a form of nominal stability.
Specifically, G is assumed to be parametrically-dependent stable as defined in [29].

Definition 1. G is parametrically-dependent stable if there is a continuously differentiable function
P :R" — 8™ such that P(p) > 0 and

<\ OP
Ac(p)"P(p) + P(p)Ac(p) + Y ap % <0 5)
i=1

hold for all p € P and all ¢ € P.

As discussed in [29], parametric-stability implies G has a strong form of robustness. In particular,
the state z¢(¢) of the autonomous response (w = 0, d = 0) decays exponentially to zero for any
initial condition x4 (0) € R™¢ and allowable trajectory p € T (Lemma 3.2.2 of [29]). Moreover, the
state x¢(t) of the forced response decays asympotically to zero for any initial condition z¢(0) €
R"e, allowable trajectory p € 7, and inputs w,d € Ly (Lemma 3.3.2 of [29]). The parameter-
dependent Lyapunov function V (z¢, p) := 25 P(p)x plays a key role in the proof of these results.
To shorten the notation, a differential operator OP : P x P — R is introduced as in [20]. P is
defined as OP(p, q) := Y%, g—: (p) ¢;- This simplifies the expression of Lyapunov-type inequalities
similar to Equation (5).



The uncertainty A : L5 [0, 00) — L5+ [0, 00) is a bounded, causal operator. The notation A is
used to denote the set of bounded, causal uncertainties A. The input/output behavior of the uncertain
set is bounded using quadratic constraints as described further in the next section. At this point it is
sufficient to state that A can have block-structure as is standard in robust control modeling [32]. A
can include blocks that are hard nonlinearities (e.g. saturations) and infinite dimensional operators
(e.g. time delays) in addition to true system uncertainties. The term uncertainty is used for simplicity
when referring to the perturbation A.

The objective of this paper is to assess the robustness of the uncertain system F, (G, A). For a
given A € A, the induced L, gain from d to e is defined as:

(&
IFUGA) = swp 12 ©
0%£d€ Ly ?[0,00) l[dll2
pET, 2 (0)=0

Two forms of robustness are considered. First, the worst-case induced Lo gain from input d to the
output e is defined as

sup [[Fu(Gp, Al )
AcA
This is the worst-case gain over all uncertainties A € A and admissible trajectories p € 7. Second,
the system has robust asymptotic stability if xz(¢) — 0 for any initial condition z¢(0) € RS,
allowable trajectory p € T, disturbance d € Lo and uncertainty A € A. The main result provides
a sufficient condition for the uncertain LPV system to have both robust asymptotic stability and
bounded worst-case gain.

2.3. Integral Quadratic Constraints (IQCs)

A frequency-domain IQC is defined in [11] using a multiplier II. In particular, let II : jR —
C(rvtnw)x(nvtnw) be a measurable Hermitian-valued function. Two signals v € L3*[0,00) and
w € Ly [0, 00) satisfy the IQC defined by the multiplier IT if

v T e [ V6w
/_OC [W(;w)} I(jw) {W(]jw)} dw>0 (8)

where V(jw) and W (jw) are Fourier transforms of v and w, respectively. A bounded, causal
operator A : L5 [0, 00) — L5» [0, 00) satisfies the IQC defined by II if Equation (8) holds for all
v € Ly7[0,00) and w = A(v).

IQCs were introduced in [11] to assess the robustness of the feedback interconnection F, (G, A)
for the case that G is LTI. The stability conditions in [11] were expressed in the frequency domain.
In this paper, the nominal part G' is LPV and hence the frequency-domain conditions cannot be
applied. In addition, the stability condition used in this paper does not require a homotopy type
condition as in [11]. An alternative time-domain stability condition can be constructed using (time-
domain) IQCs and dissipation theory. Specifically, any IT € RIL{"»Fm)* (v +nw) can pe factorized
as Il = U~ MU where M € 8" and U € RH":*("v*+"w) Such factorizations are not unique but
can be computed with state-space methods [20]. Appendix A provides two specific factorizations.

Let (U, M) be any such factorization of II. Then v, w € L satisty the IQC in Equation (8) if and
only if Z(jw) := ¥(jw) [V‘(/((’j‘:))} satisfies [*°_ Z(jw)*MZ(jw)dw > 0. By Parseval’s theorem,
this frequency-domain constraint on z can be equivalently expressed in the time-domain as:

/oo 2() T Mz(t)dt > 0 )
0

where z = W [ ] is the output of the linear system W starting from zero initial conditions:

B(t) = Apb(t) + Byro(t) + Buaw(t), $(0) =0

(10)
2(t) = Cyptp(t) + Dyrv(t) + Dyow(t)



Thus A satisfies the IQC defined by II = Y~ MU if and only if the time domain constraint in
Equation (9) holds for all v € LJ*[0,00) and w = A(v). The constraint in Equation (9) holds, in
general, only over infinite time. The term hard IQC in [11] refers to the more restrictive property:

fOT 2(t)T M=z(t) dt > 0 holds VT > 0. In contrast, IQCs for which the time domain constraint need
not hold for all finite times are called soft IQCs. This distinction is important because the dissipation

theorem presented below requires the use of hard IQCs. A more precise definition is now given.

Definition 2. Let I be factorized as U™~ M ¥ with W stable. (¥, M) is a hard factorization of IT if for
any bounded, causal operator A satisfying the (frequency domain) IQC defined by I (Equation 8)
the following (time-domain) inequality holds

T
/ 2T Mz(t)dt >0 (11)
0

forallT > 0,v € Ly[0,00), w=A(v) and z = ¥ [/ ].

As noted above, the factorization of II is not unique. Thus the hard/soft property is not inherent
to the multiplier IT but instead depends on the factorizationA(\I', M). One particularly useful
factorization is the .J-spectral factorization defined as follows: (¥, .J,,, »,,) is a J-spectral factor of

i T = U~y s By Ty = [Igv D } and W, %1 € RE( 7)< +m0) n other words,

the factor W is square, stable, and stably inverible. It follows from Lemma 1 in Appendix A that a
J-spectral factorization is a hard factorization. Lemma 1 also provides a simple frequency domain
condition that is sufficient for the existence of a J-spectral factor. A J-spectral factor of II (if
one exists) can be constructed using the solution of a related algebraic Riccati equation. Note that
depending on the type of uncertainty/nonlinearity it is either more natural to start with a time domain
or frequency domain constraint. An example for the natural usage of frequency domain IQCs are
time delays, see [16] for details. A .J-spectral factorization can then be used to obtain a hard time
domain IQC starting from a frequency domain condition.

A strength of the IQC framework is that many IQCs for a single A can be incorporated into
the analysis. A simple example is provided below to demonstrate that classes of IQCs can be
parameterized in different ways.

Example 1. Consider the SISO, LTI uncertainty A € RH,, with [|Al| := sup,, |A(jw)| < 1.1In
[11] an IQC for the operator A is defined by II := [)0( _OX] where X (jw) = X (jw)* > 0 Vw.
This IQC multiplier can be parameterized by picking a collection of transfer functions {X;};'~,
that are > 0 on the imaginary axis. Then A satisfies the IQCs defined by multipliers of the form
I0; := [)é —())Q]' Moreover, A satisfies any conic combination of these multipliers defined by
II(A) := Z:.:l NIT; where \; > 0fori=1,...,n,. A factorization of this conic combination can
also be parameterized. By the spectral factorization theorem [31, 32] it is possible to construct
stable, minimum phase systems D; such that X; = D} D;. The D; are called D-scales in the robust
control literature [6, 14, 17]. Define the filter ¥; := D;I5 and matrix M; := [§ ° ]. This yields a
factorization for each individual multiplier as II; := U7 M,;¥;. Note that each ¥, is square, stable
and stably invertible. Hence each (¥, M;) is a J-spectral (and thus a hard) factorization of II;. A
factorization for the conic combination of multipliers can be parameterized as:

‘1/1 ~ AlMl ‘I’l
‘I’nw >\n,,r Mn,,r \I’nw
N—— N——
T~ M(N) N

Note that ¥ as defined in Equation (12) is not square, in general, and therefore (¥, M ())) is not a
J-spectral factorization for IT(\).



A more general parameterization for IQCs satisfied by A is given in [24]. Select a column of
stable systems and stack into a vector as ¥ € RH’;O“. The IQC multiplier is parameterized as:

- T 0
0 o

v o0
0 v

A O

ma) = 0 —A

(13)

W~ M(\) o

with A = AT € R¥** constrained to satisfy U™ (jw)AW(jw) > 0 for all w and ) denoting the vector
of unique entires in the matrix variable A. This parameterization is more general as it is not simply a
conic combination of multipliers. Details, including the MIMO case, are provided in [24]. Again, the
U as defined in Equation (13) is not square, in general, and therefore (¥, M (\)) is not a J-spectral
factorization for IT(A).

2.4. Dissipation Inequality Condition

This section describes a dissipation inequality condition to assess the robustness of the uncertain
LPV system Fy, (G, A). The result in this section is a minor extension of that contained in [15].
Assume the uncertainty A satisfies a collection of IQCs {II;}*, with corresponding factorizations
{(¥;, M;)}!'~,. The ¥, can be stacked into a single filter:

Wy
; ] (14)

N4

V.=

nm

W has a state space realization as in Equation (10). The robustness of the uncertain LPV system
F.(G,A) can be analyzed using the interconnection structure shown in Fig. 2. The feedback
interconnection including ¥ is described by w = A(v) and
i = A(p)z + Bi(p)w + Ba(p)d
z = Ci(p)z + D11 (p)w + D12(p)d (15)
e = Ca(p)x + Da1(p)w + Da2(p)d,
where = := [ﬁf ] € R"¢*nv s the extended state. The state matrices of the extended system in

Equation (15) can be constructed from the state matrices of G (Equation 3) and ¥ (Equation 10).
The output z has block structure corresponding to the outputs of ;:

21 C1,1(p) Di1,1(p) Di2.1(p)
z:[]zl : T+ w + : ]d (16)
Eng C1,n.7r(P) Dll,r‘zw(P) D12,;L,((P)
z
v —
A
ol w
e G d
- le—

Figure 2. Analysis Interconnection

The next theorem provides an analysis condition using IQCs and a standard dissipation argument.
The analysis replaces the precise relation w = A(v) with integral quadratic constraints on z;. The
sufficient condition uses a quadratic storage function that is defined using a symmetric, parameter-
dependent matrix P : P — S™=.



Theorem 1. Let G be a parametrically stable LPV system defined by Equation (3) and A :
L3¢[0,00) — L5 [0, 00) be a bounded, causal operator such that F, (G, A) is well-posed. Assume
A satisfies the IQCs defined by the multipliers {II;}'~,. If

1. Each II; has a hard factorization (V;, M;).

2. There exists a continuously differentiable P : P — S™=*"= scalars \; > 0, and a scalary > 0
such that P(p) > 0 and

T
ATP4+PA+dP PB; PB, cT (oF
B?P 0 0 + D2Tl D2T1 + § /\ D?l i i Dﬂ,i < O (17)
T 2
By P 0 —I D3, D3, 12 i D?z i

hold for all p € P and all ¢ € P.
Then
a) Forany x(0) € R"¢™" and d € Lo, limp_, 00 2(T) =0
b) [|[Fu(G, Al <~
In Equation (17) the dependence of the matrices on p and ¢ has been omitted to shorten the notation.

Proof

To show b), define a parameter-dependent storage function V : R*¢ 7% x R™ — R* by V(z, p) =
zTP(p)x and let d € Ly?[0, 00) be any input signal and p € T any allowable parameter trajectory.
From well-posedness, the interconnection F,,(G,A) has a solution that satisfies the dynamics in
Equation (15). Left and right multiply Equation (17) by [T, w®,d”] and [z7,wT,dT]T to show
that V satisfies:

V() + > Nizit) Mizi(t) < 2d(t)"d(t) — e(t)"e(t) (18)

i=1
The dissipation inequality Equation (18) can be integrated from ¢t = 0 to ¢ = 7" with the initial
condition z(0) = 0 to yield:

T T
Z; < A2 T — e(t)Te
+Z>\/ T M, ()dt<7/0 d(t)Td(t) dt /O ) Te(t)dt  (19)

Apply the hard IQC conditions, \; > 0, and V' > 0 to show Equation (19) implies fOT e(t)Te(t)dt <

7y fo t) dt. Hence || F, (G, A)|| < 7.
The proof for a) is more subtle but follows similar arguments to those given in [10]. First, note

that Equation (17) still holds if the term ¢ [I"GJ " 0 } is added to the left hand side with € > 0

nw+ng

sufficiently small. Left and right multiply the modified Equation (17) to yield:

V(t) + Z Nizi(0)T M;zi(t) + ex () (t) < ¥2d(t)Td(t) — e(t)Te(t) (20)

i=1

Consider now the response for any initial condition x(0), input d € Lo, and allowable trajectory
p € T. Integrate Equation 20 from ¢ = 0 to ¢t = 7" and apply the hard IQC conditions, A; > 0, and
V > 0 to show

T T T
e/ xTxdtS'yQ/ dedt—/ eTedt + V(2(0), p(0)) 1)
0 0 0

As T — oo this gives €||z||3 < ~2[|d||3 + V(2(0), p(0)) < oo. It follows that z € Lo. A similar
perturbation argument can be used to show that v € Lo and hence w = A(v) € Lo by the assumed
boundedness of A. The time derivative of x is given by @ = A(p)x + By (p)w + Ba(p)d. Therefore
& € Lo since (z,w,d) € Ly and A, By and B are bounded on P. Finally, (x,4) € Ly implies that
z(T) — 0as T — oo (e.g. see Appendix B of [5]). O



Conclusion (b) of Theorem 1 is essentially Theorem 2 in [15]. Conclusion (a) is the minor
extension provided here. It provides a condition for internal, asymptotic stability in addition to the
classical input/output stability result in (b). Theorem 1 is correct but there are two key issues. First,
it parameterizes the IQC as conic combinations of individual hard factorizations, i.e. > N\1I; =
U~ M (AP with a A independent U, see appendix A. The hard IQCs fOT 2 ()T M, z;(t)dt > 0 are
clearly used in the dissipation inequality proof. However, this approach cannot incorporate more
general parameterizations U™~ M (A) P, e.g. as in [24] where W is stable (possibly non-square) and
M () is an affine function of A. Second, Theorem I requires P(p) > 0 for all p € P. This is a natural
assumption given the dissipation inequality approach used in the proof. However, the constraint
P(p) > 0 can lead to conservative results. For example, the frequency domain condition in [11]
can be applied when G is LTI. This frequency domain condition is equivalent to a similar LMI (by
the KYP Lemma) but without the constraint P(p) > 0. A key insight is that the constraint P(p) > 0
neglects additional energy stored in the combined IQC multiplier. The main result in the next section
addresses both of these key issues.

3. MAIN RESULT

In Theorem 1, it was assumed that the storage function V' (z, p) = 27 P(p)x is non-negative definite
and the (¥;, M;) are hard factorizations. As noted above, this neglects the additional (hidden) energy
stored in the combined IQC and also prevents the use of more general IQC parameterizations. A
related result in [21] shows that, for a single IQC II and LTI plant G, the constraint P > 0 can be
dropped if a J-spectral factorization is used for the multiplier. The main result (Theorem 2 below)
extends this for multiple IQCs and LPV plants G. This provides less conservative analysis results
for the uncertain system F, (G, A) by not enforcing P(p) > 0 and allowing for more general (not
necessarily hard) IQC parameterizations. Theorem 2 again uses the interconnection of G and ¥ as
shown in Fig. 2. It is assumed that the IQC has the form IT = U™~ M (\) ¥ so that the interconnection
of G and V¥ again has a state-space representation as in Equation (15).

Theorem 2. Let G be a parametrically stable LPV system defined by Equation (3) and A :
L3¢ [0,00) — L5 [0, 00) be a bounded, causal operator such that F, (G, A) is well-posed. Assume
A satisfies the IQC parameterized by II(A\) = ¥~ M (A\)¥ with ¥ stable. If
1. The combined multiplier, partitioned as TI(\) = [gi ﬁ;; }, satisfies II1;(jw) >0 and
oo (jw) < 0 Vw € RU {oo} where I1y; is n, X n, and Iag iS 14, X Ny.

2. There exists a continuously differentiable P : P — S™=*"=_ and a scalar v > 0 such that

T T
ATP+PA+OP PB, PBs cr cf cf cr
BT P o o |+ |DL||DL| +|DL|MWN|DL| <0 @ (22)
ng 0 —I Dg; Dg; Dsz D?z

hold for all p € P and all ¢ € P.
Then
a) For any 2(0) € R"¢*™ and d € Lo, lim7 s o(T) =0
b) |Fu(G,A)] <~
In Equation (22) the dependence of the matrices on p and ¢ has been omitted to shorten the notation.

Proof
Define a parameter-dependent storage function V : R"¢ 7% x R" — R+ by V(z, p) := 27 P(p)x.
Left and right multiply Equation (22) by [z7, w”,d”] and [2T,wT, d"]" to show that V satisfies:

V() + 2()T MON)2(t) < 42d(6)7d(t) — e(t)Te(t) 23)



This is not a valid dissipation inequality as neither P(p) > 0 nor fo TM(N)z(t)dt > 0 hold, in
general. The proof is based on converting Equation (22) into an equlvalent formulation with only a
single, hard IQC (W, .J,,. ,,.) and a new matrix P(p) > 0.

First, note that the state space representation of ¥ (Equation 10) can be used to express 2z Mz in
terms of (¢, v, w) as follows:

T
N ¥
dIMz=| o [SC?T Z (24)
w w

where Q := C[M(N)Cy, S:=CJM(A\)Dy and R:= DjM(\)Dy. By assumption 1 and
Lemma 1 in the appendix, it follows that the combined multiplier II(A) has a J-spectral
factorization. This can be shown using Game Theory conditions as has been detailed in [21].
The state space representation realization of the .J-spectral factor U is given by Lemma 1 as
(Ay, By, Cy, Dy) with Cy = nmnwD_T(BTX—i-ST) and D, satisfying R = Dw']nv,nwa
The matrix X = X7 is the unique, stabilizing solution of the algebraic Riccati equation (ARE)
(Equation 38). This ARE can be re-written in terms of the state matrices of the .J-spectral factor as:

Q=-ATX — XAy +Cl T, 0, Cy (25)
Substitute for @ in Equation (24) using the ARE and use ST = DZJM,M Cy — B, X to obtain

ZTMz = —(Apy + By [0 )" X — T X (Apy + By [4])
(wa_FDw[w]) nv,nw(0¢w+Dw[w})

This can be simplified to the following expression:
Mz =T Xop =T Xp 4+ 270, 02 (26)

where 1) and Z are the state and the output, respectively of the J-spectral factor 0.

Define the modified matrix P(p) := P(p) — (9 9]. This yields a modified storage function
V :Rretne x Rme — R defined as V(z,p) = 27 P(p)z. This modified storage has the form
V(x,p) = V(x,p) — T X1) where the second term can be interpreted as hidden energy stored in
the combined IQC multiplier. Substitute Equation (26) into Equation (23) to get

V(t) + 2(8)T T, 5(8) < A2d(6)Td(E) — e(t)Te(t), 27)

This dissipation inequality is equivalent to the linear matrix inequality (Equation 17) in Theorem 1
with a single IQC (¥, J,,, ,,,,). It remains to show that P(p) > 0 so that VV > 0 is a valid storage
function.

Use the J-spectral factorization (¥, J,, ,,.) to define the cost .J(t) of the following max/min
game:

J(o) ==  sup inf / Ooz(t)TJnsz(t)dt (28)

weLy™[0,00) vELZV[0,00) Jo
subject to:
= Ayth + Byro(t) + Byaw(t), 1(0) = o
Z= O¢¢ + ﬁwlv(t) + ﬁwgw(t)
By Lemma 1 the cost of this max/min game is J(1)9) = 0. Note that J(¢¢) involves a max over w

followed by a min over v. Hence the choice of v may depend on w. Choose v to be the output of
the nominal LPV plant G generated by w with some initial condition z¢ o and allowable parameter



trajectory p € 7. This specific choice of v yields a value that is no lower than the infimum over all
possible v € Lo. Hence, V*(xz¢) > J(¢o) = 0, where V*(x¢) is defined as:

V*(zo) := sup / 2 Ty, 2(1) dt (29)
wEng 0
pET

subject to:
@(t) = A(p(t))z(t) + Bi(p(t)w(t), x(0)= o
2(t) = C(p(t)x(t) + D11 (p(t))w(t)

where (A, By,C, Dq;) are the state matrices obtained by connecting G and ¥ as in the analysis
interconnection (Figure 2) but neglecting the disturbance d and error e signals. As before z :=
[ﬁf ] € R"e*" denotes the extended state of this interconnection.

The last step of the proof is to show V (x) > V*(x) for all z. This follows along the lines of
Theorems 2 and 3 in [26] and hence the proof is only sketched. Let «(¢) and z(t) be the resulting
solutions of the interconnection G and W for a given w(t), p(t) and . Disregarding the performance
inputs and outputs d and e, Equation (27) can be integrated from ¢ = 0 to t = T  resulting in

V(2(T), p(T)) + / )T T 2(2) dt < V (20, 0(0)) (30)

By assumption G is parametrically stable (Definition 1) and hence for any w € Lo and initial
condition z¢(0) it follows that limy_,o, 2¢(7T) =0 and v € Ly. Moreover, the stability of v
and w,v € Ly together imply that limr_,o ¢(T) = 0. Hence, limr_,o 2(T) = 0 and therefore
limy 00 V(2(T), p(T)) = 0. Maximizing the left hand side of Equation (30) over w € L*[0, c0)
for T = oo yields V (z, p(0)) > V*(z0).

To summarize, it has been shown that V (z, p) = 27 P(p)x satisfies the dissipation inequality in
Equation (27). This dissipation inequality is equivalent to the linear matrix inequality (Equation 17)
in Theorem 1 with a single IQC (W, .J,,, ,,.). Moreover, V (x0) > V*(x0) > J(1o) = 0 for all z(.
Hence P(p) > 0. Finally, the J-spectral factorization (¥, .J,, ,, ) is a hard IQC by Lemma 1. Hence
Theorem 1 can be applied to conclude that statements (a) and (b) hold. O

Theorem 2 has two main benefits as compared to Theorem 1. First, it drops the constraint
P(p) > 0. Second, it allows for more general IQC parameterizations that are not necessarily hard
factorizations. This can reduce the conservatism in the analysis as demonstrated in the examples
below. Theorem 2 adds one technical restriction (Condition 1) on the combined multiplier TI(\).
This restriction is related to the one presented in [23,25]. The proof uses this technical condition to
obtain a J-spectral factorization for the combined multiplier. This allows the analysis condition to be
converted into a valid dissipation inequality with a non-negative storage function and a single (hard)
IQC. Note that this is primarily a practical advantage. From a theoretical point of view both theorems
are equivalent but Theorem 2 allows searching over a broader class of IQC parameterizations, as the
ones presented in [24].

The implementation of Theorem 2 involves some numerical issues. These are briefly described
here and more details can be found in [15]. If the IQC is parameterized such that M (\) is an affine
function of X then Theorem 2 involves parameter dependent LMI conditions in the variables P(p)
and \. Note that the entries of A do not have to be nonnegative as is required in Theorem 1. A only
needs to satisfy condition 1 in Theorem 2, i.e. II;; > 0 and I35 < 0. These are infinite dimensional
(one LMI for each (p,q) € P x P) and they are typically approximated with finite-dimensional
LMIs evaluated on a grid of parameter values. Additionally, the main decision variable is the
function P(p) which must be restricted to a finite dimensional subspace. A common practice [2,30]
is to restrict P(p) to be a linear combination of user-specified basis functions. The analysis can then
be performed as a finite-dimensional SDP [4], e.g. minimizing  subject to the approximate finite-
dimensional LMI conditions. This paper focused on gridded LPV systems whose state matrices have
an arbitrary dependence on the parameter. If the LPV system has a rational dependence on p then
finite dimensional LMI conditions can be derived (with no gridding) using the techniques in [1, 13].



4. NUMERICAL EXAMPLE

4.1. Simple LTI Example

The first example is a simple nominal LTI system G under a perturbation A described by two IQC
multipliers IT; and IT,. The nominal system G is given by

ig =051+ [0.1 —1] tﬂ

[ e [

The first IQC multiplier is IT; = U7 MWy with M = [§ %] and ¥y = [ }]. This is a static
multiplier with no dynamics in ¥;. The second IQC multiplier is IIy = U5' M W5 with U5 given by

€1V

v

e

=029+ [—1 —10} H

w
(32)
z:l 0 ]w—k ll 0
—-0.1 0 0.5

o)

Both ¥; and W, are stable with stable inverses. Thus {(¥;, M)}?_, are both .J-spectral
factorizations and hence hard factorizations (Lemma 1 in Appendix A). Invoking Theorem 1 with
the IQC parameterization II(A) = \II; + AoIl yields a worst case gain bound of ; = 6.8302.
This is solved by minimizing  subject to the LMI conditions P > 0 and Equation (17). Using
instead Theorem 2, i.e. dropping the constraint P > 0, results in yo = 5.1983. The optimal decision
variables in this case are P* = [172867 0.58971 A\ — 0.1986, and A5 = 0.878. The resulting P
has eigenvalues at 17.3068 and —0.0093 and is therefore indefinite. By Lemma 1, a J-spectral
factorization of the combined multiplier II(\*) = AJII; + A3II; can be constructed. The stabilizing
solution of the ARE for II(A\*) is X = —0.0126. This yields a modified storage function P=
P— [8 )0( ], as described in the proof of Theorem 2. As expected, P > 0 with eigenvalues at 17.3068
and 0.0033. This simple example demonstrates that enforcing P > 0 with multiple IQCs will yield
conservative results. Theorem 2 provides a valid dissipation inequality proof (under additional
technical assumptions on II(A)) even if the constraint P > 0 and the hard IQC assumption are
dropped.

4.2. LPV Example

The second example is the same example used in [15] except that the uncertainty is assumed to be a
real parameter in addition to norm bounded. The example represents a feedback interconnection of
a first-order LPV system with a gain-scheduled proportional-integral controller as shown in Fig. 3.
The system H, taken from [22], is first order with dependence on a single parameter p. It can be
written as

R .
=TI T 33)
yar = K(p)zry

with the time constant 7(p) and output gain K (p) depending on the scheduling parameter as follows:

T(p) = 4/133.6 — 16.8p,
K(p) = +/4.8p — 8.6.

The scheduling parameter and rate are restricted to p € [2,7] and |p| < 1. For the following
analysis a grid of six points is used that span the parameter space equidistantly. A time-delay of

(34)
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Figure 3. Closed Loop Interconnection with Parametric Uncertainty

0.5 seconds is included at the control input. The time delay is represented by a second order Pade
approximation, denoted D, :
B Tt
D(s)= 12— 2 7% (35)
S
where T,; = 0.5. A gain-scheduled Pl-controller C' is designed that guarantees a closed loop
damping (.; = 0.7 and a closed loop frequency w,.; = 0.25 at each frozen value of p. The controller

gains that satisfy these requirements are given by

72<clwcl7—(p) -1

Kp(p) = ,
: K(p) 36)
2
K( ) _ _wclT(p).
K(p)
The controller is realized in the following state space form:
z. = Ki(p)e 37)

u=1x.+ Kp(p)e

The uncertainty A is assumed to be real, constant scalar satisfying |A] < 0.5. A satisfies IQC

multipliers of the form II(\) := U~ M (M\)¥ where ¥(jw) := [\I’(g“’) @(gw)}’ M = [j\\i _Alfl},

Ay = AT, Ay = —AT, 4 stable, and W (jw)~ AP (jw) > 0 for all w. See [19] for details. In this
T
example, ¥ is chosen as ¥ = |1 ﬁ %]

Using an affine parameter dependence for P, i.e. P(p) = Py + pP;, and restricting P(p) > 0
yields a (smallest) bound on the worst case gain of v; = 10.28. Applying the analysis condition in
Theorem 2, i.e. removing the positivity constraint P(p) > 0, improves the bound to vy, = 9.06. The
minimum eigenvalue of the optimal P*(p) is between —1636.9 at p = 2 and —1183.8 at p = 7. The
optimal decision variables A} and A3 in this case are

12.6 —56.26 50.17 0 —639.6  1027.7
AT =1-56.26 2560.9 —3317.6], A3 =1 639.6 0 —1257.8
50.17  —=3317.6 4353 —1027.7 1257.8 0

The stabilizing solution of the ARE for II(A*) is

18.99  —24.51 0 —17935
—24.51 32 17935 0
0 17935 —75.96  98.04
—17935 0 98.04 —127.98

X =

This yields a modified storage function P(p) = P(p) — [9 9] with minimum eigenvalue between

1.12 at p = 2 and 6.76 at p = 7. This example demonstrates that Theorem 2 enables the use of
more general IQC parameterizations and also reduces the conservatism by dropping the constraint
P(p) > 0.



5. CONCLUSIONS

This paper derived new robustness analysis conditions for uncertain LPV systems using dissipativity
theory and IQCs. Unlike previous results, the new conditions require neither a hard factorization
of the IQC nor a non-negative definite storage function. The proof of this new result used a time-
domain characterization that included the additional energy that is implicitly stored by the combined
IQC. Simple numerical examples demonstrated that the new conditions are less conservative than
previous results.
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APPENDIX

A. J-SPECTRAL FACTORIZATION
This appendix provides numerical procedures to factorize IT = II~ € RL{"vHmw)x(motnu) 4
WU~ MW. Such factorizations are not unique and this appendix provides two specific factorizations.
The second of these factorizations (Lemma 1) is particularly useful for use in time-domain
dissipation inequality results. First, let (A, B,,Cy, D,) be a minimal state-space realization for
I1. Separate II into its stable and unstable parts II = Gg + Gy. Let (4, B,C, D,.) denote a state
space realization for the stable part Gg so that A is Hurwitz. The assumptions on II imply
that Gy has a state space realization of the form (—AT, —C7T, BT 0) (Section 7.3 of [9]). Thus
II = G5+ Gy can be written as I = U~ MU where ¥(s) := [(SI*‘}‘)_lB] and M := {8 %T}.
This provides a factorization IT = W™~ M¥ where M = M” € R"=*"= and ¥ € RHZSX("”””).

For this factorization W is, in general, non-square (n, # (n, + ny))-
The stability theorems in this paper require a special J-spectral factorization [3] such that ¥
is square (n, = (n, + ny,)), stable, and with a stable inverse. More precisely, given non-negative

integers p and g, let J,, , denote the signature matrix [Ié’ _(}q } . Wiscalleda.J -spectral factor of II if

I =9~J,,¥and U, 0! € RET ) (otme) [ emma 1 provides a simple frequency domain
condition that is sufficient for the existence of a .J-spectral factor. In addition, this lemma provides
several useful properties of J-spectral factorizations.

Lemma I. LetII(s) := [(SI*‘?)_IB}N {SQT }i] [(81*‘?)_13} € RL(w ) X(mutnu) be given with
A Hurwitz, @ = Q7 and R = R”. Partition II as [Eg E;g] where I1;; € RLZ "™ and Iy €
RLL ™ If 11 (jw) > 0 and Tlas(jw) < 0 for allw € R U {oo} then

1. R is nonsingular and there exists a unique real solution X = X7 to the Algebraic Riccati
Equation

ATX + XA— (XB+S)R*'BTX+5T)+Q=0 (38)
such that A — BR™! (BT X + ST is Hurwitz.

2. 11 has a J-spectral factorization (¥, Iny me ) Moreover, ¥ is a J-spectral factor of II if and
only if it has a state-space realization

Ay | A | B
JnymoWT (BTX 4 8T) | W

(39)

where W is a solution of R = W1, , W.

3. (¥, J,, n, ) is a hard factorization of II.



4. The cost of the max/min game defined in Equation 40 based on (U, J,,, »,,) is J(¢o) = 0.

(o)
J(o) ==  sup inf / 2T T, i, 2(t) dt (40)
weLy™ [0,00) v€EL;"[0,00) Jg

subject to:
b=Ap+ By 5], ¥(0) =1
t=Cyh+ Dy ]

where (Ay, By, Cy, Dy) is a state space realization for W.

Proof

This lemma follows from results in [21]. Briefly, the sign definite conditions on I1;; and Il can be
used to show that IT has no equalizing vectors as defined in [12]. Thus the Riccati Equation 38 has
a unique stabilizing solution (Theorem 2.4 in [12]). Statements 3 and 4 follow from known results
on linear quadratic games [7, 8]. O



