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Abstract— A method to reduce the dynamic order of linear
parameter-varying (LPV) systems in grid representation is
developed in this paper. It approximates balancing and trunca-
tion by an oblique projection onto a dominant subspace. The
approach is novel in its use of a parameter-varying kernel to
define the direction of this projection. Parameter-varying state
transformations in general lead to parameter rate dependence
in the model. The proposed projection avoids this dependence
and maintains a consistent state space basis for the reduced-
order system. The method is compared with LPV balancing
and truncation for a nonlinear mass-spring-damper system. It is
shown to yield similar accuracy, while the required computation
time is reduced by a factor of almost 100,000.

I. INTRODUCTION

Linear parameter-varying (LPV) models are particularly
useful for the design of gain-scheduled controllers due to
the availability of powerful synthesis techniques and compu-
tational tools [1], [2]. These techniques produce controllers
that are at least of the same dynamic order as the plant
model. One limitation is that the synthesis requires the so-
lution of linear matrix inequalities (LMIs). The computation
required for this synthesis grows rapidly with increasing state
dimension. For many physically motivated models, directly
obtaining models with a low number of states is not easy.
For instance, structural mechanics models are often obtained
from finite element analysis with a dense grid of nodes and
hence these models have a large number of states. Similarly,
unsteady aerodynamic models often have several thousands
of states. The method proposed in this paper can be used to
obtain low-order models and hence reduce the computation
required for LPV synthesis.

The foundation of LPV model order reduction was es-
tablished in [3], [4] by extending the concept of balancing
and truncation [5] to LPV systems. Balancing and truncation
consists of a state transformation followed by removing
states that are considered negligible in the new coordinates.
The extension to LPV systems requires the solution of
LMIs to obtain generalized Gramians. Hence, this approach
suffers from the same computational limitations as the LPV
synthesis problem. In addition, LPV balancing in general
uses parameter-varying transformations. As a result, the
reduced order model depends not only on the parameter
but also on the parameter rate of change. These two aspects
are among the major obstacles in model order reduction for
LPV systems. Consequently, several approaches have been
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proposed that use linear time invariant (LTI) techniques for
frozen-parameter models and then seek to interpolate the
reduced-order models for time-varying parameters, e. g., [6],
[7], [8], [9]. In recent years, the problem of parametric
model reduction has also received considerable attention,
e. g., [10], [11], [12]. Parametric model reduction considers
only constant parameter values and the goal is to approx-
imate a family of parameterized LTI models. This differs
substantially from the LPV model order reduction problem
studied in this paper, which considers time-varying parameter
values and whose goal is to approximate an LPV model, see
Section II.

In this paper, an approximation to balancing and truncation
is proposed. It defines a reduced state space from projection
onto a dominant subspace. The approach is novel in its use
of a parameter-varying kernel to define the direction of this
projection. It is shown in Section III that no rate dependence
is introduced by this projection and that a consistent state
space basis is maintained throughout the entire parameter
space. The proposed procedure only requires the solution
of two Lyapunov equations at each grid point. It can thus
be applied to models with up to a few thousand states,
whereas the LMI approach is currently limited to models
with up to about 50–100 states. When the original model
is stable, the reduced-order model has all its poles in the
complex left half plane for all frozen parameter values. This
property guarantees stability for “slowly” varying parameter
trajectories, see [13]. Further, an estimate of the full state
vector can be recovered from the projection. This is a
crucial feature for simulation and control if the LPV model
is meant to approximate a nonlinear dynamic system. The
effectiveness of the approach is compared to LPV balancing
and truncation in Section IV on a nonlinear spring-mass-
damper system with 100 states. The proposed method is
shown to achieve similar accuracy with a major reduction
in computational effort. It is further shown to accurately
reduce a system with 1,000 states, where balancing becomes
computationally intractable.

II. LPV MODEL ORDER REDUCTION

In this section, LPV systems are introduced and the model
order reduction problem is formulated. The problems arising
from parameter-varying transformations are highlighted, and
it is shown how model order reduction can be stated as an
oblique projection.

A. LPV Modeling and Reduced Order Models

LPV systems are dynamic systems whose state space ma-
trices are continuous functions of a time-varying parameter



vector ρ(t) ∈ Rnρ . Based on physical considerations, the
admissible parameter trajectories are confined to a compact
set P ⊂ Rnρ . This infinite dimensional set is commonly
approximated by a finite dimensional subset {ρk}gk=1 ⊂ P ,
called a grid. The state space equations for an LPV system
with state vector x(t) ∈ Rnx and input vector u(t) ∈ Rnu
are

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)− d

dt
x̄(ρ(t))

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t),
(1)

where the term d
dt x̄(ρ(t)) is included to allow a parameter-

varying equilibrium point x̄(ρ(t)). Such a term naturally
arises if an LPV is obtained as the linearization of a nonlinear
system with respect to a parameter-varying trim condition,
see [14] for details. For a constant x̄, the notion commonly
encountered in the literature is recovered.

The problem of LPV model order reduction consists of
finding an approximation for (1) as

ż(t) = Ared(ρ(t)) z(t) +Bred(ρ(t))u(t)− d

dt
z̄(ρ(t))

y(t) = Cred(ρ(t)) z(t) +Dred(ρ(t))u(t) .
(2)

The reduced state z(t) ∈ Rnz should be of much lower
dimension than x(t) ∈ Rnx , while the input-output behavior
from u to y should be as similar as possible to that of
the original model. Further, stability of the original model
should be preserved in the reduced-order model. Finally,
the equilibrium x̄ needs to be sufficiently well approximated
by z̄ so that the results can be related back to the original
nonlinear system.

In the remainder of this paper, time dependence is dropped
and parameter dependence is denoted by the subscript ρ, i. e.,
Aρ := A(ρ(t)).

B. Balancing and Truncation for LTI Model Reduction

For a fixed parameter ρ = ρk, system (1) simplifies to the
standard LTI system

ẋ = Ax+B u

y = C x+Du .
(3)

A standard model reduction method for LTI systems is
balancing and truncation [5]. The first step is obtaining the
controllability Gramian Xc and the observability Gramian
Xo as solutions to the Lyapunov equations

AXc +XcA
T +BBT = 0 , (4)

ATXo +Xo A+ CTC = 0 . (5)

Given a state x0, the minimum energy required to steer the
system from x = 0 to x = x0 is εc = xT0X

−1
c x0. Further,

εo = xT0Xo x0 is the energy of the free response to the
initial condition x0 [5]. The ratio εo/εc thus measures how
much a state is affected by the input and how much it affects
the output. A transformation [ x1

x2
] = T x can be calculated

so that T Xc T
T = (T−1)TXo T

−1 = Σ
1/2
H , where ΣH is

diagonal and contains the eigenvalues of the product Xc Xo
in descending order of magnitude. These singular values are

exactly the ratios εo/εc for each state in the new coordinates.
System (3) can hence be partitioned as

ẋ1 = A11 x1 +A12 x2 +B1 u

ẋ2 = A21 x1 +A22 x2 +B2 u

y = C1 x1 + C2 x2 + Du .

(6)

The states that are both highly controllable and observable
are represented by z := x1. The states x2 contribute little
to the input-output behavior and are removed from the state
vector by truncation, leading to a reduced-order model

ż = A11 z +B1 u

y = C1 z + Du .
(7)

C. Balancing for LPV Models
For parameter-varying systems as defined by (1), balanc-

ing was extended in [3] by introducing parameter-varying
generalized Gramians Xc,ρ and Xo,ρ that satisfy the LMIs

− d

dt
Xc,ρ +AρXc,ρ +Xc,ρA

T
ρ +BρB

T
ρ ≺ 0 , (8)

d

dt
Xo,ρ +ATρXo,ρ +Xo,ρAρ + CTρ Cρ ≺ 0 . (9)

Minimization of trace(Xc,ρXo,ρ) subject to (8) and (9) can
be used to calculate a parameter-varying balancing transfor-
mation so that TρXc,ρ T

T
ρ = (T−1ρ )TXo,ρ T

−1
ρ = Σ

1/2
H,ρ, see

[4] for an iterative approach to this nonconvex problem. The
diagonal matrix ΣH,ρ in this case contains the parameter-
varying eigenvalues of Xc,ρXo,ρ ordered by decreasing
magnitude along its diagonal. Such a transformation implies[

ẋ1
ẋ2

]
=

d

dt
Tρ x =

∂Tρ
∂ρ

ρ̇ x+ Tρ ẋ (10)

and consequently the resultant system[
ẋ1
ẋ2

]
=

(
TρAρ+

∂Tρ
∂ρ

ρ̇

)
T−1ρ [ x1

x2
]+TρBρu−Tρ

d

dt
x̄ρ

y = Cρ T
−1
ρ [ x1

x2
] +Dρ u ,

(11)

depends on the parameter rate ρ̇ in addition to the origi-
nal parameter ρ. A parameter-varying transformation thus
inevitably increases the complexity of the model since the
parameter space is enlarged. A reduced-order LPV model
without additional rate dependence can be obtained as de-
scribed in II-B only if solutions to (8) and (9) are re-
stricted to parameter independent matrices. In this case,
more conservative solutions are to be expected. Further,
even such parameter independent solutions require extensive
computational effort to be calculated by numerical methods.

D. Projection Perspective on Model Order Reduction
The truncation operation applied to turn (6) into (7) can

be expressed as replacing [ x1
x2

] with [Inz 0nz×(nx−nz)]T x1
and multiplying the state equation from the left by
[Inz 0nz×(nx−nz)]. An equivalent representation of the
reduced-order system (7) is thus

ż =

Ared︷ ︸︸ ︷
WTAV z +

Bred︷ ︸︸ ︷
WTB u

y = C V︸︷︷︸
Cred

z +Du
(12)



with V =T−1[Inz 0nz×(nx−nz)]T , WT=[Inz 0nz×(nx−nz)]T .
It is shown in this section that the reduced-order model (12)
obtained from balancing and truncation is a Petrov-Galerkin
approximation of the original system, i. e., an approxima-
tion obtained by oblique projection. Taking this perspective
makes it possible to extend model order reduction by pro-
jection in Section III-A to LPV systems and to consequently
construct an approximation to LPV balancing and truncation
in Section III-B.

An oblique projection is a linear operation defined
by a matrix Π = V (WTV )−1WT with V ∈ Rnx×nz ,
W ∈ Rnx×nz and rank(WTV ) = nz . Hence, a projection
is idempotent, i. e., Π = Π2. It is completely characterized
by its range space span(Π) = span(V ) and its nullspace
ker(Π) = span

(
ΠT
)⊥

= span(W )
⊥. This fact is easy

to prove by replacing V and W with their respective thin
QR-factorizations. A vector space is said to be projected
by Π along the orthogonal complement of the subspace
spanned by the columns of W and onto a subspace spanned
by the columns of V . The projection thus restricts a given
vector space X ⊆ Rnx to a lower dimensional subspace
span(V ) ⊆ Rnz . Reference [15] shows that any projection
can be parameterized by V and a symmetric positive definite
matrix S ∈ Rnx×nx as

Π = V (V TS V )−1 V TS︸ ︷︷ ︸
WT

. (13)

Any W constructed in this way is biorthogonal to V , i. e.,
WTV = Inz . Thus, from this point on, biorthogonality of V
and W is assumed without loss of generality.

It helps to apply some geometrical interpretation at this
point. Given V and W with WTV = Inz and a point x ∈ X ,
the projection of x lies in the span of V and can hence be
written as V z with some coefficient vector z ∈ Rnz . The
component of x that is eliminated by the projection is in
the nullspace of Π and hence orthogonal to W . This can be
stated as WT (x− V z) = 0. Consequently, the coefficient
vector is uniquely determined by z = WTx. The projection
Πx can thus be seen as an approximation to x in span(V )
with zero error within span(W ). The subspace span(V ) is
consequently termed basis space of the approximation and
span(W ) is called test space.

Model order reduction requires the approximation of a
dynamic system given by a differential equation rather than
an approximation for a single point in the state space. The
goal is thus to find an approximate solution xapprox = V z to
the state equation in (3), i. e.

ẋapprox︸ ︷︷ ︸
V ż

≈ A xapprox︸ ︷︷ ︸
V z

+B u . (14)

From the previous discussion, V z is uniquely determined
for given V , W , and x. Hence, the right hand side of (14) is
known for a given state x and input u. This does however not
immediately provide a solution for ż. In fact, (14) imposes
nx equations to determine the nz-dimensional vector ż and
consequently no ż exists that exactly satisfies (14). The

residual of the approximation (14) is

r := V ż − (AV z +B u) . (15)

If ż is now selected such that the residual (15) is restricted
to be orthogonal to the test space span(W ), i. e.

WT (V ż − (AV z +B u)) = 0 , (16)

the procedure is known as Petrov-Galerkin approximation,
see e. g. [16], [17], [18]. The unique solution to (16) is

ż = WTAV z +WTB u . (17)

The desired approximation is hence given by xapprox = V z,
where z is the solution to (17). Adding the output equa-
tion y = C xapprox + Du to (17) then immediately yields
the reduced-order model (12). This shows, that balancing
and truncation is indeed a Petrov-Galerkin approximation.
Left multiplication of (17) by V further shows that this
approximation is in fact obtained by projecting the dynamic
system (3) along span(W )

⊥ onto span(V ), i. e.

ẋapprox = V WT (Axapprox +B u) . (18)

There is a rich geometric interpretation for this projection,
see [18] for details.

III. DOMINANT SUBSPACE APPROXIMATION BY
PARAMETER-VARYING OBLIQUE PROJECTION

Section II-C revealed that a parameter-varying state trans-
formation introduces an additional parameter rate depen-
dence. The same is true if an oblique projection is con-
structed as in Section II-D from a parameter-varying trans-
formation and the truncation operator. This section shows as
the main result of this paper that it is possible to construct
a parameter-varying projection that does not introduce rate
dependence. It is then shown how a dominant subspace
approximation for LPV systems is obtained.

A. Main Result: Parameter-Varying Oblique Projections

Constructing a reduced-order model for an LPV system
essentially requires the same steps as in Section II-D. Re-
placing x in (1) with Vρz and left multiplying the resulting
equation by WT

ρ shows that any parameter-varying projection
Πρ = VρW

T
ρ with WT

ρ Vρ = Inx leads to a reduced-order
model

ż = WT
ρ

(
AρVρ−

∂Vρ
∂ρ

ρ̇

)
z+WT

ρ Bρu−WT
ρ

d

dt
(Vρz̄ρ)

y = Cρ Vρ z +Dρ u .

(19)

System (19) depends on V̇ρ but not on the time derivative
of Wρ. Hence, rate dependence can be avoided by restrict-
ing parameter dependence in the projection to the kernel.
Such a parameter-varying oblique projection Πρ = V WT

ρ

is obtained from the parameterization (13) when only the
symmetric matrix S is parameter dependent, i. e.,

WT
ρ = (V TSρ V )−1 V TSρ . (20)



Since V is now constant and WT
ρ V = Inz still holds for all

parameters, the projected state space equations (19) simplify
to

ż =

Ared,ρ︷ ︸︸ ︷
WT
ρ Aρ V z +

Bred,ρ︷ ︸︸ ︷
WT
ρ Bρ u−

d

dt
z̄ρ

y = Cρ V︸ ︷︷ ︸
Cred,ρ

z +Dρ u .
(21)

System (21) has exactly the structure of the desired reduced-
order system (2). The key is that V is constant. State
consistency for the LPV system is hence preserved with
both x ≈ V z and ẋ ≈ V ż. The direction along which
the full-order model is projected onto this constant subspace
is, on the other hand, allowed to vary with the parameter.
From the perspective of a Petrov-Galerkin approximation,
this is equivalent to enforcing (16) over a varying test space
span(Wρ).

If the intent is to simulate or control a nonlinear sys-
tem using the reduced-order LPV model, the equilibrium
reduced-order state can be calculated by the Petrov-Galerkin
approximation WT

ρ (V z̄ρ − x̄ρ) = 0, i. e., as z̄ρ = WT
ρ x̄ρ.

B. Dominant Subspace Approximation
Recall from Section II-D that balancing and truncation can

be interpreted as an oblique projection. Given the controlla-
bility and observability Gramians, either as solutions to (4)
and (5) for LTI models or as parameter independent solutions
that satisfy (8) and (9) for LPV models, this projection can be
directly constructed from what is known as the square root
algorithm [19]. Doing so requires the Cholesky factorizations
Xo = Lo L

T
o and Xc = Lc L

T
c , as well as the singular value

decomposition (SVD) of the product

LTc Lo =
[
U1 U2

] [Σ1

Σ2

] [
N1 N2

]T
. (22)

The singular values are ordered by descending magnitude,
such that the diagonal matrix Σ1 contains the largest nz sin-
gular values. The orthogonal matrices [ U1 U2 ] and [N1 N2 ]
contain the corresponding left and right singular vectors. The
oblique projection for balancing and truncation is

Πbal = Lc U1 Σ
−1/2
1︸ ︷︷ ︸

V

Σ
−1/2
1 NT

1 LTo︸ ︷︷ ︸
WT

, (23)

i. e., a projection onto span(Lc U1) along ker
(
NT

1 L
T
o

)
, see

[17], [19] for details.
The goal of this section is to extend (23) to a parameter-

varying projection as introduced in Section III-A. As a first
step, projection (23) is rewritten in terms of the parameteri-
zation (13). Since Σ−11 = (Σ1N

T
1 N1Σ1)−1Σ1,

Πbal = Lc U1(Σ1N
T
1 N1Σ1)−1Σ1N

T
1 L

T
o .

It further follows from (22) that Σ1N
T
1 = UT1 L

T
c Lo and thus

Πbal = Lc U1

(
UT1 L

T
c Lo L

T
o Lc U1

)−1
UT1 L

T
c Lo L

T
o .

Replacing finally Lc U1 = QR by its thin QR-factorization
and Lo L

T
o by Xo yields

Πbal = Q
(
QTXoQ

)−1
QTXo. (24)

Equation (24) has the desired form (13) with V = Q and
S = Xo.

This suggests the following approximation of LPV balanc-
ing and truncation by a parameter-varying projection: Find
a constant basis Q̄ such that span

(
Q̄
)

approximates the
parameter-varying dominant subspace span(Lc,ρ U1,ρ) and
replace Xo by the parameter-varying observability Gramian
Xo,ρ, i. e.,

Πρ = Q̄︸︷︷︸
V

(Q̄TXo,ρ Q̄)−1 Q̄TXo,ρ︸ ︷︷ ︸
WT
ρ

. (25)

This method only requires calculation of the Cholesky fac-
tors Lc,ρk , Lo,ρk , and the SVD (22) at each grid point
ρk over the grid {ρ1, . . . , ρg}. The matrix Xo,ρ is then
formed from interpolation of Lo,ρkL

T
o,ρk . An approxima-

tion for span(Lc,ρ U1,ρ) could be obtained by adopting
a prevalent approach from parametric model reduction to
build a common basis from the SVD of the orthonormal
bases calculated at each grid point [12]. That approach only
considers the directions but not their individual importance.
Thus, a direction that varies little or not at all and hence
appears at all grid points would be given priority over a
varying direction regardless how difficult it might be to reach.
Instead, span(Lc,ρ U1,ρ) is approximated by Q̄ = Ū1 ∈
Rnx×nz from the SVD[
Lc,ρ1U1,ρ1 · · · Lc,ρgU1,ρg

]
=
[
Ū1 Ū2

][Σ̄1 N̄
T
1

Σ̄2 N̄
T
2

]
. (26)

The singular values Σ̄1 in (26) still provide a measure of
how easy the subspace spanned by Ū1 is to reach. Thus,
they provide a meaningful threshold to decide on the order
of the approximation.

There are several noteworthy properties of projection (25).
First, it results in a reduced-order LPV model (21) without
additional rate dependence. Second, since Xo,ρ is a continu-
ous function of ρ, interpolation is accurate for a sufficiently
dense grid. Further, WT

ρ V = Inz is exactly enforced by (25)
for all parameter values regardless of the method used to
interpolate Xo,ρ. Third, when applied to an LTI system, Q̄ is
simply an orthonormal basis for span(Lc U1) and hence (25)
exactly coincides with balancing and truncation, or more
precisely, with the balancing-free square-root algorithm [20].
Finally, a result from Reference [15] is invoked to show
that for frozen parameters, all poles of the reduced-order
system are in the left half plane. Multiplying the Lyapunov
equation (5) for the original system from the left by Q̄T and
from the right by Q̄ results in

Q̄TATXo Q̄+ Q̄TXo AQ̄+ Q̄TCTC Q̄ = 0 . (27)

Using Ared = (Q̄TXo Q̄)−1Q̄TXo AQ̄ and C Q̄ = Cred, it
can be shown that (27) is equivalent to

ATred(Q̄TXo Q̄) + (Q̄TXo Q̄)Ared + CTredCred = 0. (28)

Since Xo is symmetric positive definite, so is Q̄TXo Q̄ and
consequently Ared has all its eigenvalues in the left half
plane. This guarantees stability of the reduced-order model
for “slowly” varying parameters, see [13] for details.



IV. APPLICATION EXAMPLE

A nonlinear mass-spring-damper system, taken from [21],
is used to demonstrate the approach. It represents the inter-
connection of M blocks with mass m = 1 kg, that are each
connected both to their neighboring blocks and the initial
system by a linear damper with damping constant d = 1 N s

m
and a nonlinear spring with stiffness k(q) = k1 + k2 q

2,
k1 = 0.5 N

m , k2 = 1 N
m3 . An external force ρ and a controlled

force u are acting on the M th block. The equations of motion
for the ith block in terms of its displacement qi are thus

m q̈i =


−F1 − F1,2, i = 1

−Fi − Fi,i−1 − Fi,i+1, i = 2, . . . ,M − 1

−FM − FM,M−1 + ρ+ u i = M .

The force Fi,j = d (q̇i − q̇j) + k1 (qi − qj) + k2 (qi − qj)3
is caused by the relative motion of neighboring blocks and
Fi = d q̇i + k(qi) qi is due to the connection with the initial
system. With state vector ξ :=

[
q1, . . . , qM , q̇1, . . . , q̇M

]
T ,

the system is written as ξ̇ = f(ξ, u, ρ). The output of the
system is the displacement qM = h(ξ, u, ρ) of the M th

block. For each value of ρ ∈ P , an equilibrium point
x̄ is defined by 0 = f(x̄(ρ), 0, ρ) with a correspond-
ing equilibrium output q̄M = h(x̄(ρ), 0, ρ). Linearization
around (x̄(ρ(t)), 0, q̄M (ρ(t))) yields an LPV system of the
form (1) in the perturbation variables x := ξ − x̄(ρ) and
y = qM − q̄M (ρ), see [14], [21] for details.

A. Comparison to LPV Balanced Truncation

The number of blocks for the mass-spring-damper model
is selected as M = 50. The admissible parameter range is
restricted to P = [0 2] and the nonlinear system is linearized
on a grid {ρk}gk=1 = {0, 1, 2}. For this example, the pro-
posed approach is compared to the standard LPV balancing
and truncation method [4]. The function lpvbalreal of
the LPVTools toolbox [2] is used to solve for a constant
balancing transformation and parameter independent gener-
alized Gramians by minimizing trace(Xc Xo) subject to (8)
and (9). An oblique projection is then formed as described in
Section II-D. Obtaining a reduced-order model with 4 states
requires vastly different computational effort with the two
methods. The proposed projection takes 0.1 seconds, whereas
solving the LMIs for balancing takes more than 2.5 hours
on a standard desktop computer. The resulting reduced-order
models, on the other hand, are very similar. An upper bound
γ̄ for the induced L2-norm of the error system[

˙̃x
ż

]
=

[
Aρ (Inx−Πρ)AρV

0nz×nx WT
ρ AρV

] [
x̃
z

]
+

[
(Inx−Πρ)Bρ

ΠρBρ

]
u

e =
[
C 0ny×nz

] [x̃
z

]
,

with x̃ = x − V z is calculated for both methods us-
ing the LPVTools function lpvnorm. This guarantees
‖e‖2 < γ̄ ‖u‖2 and certifies stability of the reduced-order
system for arbitrary fast parameter variations. Balancing and
truncation yields a slightly better error bound γ̄ = 3.9e-03

TABLE I
COMPARISON OF REDUCED-ORDER MODELS

LPV Balancing Proposed Projection

Computation Time† 9170 s 0.1 s
L2-norm error bound 3.9e-03 12.1e-03
H∞-norm error‡ 2.2e-03 1.5e-03

Output MSE 1.5e-03 1.5e-03
† on a 64 bit desktop PC with 3.4 GHz 8-core CPU and 8 GB RAM
‡ for frozen parameters at grid points

compared to γ̄ = 12.1e-03 for the proposed method. Ad-
ditionally, the maximum H∞-norm error

¯
γ for “frozen”

parameters at all grid points is calculated as a lower bound
for the induced L2-norm and the frequency responses are
shown in Fig. 1. The proposed method results in

¯
γ = 1.5e-03

compared to
¯
γ = 2.2e-03 for balancing. The time-domain

responses for an external force ρ(t) = (1 + cos(0.5 t)) N and
a step input u = 0.5 N after 25 s are compared in Fig. 2. Both
methods approximate the output of the nonlinear system very
well and result in an identical mean square error of 1.5e-03.
Table I summarizes these results.
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Fig. 1. Frequency response at frozen parameters ρ = 0, 1, 2 for original
model ( 100 states) and reduced-order model from balancing and
truncation ( 4 states) and parameter-varying projection ( 4 states).
The relative error is shown in the magnitude plot for balancing and
truncation ( ) and parameter-varying projection ( ).
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Fig. 2. Nonlinear simulation of original model ( 100 states),
equilibrium output ( ), and reduced-order model from balancing and
truncation ( 4 states) and parameter-varying projection ( 4 states).

B. Example for Larger System

In a second example, M = 500 blocks are used and the
admissible parameter range is increased to P = [0 10]. The
system is linearized on a grid {ρk}gk=1 = {0, 1, . . . , 10}.
The LPV model considered in Section IV-A is about the
maximum size that is currently tractable for balancing and
truncation on a desktop computer. Consequently, no balanced
reduced-order model could be obtained for this larger LPV



system. Computation with the proposed approach, on the
other hand, takes 47 seconds and results in a fifth order
model. Since calculation of the L2-norm error bound is also
intractable, the “frozen” parameter frequency responses are
used as surrogates and shown in Fig. 3. They again match
very well for all grid points. The nonlinear simulation for an
external force ρ(t) = (5 + 5 cos(0.5 t)) N and a step input
u = 0.5 N after 25 s is shown in Figure 4 and also indicates
excellent agreement.
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Fig. 3. Frequency response at frozen parameters ρ = 1, . . . , 10 for
original model ( 1000 states), reduced-order model ( 5 states),
and relative error ( ).
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Fig. 4. Nonlinear simulation of original model ( 1000 states),
equilibrium output ( ), and reduced-order model ( 5 states).

V. CONCLUSION AND EXTENSIONS

A. Conclusion
A model order reduction method for LPV systems is

developed in this paper. It is shown to approximate balancing
and truncation within a fraction of its required computation
time and is hence also applicable to systems where balancing
and truncation becomes intractable.

B. Future Extensions
In case the Lyapunov equations become intractable to

solve by standard means, low-rank approximations of Grami-
ans can be used. Such approximations can be calculated even
for large-scale systems with tens of thousands of states, e. g.,
by Krylov subspace methods [22]. The use of frequency-
weighted or frequency-limited Gramians also lends itself
well to the approach and could allow to specify a frequency
region of interest. Finally, the basis space can be calculated
by entirely different means. For instance, V can be calculated
by Krylov moment matching algorithms, while a parameter-
varying Wρ is still obtained from the observability Gramian.
This provides an extension of the SVD-Krylov algorithm
proposed in [23] to LPV systems.
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