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SUMMARY

This paper presents a connection between dissipation inequalities and integral quadratic constraints (IQCs)
for robustness analysis of uncertain discrete-time systems. Traditional IQC results derived from homotopy
methods emphasize an operator-theoretic input-output viewpoint. In contrast, the dissipativity-based IQC
approach explicitly incorporates the internal states of the uncertain system, thus providing a more direct
procedure to analyze uniform stability with non-zero initial states. The standard dissipation inequality
requires a non-negative definite storage function and “hard” IQCs. The term “hard” means that the IQCs
must hold over all finite time horizons. This paper presents a modified dissipation inequality that requires
neither non-negative definite storage functions nor hard IQCs. This approach leads to linear matrix inequality
conditions that can provide less conservative results in terms of robustness analysis. The proof relies on a key
J-spectral factorization lemma for IQC multipliers. A simple numerical example is provided to demonstrate
the utility of the modified dissipation inequality.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

This paper considers robustness analysis for an uncertain discrete-time system. The uncertain
system is given by an interconnection of a discrete-time linear system and a “troublesome”
perturbation. The input/output behavior of the perturbation is described by integral quadratic
constraints (IQCs) [1]. In particular, the input/output signals of the perturbation are assumed to
satisfy a frequency domain constraint specified by a multiplier Π(z). The analysis objective is to
assess the worst-case gain, robust asymptotic stability, and robust uniform stability of the uncertain
system. Such analysis problems are standard in robust control and arise in many applications
[2, 3]. More recently, optimization algorithms have been studied as uncertain linear systems whose
perturbations are described by discrete-time IQCs [4]. The IQC framework builds on a long history
of classical multiplier results, e.g. Zames-Falb multipliers [5, 6]. The original IQC results in [1]
were given for continuous-time systems using homotopy arguments. This yields frequency domain
analysis conditions which can be adapted with minor changes for discrete-time, e.g. as in [7].

This paper focuses on an alternative time-domain derivation for discrete-time IQC analysis using
dissipativity theory [8, 9]. The time-domain approach involves “hard” IQCs that are specified by
a stable filter Ψ(z) and a symmetric matrix M . The pair (Ψ,M) defines a time domain integral
constraint on the uncertainty that holds over all finite time intervals. The main result (Theorem 2
in Section 4) is a modified dissipation inequality that differs in two respects from a standard
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dissipation/IQC result. In particular, it allows for non-negative storage functions and so-called “soft”
IQCs where the time-domain constraint only holds on infinite time intervals. This can lead to less
conservative analysis results as demonstrated by an example in Section 5. The modified dissipation
inequality relies on a technical J-spectral factorization [10, 11] result (Lemma 6 in Section 3).
It is possible to factorize frequency domain multipliers Π as Ψ∼MΨ. This factorization is not
unique and several important properties of J-spectral factorizations are proved using game-theoretic
interpretations. The J-spectral factorization result (Lemma 6) is an important technical result on its
own and has other potential applications, e.g. formulating topological separation theorems [12].

This paper complements several existing results in the literature. First, this paper provides a
discrete-time counterpart to the continuous-time results in [13–16]. Moreover, Section 3 contains
intermediate results regarding discrete-time IQC factorizations and a related open-loop linear
quadratic (LQ) difference game. These parallel existing continuous-time results for J-spectral
factorizations [17] and open loop LQ differential games [18,19]. The generalization to discrete-time
is not immediate since descriptor systems are needed to handle non-proper multipliers that appear
in some proofs. Similar discrete-time technical results on factorizations and LQ games are provided
in [20] and [11] using operator theoretic methods. This paper provides alternative linear algebra
proofs for completeness. In particular, the minimax theorems in [20] were used to construct hard
IQCs for both discrete-time and continuous-time systems. This paper extends the game theoretic
results to not only construct hard IQCs but also to show that the non-negative constraint can be
dropped on the storage function in the dissipation inequality framework.

The benefit of the time-domain dissipation theory is that it enables generalization to cases where
the known system in the feedback connection is not necessarily linear time-invariant (LTI). For
example, the approach enables the analysis of uncertain linear parameter varying (LPV) systems or
uncertain nonlinear systems. The current paper will present discrete-time derivations assuming the
nominal system is LTI. However the extension to uncertain LPV and uncertain nonlinear systems
follows along the lines of the continuous-time results in [13, 16, 21]. The standard IQC homotopy
theory developed for both continuous and discrete-time systems [1, 22–25] can also be generalized
for systems which do not have frequency domain interpretations [26]. The homotopy approach
emphasizes input-output properties while internal states are incorporated more transparently in the
dissipativity approach. In some cases, directly handling internal states can be potentially beneficial,
e.g. in the convergence rate analysis of optimization methods [4]. In other cases, it is useful to
mask the internal states and focus on input-output stability, e.g. in consensus and synchronization
problems [27]. In general, the two approaches are complementary and both are useful.

The rest of the paper is organized as follows. Section 2 formulates the discrete-time analysis
problem and summarizes the standard dissipation inequality approach using IQCs. Section 4
presents the discrete-time modified dissipation inequality result. The proof of this main result
relies on one main technical J-spectral factorization result presented in Section 3. Several lemmas
regarding discrete-time IQC factorizations and a related open-loop linear quadratic difference game
are also collected in Section 3 to support the proof of the main J-spectral factorization result. A
simple numerical example is given in Section 5.

2. PRELIMINARIES

2.1. Notation

The notation is standard. RL∞ denotes the set of rational functions with real coefficients that have
no poles on the unit circle. RH∞ is the subset of functions in RL∞ that are analytic outside the
unit disk of the complex plane. The para-Hermitian conjugate of Π ∈ RLm×n∞ , denoted as Π∼, is
defined by Π∼(z) := ΠT (z−1). Hence Π∼(ejω) = Π∗(ejω) holds on the unit circle. For discrete-
time systems RL∞ contains improper functions, e.g. polynomials in z, while RH∞ contains only
proper functions. Thus functions in RH∞ have a standard, state space representation but descriptor
systems are required, in general, to represent functions in RL∞ [28]. The use of descriptor systems
is limited to one technical result (Lemma 7 in the appendix).



Consider a (real) sequence u := (u(0), u(1), . . .) where u(k) ∈ Rn for all k. This sequence is said
to be in `n2 if

∑∞
k=0 ‖u(k)‖2 <∞ where ‖u(k)‖ denotes the standard (vector) 2-norm of u(k). In

addition, the 2-norm for u ∈ `n2 is defined as ‖u‖2 :=
∑∞

k=0 ‖u(k)‖2. Then ‖v‖ denotes the `2 norm
of the signal and ‖v(k)‖ denotes the Euclidean norm of the vector evaluated at time k.

An inner product on `n2 is defined as 〈u1, u2〉 =
∑∞

k=0 u
T
1 (k)u2(k) for any u1, u2 ∈ `n2 . The

truncation operator PN maps a sequence u to PNu, where

(PNu)(k) :=

{
u(k) for k ≤ N
0 for k > N

(1)

For simplicity, PNu is occasionally abbreviated as (u)N . The extended space, denoted `n2e, is the
set of sequences u such that PNu ∈ `n2 for all N ≥ 0.† Finally, DARE(A,B,Q,R, S) denotes the
following discrete-time Algebraic Riccati Equation (DARE)

ATXA−X − (ATXB + S)(R+BTXB)−1(ATXB + S)T +Q = 0 (2)

The stabilizing solution X = XT , if it exists, is such that (R+BTXB) is nonsingular. In addition,
A−BK is a Schur stable matrix where K := (R+BTXB)−1(ATXB + S)T is the stabilizing
DARE gain.

2.2. Problem Statement

This paper considers the robustness of uncertain discrete-time systems. Consider the interconnection
in Figure 1, denoted by Fu(G,∆). This uncertain system is described by the interconnection of a
nominal discrete-time LTI systemG and an uncertain perturbation ∆. The LTI systemG is described
by the following state-space model:

xG(k + 1) = AG xG(k) +BG1 w(k) +BG2 d(k)

v(k) = CG1 xG(k) +DG11 w(k) +DG12 d(k)

e(k) = CG2 xG(k) +DG21 w(k) +DG22 d(k)

(3)

where xG ∈ RnG is the state. The inputs are w ∈ Rnw and d ∈ Rnd while v ∈ Rnv and e ∈ Rne
are outputs. The state-space matrices of G have dimensions compatible with these signals, e.g.
AG ∈ RnG×nG .

G
d�e �

∆

v

-

w

�

Figure 1. Interconnection for an Uncertain Discrete-time System

The robustness analysis is formulated by specifying a set ∆ of uncertainties. Each perturbation
∆ : `nv2e → `nw2e in ∆ is a bounded, causal operator which maps zero input to zero output. The
input/output behavior of the perturbation is specified using quadratic constraints as described
further below. At this point it is sufficient to state that ∆ can have block-structure as is standard
in robust control modeling [2]. The operator ∆ can include blocks that are hard nonlinearities
(e.g. saturations) and infinite dimensional operators (e.g. time delays) in addition to true system

†Note that a sequence having a finite escape time in the 2-norm will have finite escape time in any other p-norm. Hence `
is commonly used to denote the extended space in discrete-time. Here the notation `2e is adopted to denote this extended
space as this parallels its continuous-time counterpart.



uncertainties. The term “uncertainty” is used for simplicity when referring to the perturbation ∆.
For any ∆ ∈∆, well-posedness of the interconnection Fu(G,∆) is defined as follows.

Definition 1. Fu(G,∆) is well-posed if for all xG(0) ∈ RnG and d ∈ `nd2e there exists a unique
solution xG ∈ `nG2e , v ∈ `nv2e , e ∈ `ne2e , and w ∈ `nw2e with a causal dependence on d and satisfying
Equation (3) and w = ∆(v).

Assume the interconnection is well-posed for a given ∆ ∈∆. Then the induced `2 gain from d to
e is defined as:

‖Fu(G,∆)‖2→2 := sup
06=d∈`nd2

xG(0)=0

‖e‖
‖d‖

(4)

It is emphasized that the initial conditions xG(0) is assumed to be zero for the induced `2 gain
computation. The objective of this paper is to assess the robustness of the uncertain discrete-time
system Fu(G,∆). Three types of robustness properties are considered.

1. The worst-case induced `2 gain from input d to the output e is defined as

sup
∆∈∆

‖Fu(G,∆)‖2→2. (5)

This worst-case gain is defined over all perturbations ∆ ∈∆.

2. The system has robust asymptotic stability if xG(k)→ 0 for any initial condition xG(0) ∈
RnG , disturbance d ∈ `nd2 and perturbation ∆ ∈∆.

3. The system has robust uniform stability‡ if ∃ c ≥ 0 such that ‖xG(k)‖ ≤ c‖xG(0)‖ for any
initial condition xG(0) ∈ RnG , k ≥ 0, d = 0, and perturbation ∆ ∈∆. A key requirement in
this definition is that the constant c cannot depend on xG(0). This form of robust stability is
important since it can be used to analyze the convergence rate of uncertain linear systems [30].

The worst-case gain (Property 1) requires xG(0) = 0 as is standard. However, in the robust
asymptotic and uniform stability concepts (Properties 2 and 3), different initial conditions are
allowed for G but not for ∆. More specifically, ∆ is treated as an operator mapping v to w. If
∆ has an internal state then the initial condition for ∆ must be fixed in the analysis. Therefore, the
analysis in this paper is most useful for the case where ∆ is memoryless, e.g. the static nonlinearity
considered in the optimization algorithm analysis [4].

Remark 1. The stability definitions for the interconnection Fu(G,∆) focus on the relation from
input d and initial condition xG(0) to the state xG and output e. An alternative, commonly-used
formulation also considers two additional exogenous inputs and two output signals [31, Figure
1.11]. These additional signals are injected and measured at the input and output of ∆. In that setup,
the notion of robust stability is defined in terms of the causality and boundedness of the mapping
from these extra inputs to outputs [31, Definition 1]. This alternative formulation can easily be
accommodated in this paper by two possible approaches. First, one can use the definitions given
here but require the interconnection to have the additional inputs and outputs signals absorbed into
d and e, respectively. Second, one can explicitly use the definitions given in [31]. This would require
a slight modification of the dissipativity proofs given below. This second approach has already been
performed for the continuous time case, e.g. Theorem 3 and Lemma 1 in [15]. The discrete-time
counterpart can similarly be established with additional notation but is not pursued.

‡The notion of stability given here is a special case of the so-called global uniform stability [29, Lemma 4.5] when the
required class K function is a linear function.



2.3. Integral Quadratic Constraints

This section briefly introduces the concept of a discrete-time integral quadratic constraint (IQC).
This summary is similar to the discrete-time formulation in [7,20] and parallels the continuous-time
formulation in [1]. The formal definition for a frequency domain IQC is given first.

Definition 2. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be given. A bounded, causal operator ∆ : `nv2e →

`nw2e satisfies the frequency domain IQC defined by the multiplier Π, if the following inequality holds
for all v ∈ `nv2 and w = ∆(v)∫ 2π

0

[
V (ejω)

W (ejω)

]∗
Π(ejω)

[
V (ejω)

W (ejω)

]
dω ≥ 0 (6)

where V (ejω) and W (ejω) are discrete-time Fourier transforms of v and w §.

IQCs can also be defined in the time domain based on the graphical interpretation as shown in
Figure 2. Let the input and output signals of ∆ be filtered through an LTI system Ψ with zero initial
conditions. The time domain IQC is an inequality enforced on the filter output r over infinite (soft
IQC) or finite (hard IQC) horizons. The formal definition for a time domain IQC are provided below.

Definition 3. Let Ψ ∈ RHnr×(nv+nw)
∞ and M = MT ∈ Rnr×nr be given.

(a) A bounded, causal operator ∆ : `nv2e → `nw2e satisfies the time domain soft IQC defined by
(Ψ,M) if the following inequality holds for all v ∈ `nv2 and w = ∆(v)

∞∑
k=0

r(k)TMr(k) ≥ 0 (7)

where r is the output of Ψ driven by inputs (v, w) with zero initial conditions.

(b) A bounded, causal operator ∆ : `nv2e → `nw2e satisfies the time domain hard IQC defined by
(Ψ,M) if the following inequality holds for all v ∈ `nv2e , w = ∆(v) and for all N ≥ 0

N∑
k=0

r(k)TMr(k) ≥ 0 (8)

where r is the output of Ψ driven by inputs (v, w) with zero initial conditions.

v
- ∆

w
-

-

- Ψ
r-

Figure 2. Graphical interpretation for time domain IQCs

The notation ∆ ∈ IQC(Π), ∆ ∈ SoftIQC(Ψ,M) and ∆ ∈ HardIQC(Ψ,M) will be used when
∆ satisfies the corresponding frequency domain, time domain soft, or time domain hard IQC,
respectively. A library of frequency domain IQCs is provided for the continuous-time case in [1].
Many of these continuous-time IQCs have discrete-time counterparts [32, 33]. The dissipation
inequality approach developed below requires time domain hard IQCs. Some hard IQCs can be
directly derived in the time domain [1]. Many IQCs are more conveniently derived in the frequency

§The transform V (ejω) is unrelated to the storage function V appearing in the dissipation inequalities later in the paper.



domain. Thus it is useful to connect frequency and time domain IQCs so that the full library of
known IQCs can be used within the dissipation inequality framework. This connection relies on
factorizing a frequency domain multiplier as Π = Ψ∼MΨ. Such a factorization is always possible
as stated in the next lemma although it is not unique.

Lemma 1. If Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ then there exists real matrices Aψ, Bψ, Q, S, and R

of compatible dimensions with Aψ Schur, Q = QT , and R = RT such that

Π(z) :=

[
(zI −Aψ)−1Bψ

I

]∼ [
Q S

ST R

][
(zI −Aψ)−1Bψ

I

]
(9)

Proof
The proof given here is a modification of the continuous-time result presented in [34, Section 7.3].
Separate Π = GS +GU whereGS andGU are uniformly bounded outside and inside the closed unit
disk, respectively. In addition, without loss of generality, one can choose a specific GS satisfying
GS(∞) = 0. Let (AS , BS , CS , 0) denote a realization for thisGS , i.e.GS(z) = CS(zI −AS)−1BS .
Hence AS is a Schur matrix since GS is bounded outside the closed unit disk. The assumption
Π = Π∼ implies thatGS +GU = G∼S +G∼U . This can be rewritten asGS −G∼U = G∼S −GU where
the left and right sides are analytic outside and inside the (closed) unit disk, respectively. Hence both
sides must be analytic in the entire complex plane. By Liouville’s theorem, one can conclude that
G∼S −GU is a constant, i.e. there exists matrix R such that GU (z) = G∼S (z) +R for all z ∈ C.
This implies Π = GS +G∼S +R, and R = RT follows immediately from Π = Π∼. Thus Π can be
written as in Equation (9) withAψ = AS ,Bψ = BS ,Q = 0, S = CTS and the constant matrixR.

Existing numerical algorithms can be used to construct the factorization presented in Lemma 1. If
Π is proper then the Matlab function stabsep can be used to separate Π = GS +GU where GS is
stable and causal. However, Π ∈ RLm×m∞ may be a non-proper (polynomial) function of z, e.g. the
multipliers used in [4,25]. A descriptor system representation of Π is required in such cases. This is
a key distinction from the continuous-time case where Π is proper if it is bounded on the imaginary
axis. In discrete-time, if Π is a non-proper (descriptor) system then the algorithm in [35–37] can
be used to separate out the stable part. The stable part GS in this construction is strictly proper and
hence it has a standard state-space description. Finally, the matrix R can be explicitly computed by
evaluating R = Π(z0)−GS(z0)−GS(z−1

0 )T for some z0 ∈ C. For example, evaluating at z0 = 1
is useful as both Π and GS are bounded on the unit circle.

Frequency and time domain IQCs are connected by these (non-unique) factorizations Π =
Ψ∼MΨ. This is formalized in the next lemma.

Lemma 2. Let Π = Ψ∼MΨ with Ψ ∈ RHnr×(nv+nw)
∞ andM = MT ∈ Rnr×nr . Let ∆ : `nv2e → `nw2e

be a bounded, causal operator. Then

1. ∆ ∈ IQC(Π) if and only if ∆ ∈ SoftIQC(Ψ,M).

2. ∆ ∈ IQC(Π) if ∆ ∈ HardIQC(Ψ,M).

This lemma is an application of Parseval’s theorem [2] and hence the proof is omitted. Statement
2 of Lemma 2 states that a time domain hard IQC always leads to a frequency domain IQC. The
reverse implication does not hold in general. It is important to emphasize that factorizations of Π
are not unique. Some factorizations of Π may yield time domain hard IQCs while others do not.
Thus the hard/soft property is not inherent to the multiplier Π but depends on the factorization
(Ψ,M). The factorization introduced by Lemma 1 does not, in general, yield a valid time domain
hard IQC. A specific hard factorization, presented in Section 3.3, will play a key role in the modified
dissipation inequality result.

2.4. Standard Dissipation Inequality Approach

This section presents a standard dissipation inequality approach for uncertainty analysis [8,9,29,38].
The results in this section are a discrete-time counterpart of the dissipation inequality robustness



analysis given in [13]. The previous section considered the case where the uncertainty ∆ satisfies a
single IQC. A less conservative analysis test is obtained if multiple IQCs are used to describe the
uncertainty. In particular, the uncertainty ∆ is assumed to satisfy multiple time domain hard IQCs
defined by {(Ψi,Mi)}NIi=1. All {Ψi}NIi=1 are first aggregated into a single filter denoted Ψ with the
following state-space realization:[

ψ(k + 1)

r(k)

]
=

[
Aψ Bψ1 Bψ2

Cψ Dψ1 Dψ2

]ψ(k)

v(k)

w(k)

 (10)

where r(k) = [r1(k)T , . . . , rNI (k)T ]T ∈ Rnr and ri(k) is the output of the filter Ψi. In addition,
define the block diagonal concatenationM(λ) := diag(λ1M1, . . . , λNIMNI ) where {λi}NIi=1 are any
non-negative real numbers. The stacked filtered output r satisfies the following inequality:

N∑
k=0

r(k)TM(λ)r(k) =

NI∑
i=1

λi

(
N∑
k=0

ri(k)TMiri(k)

)
≥ 0 (11)

The sum is non-negative because λi ≥ 0 and ∆ ∈ HardIQC(Ψi,Mi) for each i. In summary, ∆
satisfies the time domain hard IQC defined by the combined multiplier (Ψ,M(λ)). This fact enables
many IQCs on ∆ to be incorporated into the robustness analysis.

The robustness of Fu(G,∆) is analyzed using the interconnection shown in Figure 3. The
extended system of G (Equation (3)) and Ψ (Equation (10)) is governed by the following state
space model: x(k + 1)

r(k)

e(k)

 =

A B1 B2

C1 D11 D12

C2 D21 D22


x(k)

w(k)

d(k)

 (12)

where the extended state vector is x :=
[ xG
ψ

]
∈ RnG+nψ and the state-space matrices are given by

A :=

[
AG 0

Bψ1CG1 Aψ

]
, B1 :=

[
BG1

Bψ1DG11 +Bψ2

]
, B2 :=

[
BG2

Bψ1DG12

]
(13)

C1 :=
[
Dψ1CG1 Cψ

]
, D11 := Dψ1DG11 +Dψ2, D12 := Dψ1DG12 (14)

C2 :=
[
CG2 0

]
, D21 := DG21, D22 := DG22 (15)

G
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Figure 3. Extended LTI system of G and filter Ψ

Define a linear matrix inequality (LMI) with the extended system of G and (Ψ,M(λ)):

LMI(G,Ψ)(P,M(λ), γ) :=ATPA− P ATPB1 ATPB2

BT1 PA BT1 PB1 BT1 PB2

BT2 PA BT2 PB1 BT2 PB2 − γ2I

+

 CT2DT21

DT22


 CT2DT21

DT22


T

+

 CT1DT11

DT12

M(λ)

 CT1DT11

DT12


T

(16)



The next theorem provides an analysis condition formulated with this LMI. The proof uses IQCs
and a standard dissipation argument.

Theorem 1. Let G ∈ RH(nv+ne)×(nw+nd)
∞ be a stable LTI system defined by (3) and ∆ : `nv2e →

`nw2e be a bounded, causal operator. Assume Fu(G,∆) is well-posed and ∆ ∈ HardIQC(Ψi,Mi)
for i = 1, . . . , NI . If ∃ a matrix P = PT ≥ 0 and non-negative scalars γ, {λi}NIi=1 such that
LMI(G,Ψ)(P,M(λ), γ) < 0, then

1. (Worst-case Gain): ‖Fu(G,∆)‖2→2 < γ

2. (Robust Asymptotic Stability): xG ∈ `nG2 and lim
k→∞

xG(k) = 0 for any xG(0) ∈ RnG and d ∈
`nd2 .

3. (Robust Uniform Stability): There exists c such that ‖xG(k)‖ ≤ c‖xG(0)‖ holds for all
xG(0) ∈ RnG and d = 0.

Proof
This theorem is a standard dissipation result [8,9,29,38] but the proof is given for clarity. The LMI is
strictly feasible by assumption and hence it remains feasible under small perturbations. Specifically,
εI + LMI(G,Ψ)(P + εI,M(λ), γ) < 0 for some sufficiently small ε > 0. Fu(G,∆) is assumed to be
well-posed and hence there is a unique causal `2e solution (xG, w, v, e) satisfying Equation (3) and
w = ∆(v) for any given initial condition xG(0) and input d ∈ `nd2 . Let r be the output of Ψ driven
by inputs (v, w) with the initial condition ψ(0) = 0, and set x =

[ xG
ψ

]
. Clearly both r and x are `2e

signals. Define a storage function by V (x) := xT (P + εI)x. Left and right multiply the perturbed
LMI by [xT , wT , dT ] and [xT , wT , dT ]T and apply (12) to show that V satisfies:

εx(k)Tx(k) + V (x(k + 1))− V (x(k)) + e(k)T e(k) +

NI∑
i=1

λiri(k)TMiri(k) ≤ (γ2 − ε)d(k)T d(k)

(17)

This dissipation inequality can be summed from k = 0 to k = N to yield:

ε

N∑
k=0

x(k)Tx(k)+V (x(N + 1))− V (x(0)) +

N∑
k=0

e(k)T e(k)+

NI∑
i=1

λi

(
N∑
k=0

ri(k)TMiri(k)

)
≤ (γ2 − ε)

N∑
k=0

d(k)T d(k)

(18)

Apply the hard IQC conditions and λi ≥ 0 to conclude:

ε

N∑
k=0

x(k)Tx(k) + V (x(N + 1)) +

N∑
k=0

e(k)T e(k) ≤ (γ2 − ε)
N∑
k=0

d(k)T d(k) + V (x(0)) (19)

The three robustness results follow as special cases of this inequality. First, if xG(0) = 0 then V ≥ 0
implies e ∈ `2 and ‖e‖ ≤ (γ2 − ε)‖d‖. Hence ‖Fu(G,∆)‖2→2 < γ.

Second, if xG(0) is non-zero then Equation (19) with V ≥ 0 implies

ε

N∑
k=0

x(k)Tx(k) ≤ (γ2 − ε)
N∑
k=0

d(k)T d(k) + V (x(0)) (20)

This inequality yields ‖x‖ <∞. Therefore xG ∈ `nG2 and lim
k→∞

xG(k) = 0.

Third, if d = 0 and xG(0) is non-zero then Equation (19) implies V (x(N + 1)) ≤ V (x(0)), which
is equivalent to V (x(N)) ≤ V (x(0)). The filter has zero initial conditions (ψ(0) = 0) so that

‖xG(N)‖2 ≤ ‖x(N)‖2 ≤ cond(P + εI)‖x(0)‖2 = cond(P + εI)‖xG(0)‖2 (21)

Here cond denotes the condition number of a matrix. Thus ‖xG(N)‖ ≤
√

cond(P + εI)‖xG(0)‖.
The condition number is finite since the perturbation ensures P + εI > 0.



Conclusion 1 (Worst-case gain) of the above theorem will hold in a non-strict
sense, i.e. ‖Fu(G,∆)‖2→2 ≤ γ, if the strict LMI is replaced by the non-strict condition
LMI(G,Ψ)(P,M(λ), γ) ≤ 0. Similarly, Conclusion 3 (Robust uniform stability) still holds if P > 0
and LMI(G,Ψ)(P,M(λ), γ) ≤ 0. In both cases, one can no longer conclude that lim

k→∞
xG(k) = 0.

Also note that there are other related results using similar dissipativity. For example, the induced
gain was defined in Equation 4 assuming zero initial conditions (xG(0) = 0). The effect of nonzero
initial conditions can be included in the result using the stored initial energy V (xG(0)). These
variations are minor and are not discussed further. A more significant variation concerns the
condition for robust uniform stability. Specifically, an LMI condition with smaller dimensions can
be formulated specifically for robust uniform stability.

Corollary 1. LetG ∈ RH(nv+ne)×(nw+nd)
∞ be a stable LTI system defined by (3) and ∆ : `nv2e → `nw2e

be a bounded, causal operator. Assume Fu(G,∆) is well-posed and ∆ ∈ HardIQC(Ψi,Mi) for
i = 1, . . . , NI . If ∃ a matrix P = PT ≥ 0 and non-negative scalars {λi}NIi=1 such that[

ATPA− P ATPB1

BT1 PA BT1 PB1

]
+

[
CT1
DT11

]
M(λ)

[
CT1
DT11

]T
< 0 (22)

then there exists c such that ‖xG(k)‖ ≤ c‖xG(0)‖ holds for all xG(0) ∈ RnG and d = 0, i.e. the
system has Robust Uniform Stability.

Proof
The LMI in Equation (22) is feasible if and only if LMI(G,Ψ)(P,M(λ), γ) < 0 for some sufficiently
large γ. This can be shown via a Schur complement argument, e.g. see the proof of Lemma 1 in [15].
Hence the corollary follows from Theorem 1. Alternatively, a dissipation inequality argument,
similar to that used in the proof of Theorem 1, can be used to directly prove this result.

As commented in Remark 1, an alternative commonly-used definition of input/output stability
includes additional inputs/outputs on both sides of ∆ [31, Definition 1]. It is possible to show that
LMI (22) and the dissipativity framework can be used to guarantee input-output stability as in this
alternative stability definition. The required steps parallel the continuous-time result in [15, Lemma
1]. It is also noted that related work in [39] incorporates the effect of initial conditions. The proof
is non-constructive in the sense that it does not yield an easily computable bound c for the uniform
stability constant. The main utility of the results contained here is that the constant c is directly
bounded by

√
cond(P + εI).

3. J-SPECTRAL FACTORIZATIONS AND RELATED GAMES

As noted previously, the factorization Π = Ψ∼MΨ is not unique. The modified dissipation
inequality relies on a specific factorization. (Ψ̂, Ĵ) is called a J-spectral factorization of Π = Π∼

if: (i) Π = Ψ̂∼ĴΨ̂, (ii) Ĵ = diag(Inv ,−Inw) and (iii) Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)
∞ [10]. In other

words, the factorization yields a square, stable filter Ψ̂ with a stable inverse and Ĵ is a signature
matrix. A simple condition for the existence of a J-spectral factorization can be stated using the
following definition.

Definition 4. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12

Π∼
12 Π22

]
where Π11 ∈

RLnv×nv∞ and Π22 ∈ RLnw×nw∞ . Π is a Strict Positive-Negative (PN) multiplier if there exists ε > 0
such that

(a) Π11(ejω) ≥ ε I for all ω ∈ [0, 2π].

(b) Π22(ejω) ≤ −ε I for all ω ∈ [0, 2π].

Π is simply called a PN multiplier if (a) and (b) hold with ε = 0.



The PN terminology refers to the Positive semidefinite and Negative semidefinite properties
specified by conditions (a) and (b) with ε = 0. Strict-PN multipliers strictly satisfy (a) and (b) over
all frequencies. It will be shown (Lemma 6 in Section 3.3) that if Π is a Strict-PN multiplier then
it has a J-spectral factorization. This result is a variation of the canonical factorization theorem
in [10]. Condition (a) with ε = 0 is necessary and sufficient for the zero operator ∆ ≡ 0 to satisfy
the frequency domain IQC defined by Π. Condition (b) with ε > 0 implies that if ∆ ∈ IQC(Π) then
∆ maps zero input to zero output. Bounded gain operators automatically have this zero input-zero
output property. Condition (b) with ε = 0 further implies that the set of all ∆ ∈ IQC(Π) is a convex
set [40,41]. The class of PN multipliers is quite general and covers the most typical multipliers used
in IQC analysis. In fact, all of the IQCs listed in [1] satisfy Conditions (a) and (b) with ε = 0 except
for the IQCs for certain sector bounded nonlinearities and polytopic uncertainties.

The remainder of this section presents the J-spectral factorization lemma (Lemma 6) which is
required to prove the modified dissipation inequality theorem. This J-spectral factorization lemma
is first preceded by several intermediate game theory results. The reader only interested in the main
modified dissipation inequality theorem (Theorem 2) can skip ahead to Section 4.

3.1. Open-loop Dynamic Games and IQC Factorizations

Suppose Π = Ψ∼MΨ is an arbitrary (not necessarily hard) factorization of the frequency domain
IQC multiplier Π. This section connects properties of the factorization (Ψ,M) to the upper
and lower values of an open-loop linear quadratic discrete-time game. There is a large body of
literature on linear quadratic discrete-time games [42,43]. The results here build on previous results
connecting discrete-time IQCs to min/max games [20]. Consider a two-player, zero-sum, linear
quadratic difference game based on Ψ (with state space representation in Equation (10)) and matrix
M = MT :

JΨ,M (v, w, ψ0) :=

∞∑
k=0

r(k)TMr(k) (23)

subject to:
ψ(k + 1) = Aψψ(k) +Bψ1v(k) +Bψ2w(k), ψ(0) = ψ0

r(k) = Cψψ(k) +Dψ1v(k) +Dψ2w(k)

The infinite horizon cost function JΨ,M is defined on v ∈ `nv2 , w ∈ `nw2 , and ψ0 ∈ Rnψ . Player 1
uses the “control variable” v to minimize JΨ,M while Player 2 uses w to maximize JΨ,M . The game
has an open-loop information structure and neither player can adapt their action during the game.
The upper value of the game is defined as:

J̄Ψ,M (ψ0) := inf
v∈`nv2

sup
w∈`nw2

JΨ,M (v, w, ψ0) (24)

The lower value of the game is defined as

JΨ,M (ψ0) := sup
w∈`nw2

inf
v∈`nv2

JΨ,M (v, w, ψ0) (25)

The next two lemmas relate the upper and lower values of this open-loop game to the properties
of the IQC factorization (Ψ,M). The proofs are omitted as they are similar to those used in the
continuous-time counterparts [15, Lemma 2, Lemma 3].

Lemma 3. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈ RHnr×(nv+nw)

∞ .
Let ∆ be a bounded, casual operator with ∆ ∈ IQC(Π). Then the following inequality holds for all
v ∈ `nv2e , w = ∆(v) and N ≥ 0:

N∑
k=0

r(k)TMr(k) ≥ −J̄Ψ,M (ψ(N + 1)) (26)



where r and ψ are the output and state of Ψ, respectively, driven by inputs (v, w) with initial
condition ψ(0) = 0. Moreover, if J̄Ψ,M (ψ) ≤ 0 ∀ψ ∈ Rnψ then ∆ ∈ HardIQC(Ψ,M).

Lemma 4. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈ RHnr×(nv+nw)

∞ .
Let G ∈ RH(nv+ne)×(nw+nd)

∞ be given. If P = PT satisfies LMI(G,Ψ)(P,M, γ) < 0 for any γ > 0
then

V (x0) := xT0 Px0 ≥ JΨ,M (ψ0) ∀x0 :=
[ xG0

ψ0

]
∈ RnG+nψ (27)

Moreover, if JΨ,M (ψ0) ≥ 0 ∀ψ0 ∈ Rnψ then P ≥ 0.

By Lemma 3, J̄Ψ,M (ψ) ≤ 0 ensures the factorization (Ψ,M) is a hard IQC. By Lemma 4,
JΨ,M (ψ0) ≥ 0 ensures the storage matrix satisfies P ≥ 0. It is easily shown that the two costs satisfy
JΨ,M (ψ0) ≤ J̄Ψ,M (ψ) [42, 43]. Hence the two conditions in Lemmas 3 and 4 can only be satisfied
if J̄Ψ,M (ψ0) = JΨ,M (ψ0) = 0 for all ψ0 ∈ Rnψ . It will be shown in Section 3.3 that the lower and
upper values of the game are both equal to zero if (Ψ,M) is a J-spectral factorization. Hence this
factorization plays an important role in the proof of the modified dissipation inequality.

3.2. Nash Equilibrium for the Two-Player Game

This section provides explicit values for J̄Ψ,M (ψ0) and JΨ,M (ψ0) using the stabilizing solution of
a related discrete-time algebraic Riccati equation. It is known that the upper and lower values can
be effectively computed if a Nash equilibrium for the game exists [18, Theorem 3.26]. The basic
intuition is provided before formally stating the result. Let Π = Ψ∼MΨ be the frequency domain
multiplier associated with (Ψ,M). If v ∈ `nv2 and ψ(0) = 0 then Parseval’s theorem can be used to
write JΨ,M (v, 0, 0) in the frequency domain as:

JΨ,M (v, 0, 0) =
1

2π

∫ 2π

0

V (ejω)∗Π11(ejω)V (ejω)dω (28)

If Π11(ejω) ≥ εI for all ω ∈ [0, 2π] then JΨ,M (v, 0, 0) ≥ ε‖v‖2. Similarly if Π22(ejω) ≤ −εI then
JΨ,M (0, w, 0) ≤ −ε‖w‖2 for all w ∈ `nw2 . Moreover, the Strict-PN condition actually implies that
JΨ,M is strictly convex in v and strictly concave in w. The following lemma constructs a Nash
Equilibrium using the Strict-PN assumption.

Lemma 5. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈ RHnr×(nv+nw)

∞
and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and R := DT

ψMDψ where
(Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. If Π is a Strict-PN multiplier then

1. There exists a unique, real, stabilizing solution X = XT to DARE(Aψ, Bψ, Q,R, S). In
addition, R+BTψXBψ is nonsingular.

2. For ψ0 ∈ Rnψ define v? ∈ `nv2 and w? ∈ `nw2 by[
v?(k)

w?(k)

]
:= −K(Aψ −BψK)kψ0 (29)

where K := (R+BTψXBψ)−1(ATψXBψ + S)T is the stabilizing DARE gain. This input pair
yields a value JΨ,M (v?, w?, ψ0) = ψ0Xψ0 for the two-player, LQ game in Equation (23). In
addition, (v?, w?) provides an open loop Nash equilibrium for this game, i.e.

JΨ,M (v?, w, ψ0) ≤ JΨ,M (v?, w?, ψ0) ≤ JΨ,M (v, w?, ψ0), ∀v ∈ `nv2 , w ∈ `nw2 (30)

3. J̄Ψ,M (ψ0) = JΨ,M (ψ0) = ψT0 Xψ0.



Proof
Statement 1 is a restatement of Lemma 7 in the appendix. IfAψ is singular then Π has poles at z =∞
and hence Π is non-proper. As a result, the proof of Lemma 7 requires the use of the descriptor
system notation and results. This is the only technical lemma that requires descriptor systems and
hence the proof is given in the appendix for readability.

To prove Statement 2, first note that Aψ −BψK is a Schur stable matrix sinceX is the stabilizing
solution of DARE(Aψ, Bψ, Q,R, S). Hence v? and w? are `2 signals as claimed. The output of Ψ
resulting from the inputs (v?, w?) and initial condition ψ0 is

r?(k) := Cψψ
?(k) +Dψ

[
v?(k)
w?(k)

]
(31)

where ψ?(k) := (Aψ −BψK)kψ0 is the state. This yields the following cost for the game:

JΨ,M (v?, w?, ψ0) =

∞∑
k=0

[
ψ?(k)[
v?(k)
w?(k)

]]T [ Q S

ST R

][
ψ?(k)[
v?(k)
w?(k)

]] (32)

Substitute for Q using the DARE and use
[
v?

w?

]
= −Kψ?. After completing the square the cost is

written as

JΨ,M (v?, w?, ψ0) =

∞∑
k=0

(
ψ?(k)TXψ?(k)− ψ?(k + 1)TXψ?(k + 1)

)
(33)

This is a telescoping sum which yields JΨ,M (v?, w?, ψ0) = ψT0 Xψ0.
Next let ψ ∈ `nψ2 denote the state of Ψ for initial condition ψ0 and arbitrary inputs v ∈ `nv2 and

w ∈ `nw2 . Define deviation signals as:

δψ := ψ − ψ?, δv := v − v?, δw := w − w? (34)

Note that δv belongs to `2 since it is a difference of `2 signals. Similarly, δw and δψ are also in `2.
By linearity, δψ is the state of Ψ driven by inputs (δv, δw) from zero initial conditions (δψ(0) = 0).
The cost for the game with inputs (v, w) and initial condition ψ0 is:

JΨ,M (v, w, ψ0) =

∞∑
k=0

[
ψ?(k) + δψ(k)[
v?(k)+δv(k)
w?(k)+δw(k)

]]T [ Q S

ST R

][
ψ?(k) + δψ(k)[
v?(k)+δv(k)
w?(k)+δw(k)

]] (35)

This can be expanded into four quadratic terms involving (ψ?, v?, w?) and (δψ, δv, δw). Simplify
using a similar completion of square and telescoping sum argument as above:

JΨ,M (v, w, ψ0) = ψT0 Xψ0 + ψT0 Xδψ(0) + δψ(0)TXψ0 +

∞∑
k=0

[
δψ(k)[
δv(k)
δw(k)

]]T [ Q S

ST R

][
δψ(k)[
δv(k)
δw(k)

]]
(36)

The second and third terms are zero because δψ(0) = 0. The fourth term is equal to JΨ,M (δv, δw, 0).
Therefore, Equation (36) can be rewritten as

JΨ,M (v, w, ψ0) = JΨ,M (v?, w?, ψ0) + JΨ,M (δv, δw, 0) (37)

This relation can be used to demonstrate that (v?, w?) provides an open loop Nash equilibrium.
Specifically, Equation (37) directly leads to

JΨ,M (v, w?, ψ0)− JΨ,M (v?, w?, ψ0) = JΨ,M (δv, 0, 0) (38)



As discussed before the lemma, the Strict-PN assumption implies that JΨ,M (δv, 0, 0) ≥ 0. Hence
Equation (38) implies

JΨ,M (v?, w?, ψ0) ≤ JΨ,M (v, w?, ψ0), ∀v ∈ `nv2 (39)

The Strict-PN assumption and Equation (37) similarly implies that

JΨ,M (v?, w, ψ0) ≤ JΨ,M (v?, w?, ψ0), ∀w ∈ `nw2 (40)

This completes the proof of Statement 2.
Statement 3 follows from [18, Theorem 3.26]. The upper and lower values of the discrete-time

linear quadratic game are both equal to the game value at the Nash equilibrium.

Theorem 3.3 in [19] provides a related Nash equilibrium result for the continuous-time LQ game.
The continuous-time result is more general in that it only requires (Aψ, Bψ) to be stabilizable.
Lemma 5 requires the stronger assumption that Aψ is stable. To the best of our knowledge, the
discrete-time counterpart of Theorem 3.3 in [19] has not been established. However, the assumption
that Aψ is stable is sufficient for the IQC analysis considered in this paper. The proof for Statement
1 in Lemma 5 has some subtleties that do not appear in the continuous-time counterpart. In
continuous-time, Π is assumed to be bounded on the closed imaginary axis and this implies that Π is
proper. In discrete-time, Π is required to be bounded on the unit circle and hence Π can be improper.
As a consequence, the discrete-time proof for Statement 1 in Lemma 5 cannot simply mimic its
continuous-time counterpart. Instead a descriptor system representation of Π is required as is done
for the proof of Lemma 7 in the appendix. Finally, notice that Statements 1 and 3 in Lemma 5 can
also be proved by tailoring the operator-theoretic results in [11]. The operator-theoretic framework
is more general while the linear algebra approach in this paper is more closely aligned with possible
numerical implementations.

3.3. J-Spectral Factorization for Strict-PN Multipliers

Lemma 6 provides a simple frequency domain condition on Π that is sufficient for the existence
of a J-spectral factor. In addition, this lemma provides several useful properties of the J-spectral
factorization. The Strict-PN assumption again plays a key role in the result.

Lemma 6. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈ RHnr×(nv+nw)

∞
and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and R := DT

ψMDψ where
(Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. If Π is a Strict-PN multiplier then

1. Π has a J-spectral factorization (Ψ̂, Ĵ) with Ĵ := diag(Inv ,−Inw). Moreover, this J-
spectral factorization can be constructed from the unique stabilizing solution X of
DARE(Aψ, Bψ, Q,R, S). Let D̂ψ satisfy D̂T

ψ ĴD̂ψ = R+BTψXBψ and define Ĉψ :=

ĴD̂−Tψ (BTψXAψ + ST ). Then (Ψ̂, Ĵ) is a J-spectral factorization of Π with

Ψ̂ :=

[
Aψ Bψ

Ĉψ D̂ψ

]
(41)

2. X̂ = 0 is the unique stabilizing solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ) where Q̂ := ĈTψ Ĵ Ĉψ,
Ŝ := ĈTψ ĴD̂ψ, and R̂ := D̂T

ψ ĴD̂ψ.

3. J̄Ψ̂,Ĵ(ψ0) = J Ψ̂,Ĵ(ψ0) = 0, ∀ψ0 ∈ Rnψ .

4. ∆ ∈ HardIQC(Ψ̂, Ĵ) for any bounded, casual operator ∆ ∈ IQC(Π).

5. For any G ∈ RH(nv+ne)×(nw+nd)
∞ , P = PT , and γ,

LMI(G,Ψ)(P,M, γ) = LMI(G,Ψ̂)(P̂ , Ĵ , γ) (42)

where P̂ := P − [ 0 0
0 X ]. Moreover, if LMI(G,Ψ̂)(P̂ , Ĵ , γ) < 0 then P̂ ≥ 0.



Proof
The existence of the stabilizing solution X follows from Lemma 5. Recall the stabilizing gain
is given by K := (R+BTψXBψ)−1(ATψXBψ + S)T . A J-spectral factorization of Π can be
constructed from X using a standard expansion technique [44]. First express Π as:

Π(z) =

[
(zI −Aψ)−1Bψ

I

]∼ [
Q S

ST R

][
(zI −Aψ)−1Bψ

I

]
(43)

Use the DARE and the definition of K to show:[
Q S

ST R

]
=

[
KT

I

]
(R+BTψXBψ)

[
K I

]
−

[
ATψXAψ −X ATψXBψ

BTψXAψ BTψXBψ

]
(44)

Substitute Equation (44) into the expression for Π to obtain

Π(z) =

[
(zI −Aψ)−1Bψ

I

]∼([
KT

I

]
(R+BTψXBψ)

[
K I

])[
(zI −Aψ)−1Bψ

I

]
(45)

The Strict-PN conditions imply that Π(ejω) has nv positive eigenvalues and nw negative eigenvalues
for all ω ∈ [0, 2π]. This follows from the Courant-Fischer minimax theorem [45]. Moreover,
(R+BTψXBψ) must have the same signature as Π by Equation (45). Thus there exists a nonsingular
matrix D̂ψ such that D̂T

ψ ĴD̂ψ = R+BTψXBψ with Ĵ := diag(Inv ,−Inw). Finally, it can be verified
from Equation (45) that Ψ̂ as defined in the lemma satisfies Π = Ψ̂∼ĴΨ̂. It remains to show that Ψ̂−1

is stable. A realization for the inverse is

Ψ̂−1 :=

[
Aψ −BψD̂−1

ψ Ĉψ BψD̂
−1
ψ

−D̂−1
ψ Ĉψ D̂−1

ψ

]
(46)

The state matrix is Aψ −BψD̂−1
ψ Ĉψ = Aψ −BψK. This is a Schur stable matrix because K is the

stabilizing gain. Hence Ψ̂−1 is a stable system and this completes the proof of Statement 1.
To prove Statement 2, first note that (Q̂, Ŝ, R̂) as defined can be written as:[

Q̂ Ŝ

ŜT R̂

]
=

[
KT

I

]
(R+BTψXBψ)

[
K I

]
(47)

R̂ = R+BTψXBψ is nonsingular as shown above and Q̂− ŜR̂−1ŜT = 0. Hence X̂ = 0 is a
solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ). The corresponding gain K̂ = R̂−1ŜT = K is stabilizing
since Aψ −BψK̂ = Aψ −BψK is a Schur stable matrix. Thus X̂ = 0 is the unique stabilizing
solution of DARE(Aψ, Bψ, Q̂, R̂, Ŝ).

Next, note that J̄Ψ̂,Ĵ(ψ0) = J Ψ̂,Ĵ(ψ0) = ψT0 X̂ψ0 by Lemma 5. Hence Statement 3 follows from
the fact X̂ = 0.

To prove Statement 4, note J̄Ψ̂,Ĵ(ψ0) = 0 for all ψ0 ∈ Rnψ . The factorization is hard if
J̄Ψ̂,Ĵ(ψ0) ≤ 0 for all ψ0 ∈ Rnψ by Lemma 3. Hence (Ψ̂, Ĵ) is a hard factorization of Π.

To show Statement 5, first express the “M” term of LMI(G,Ψ)(P,M, γ) as follows: CT1DT11

DT12

M
 CT1DT11

DT12


T

= LT

[
CTψ

DT
ψ

]
M
[
Cψ Dψ

]
L (48)

where L is given by

L =

 0 I 0 0

CG1 0 DG11 DG12

0 0 I 0

 (49)



Next use (44), (47) and the definitions of Q, S, R, Q̂, Ŝ, R̂ to show[
CTψ

DT
ψ

]
M
[
Cψ Dψ

]
=

[
ĈTψ

D̂T
ψ

]
Ĵ
[
Ĉψ D̂ψ

]
−

[
ATψXAψ −X ATψXBψ

BTψXAψ BTψXBψ

]
(50)

Substitute this expression into the “M” term of LMI(G,Ψ)(P,M, γ) (Equation (48)). Some lengthy
but straightforward algebraic manipulations yield LMI(G,Ψ)(P,M, γ) = LMI(G,Ψ̂)(P̂ , Ĵ , γ).
Finally, it remains to show that the additional assumption LMI(G,Ψ̂)(P̂ , Ĵ , γ) < 0 implies P̂ ≥ 0.
By Lemma 5, J Ψ̂,Ĵ(ψ0) = ψT0 X̂ψ0 and by Lemma 4 P̂ ≥ 0 if J Ψ̂,Ĵ(ψ0) ≥ 0 for all ψ0 ∈ Rnψ . Thus
P̂ ≥ 0 since X̂ = 0 as already shown.

The above result complements the minimax theorems in [20]. In particular, [20, Theorem 2.1]
states a sufficient condition to ensure J̄Ψ,M (ψ0) = JΨ,M (ψ0). Statement 3 in Lemma 6 states the
J-spectral factorization ensures the upper and lower game values are, in fact, both equal to zero.
Moreover, [20, Theorem 2.2] states a sufficient condition which can be sued to check whether a
given factorization is hard. This paper shows that a J-spectral factorization is hard and satisfies the
extra “storage function” property mentioned in Statement 5 of Lemma 6.

4. MODIFIED DISSIPATION INEQUALITY APPROACH

The modified dissipation inequality result is now stated as Theorem 2 below. The proof of this
theorem relies on a J-spectral factorization results contained in Lemma 6.

Theorem 2. Let G ∈ RH(nv+ne)×(nw+nd)
∞ be a stable LTI system defined by (3) and ∆ : `nv2e → `nw2e

be a bounded, causal operator. Assume Fu(G,∆) is well-posed and ∆ ∈ SoftIQC(Ψ,M(λ)) for all
λ in some set Λ. If ∃ a matrix P = PT , vector λ ∈ Λ, and non-negative scalar γ such that Ψ∼M(λ)Ψ
is a PN multiplier and LMI(G,Ψ)(P,M(λ), γ) < 0, then

1. (Worst-case Gain): ‖Fu(G,∆)‖2→2 < γ

2. (Robust Asymptotic Stability): xG ∈ `nG2 and lim
k→∞

xG(k) = 0 for any xG(0) ∈ RnG and d ∈
`nd2 .

3. (Robust Uniform Stability): There exists c such that ‖xG(k)‖ ≤ c‖xG(0)‖ holds for all
xG(0) ∈ RnG and d = 0.

Proof
First assume that Ψ∼M(λ)Ψ is a Strict-PN multiplier. By Statement 1 of Lemma 6, this multiplier
has a J-spectral factorization (Ψ̂, Ĵ) constructed from the stabilizing solution X of a related DARE.
By Statement 4 of Lemma 6, if ∆ ∈ SoftIQC(Ψ,M(λ)) then ∆ ∈ HardIQC(Ψ̂, Ĵ). In other words,
the J-spectral factorization provides a time domain hard IQC for ∆. By Statement 5 of Lemma 6,
LMI(G,Ψ̂)(P̂ , Ĵ , γ) = LMI(G,Ψ)(P,M(λ), γ) < 0 where P̂ := P − [ 0 0

0 X ]. Thus the LMI condition
can be rewritten using the J-spectral factorization. Finally, Statement 5 of Lemma 6 also implies
that P̂ ≥ 0. Hence the dissipation conditions hold using the hard IQC (Ψ̂, Ĵ) and storage matrix
P̂ ≥ 0. The analysis conclusions follow from the standard dissipation result in Theorem 1.

A perturbation argument is needed if Ψ∼M(λ)Ψ is a PN multiplier. ∆ is a bounded operator,
by assumption, and hence it satisfies the constant multiplier Π0 := diag(‖∆‖2→2Inv ,−Inw). For
all ε > 0, the perturbed multiplier Ψ∼M(λ)Ψ + εΠ0 is a Strict-PN multiplier that defines a valid
frequency domain IQC for ∆. In addition, it can be factorized as:

Ψ∼pertMpert(λ, ε)Ψpert :=

[
Ψ

I

]∼ [
M(λ) 0

0 εΠ0

][
Ψ

I

]
(51)



By Lemma 2, ∆ ∈ SoftIQC(Ψpert,Mpert(λ, ε)). Moreover, LMI(G,Ψ)(P,M(λ), γ) < 0 implies
that LMI(G,Ψpert)(P,Mpert(λ, ε), γ) < 0 holds for sufficiently small ε > 0. The result now follows
using the arguments above with the Strict-PN multiplier given in Equation (51).

Theorem 2 removes the constraint P ≥ 0 and allows for time domain soft IQCs. Moreover,
Theorem 2 provides a time domain condition which can be generalized to cases where the nominal
system G is time-varying and/or nonlinear. This enables robustness analysis for uncertain (finite-
horizon) time-varying systems [46, 47], linear parameter varying systems [48, 49], and nonlinear
systems. The time domain soft IQCs required in Theorem 2 are equivalent to frequency domain
IQCs by Lemma 2. In exchange for these generalizations, Theorem 2 requires the multiplier satisfy
the additional PN conditions in Definition 4. The PN conditions are satisfied by most multipliers,
as noted above, and hence the modified dissipation inequality typically reduces conservatism in the
analysis relative to the standard dissipation inequality result. A numerical example will be presented
in Section 5 to demonstrate this fact. It is worth mentioning that the modified dissipation inequality
reduces analysis conservatism only from a practical viewpoint. From a theoretical perspective, there
always exists a standard dissipation inequality with a hard IQC yielding the same analysis result
as the modified dissipation inequality. However, how to parameterize the IQC multiplier to include
this specific hard IQC in the search space beforehand is a non-trivial practical issue. The modified
dissipation inequality approach enables searches over a larger parameter space and hence can lead
to less conservative results in practice.

For the worst-case gain computation, the standard homotopy approach in [1] can be used to obtain
similar LMI conditions with some minor changes in the technical assumptions. In particular, the
homotopy method leads to the following frequency domain analysis condition:

0 >
[
G21(ejω) G22(ejω)

0 I

]∗ [
I 0
0 −γ2I

] [
G21(ejω) G22(ejω)

0 I

]
+
[
G11(ejω) G12(ejω)

I 0

]∗
Ψ(ejω)∼M(λ)Ψ(ejω)

[
G11(ejω) G12(ejω)

I 0

]
, ∀ω ∈ [0, 2π]

(52)

where G :=
[
G11 G12

G21 G22

]
is partitioned according to the inputs (w, d) and outputs (v, e). The KYP

Lemma [50] implies that for any factorization (Ψ,M(λ)) this frequency domain inequality is
equivalent to the existence of P = PT satisfying LMI(G,Ψ)(P,M(λ), γ) < 0. The homotopy
method does not require P ≥ 0 nor does it require the factorization to be hard. Theorem 2
demonstrates that a valid dissipation inequality argument is still possible. It requires the LMI to
be rewritten using a special J-spectral factorization. The term X appearing in the proof can be
interpreted as hidden energy stored in the original (non-hard) IQC factorization. The dissipativity
approach handles robust asymptotic stability and robust uniform stability more transparently. The
homotopy method can also be used to certificate robust asymptotic stability and robust uniform
stability under different mild conditions, e.g. G being controllable and observable. Both the
homotopy method and the modified dissipation inequality approach require G to be stable. The
homotopy approach may also be generalized to uncertain LTV or nonlinear systems, although
such generalizations are not pursued in this paper. Finally, the robust uniform stability condition
in Corollary 1 has a similar modified form as stated next.

Corollary 2. LetG ∈ RH(nv+ne)×(nw+nd)
∞ be a stable LTI system defined by (3) and ∆ : `nv2e → `nw2e

be a bounded, causal operator. Assume Fu(G,∆) is well-posed and ∆ ∈ SoftIQC(Ψ,M(λ)) for all
λ in some set Λ. If ∃ a matrix P = PT and vector λ ∈ Λ such that Ψ∼M(λ)Ψ is a PN multiplier
and [

ATPA− P ATPB1

BT1 PA BT1 PB1

]
+

[
CT1
DT11

]
M(λ)

[
CT1
DT11

]T
< 0 (53)

then there exists c such that ‖xG(k)‖ ≤ c‖xG(0)‖ holds for all xG(0) ∈ RnG and d = 0, i.e. the
system has Robust Uniform Stability.



It is emphasized that the modified dissipation inequality approach was previously developed for
uncertain continuous-time, linear parameter varying systems [16]. In addition, similar results have
been obtained for uncertain (polynomial) nonlinear systems in [21]. For simplicity and conciseness,
this paper considers only the case where G is a discrete-time LTI system. The results presented here
can be extended to discrete-time, linear parameter varying systems with mainly notational changes
as in [16, 21]. In addition, the stability concepts of discrete-time, linear parameter varying systems
are quite similar to their continuous-time counterparts [48, 49].

5. NUMERICAL EXAMPLE

This section provides a simple analysis example to demonstrate the main results. The calculations
were performed in Matlab using CVX [51,52] with the solver SDPT3 [53,54]. The uncertain system
is given by a nominal LTI system G under a perturbation ∆ described by two IQC multipliers Π1

and Π2. The objective is to compute a bound on the worst case gain of Fu(G,∆). Both the standard
and modified dissipation inequalities will be used to compute this bound.

The nominal system G is given by

xG(k + 1) = −0.5xG(k) +
[
0.5 0.4

] [
w(k)

d(k)

]
[
v(k)

e(k)

]
=

[
2.5

2

]
xG(k) +

[
0 0.6

0 0.9

][
w(k)

d(k)

]
.

(54)

The first IQC multiplier is Π1 = Ψ∼1 MΨ1 with M =
[

1 0
0 −1

]
and Ψ1 given by:

ψ(k + 1) = −0.3ψ(k) +
[
1.3 0

] [
v(k)

w(k)

]

r(k) =

[
0

−0.1

]
ψ(k) +

[
0.2 0

0 −0.1

][
v(k)

w(k)

]
.

(55)

The second IQC multiplier is Π2 = Ψ∼2 MΨ2 with Ψ2 =
[−0.5 0.3

0 1.7

]
. This is a static multiplier with

no dynamics in Ψ2. Both Ψ1 and Ψ2 are stable with stable inverses. Thus {(Ψi,M)}2i=1 are both J-
spectral factorizations. Using the game-theoretic perspectives presented in Section 3, one can easily
verify that {(Ψi,M)}2i=1 are both hard IQC factorizations.

The standard dissipation inequality (Theorem 1) with the IQC parameterization Π(λ) = λ1Π1 +
λ2Π2 yields a worst case gain bound of γ1 = 6.16. This is solved by minimizing γ subject to the
LMI conditions P ≥ 0, λ ≥ 0, and LMI(G,Ψ)(P,M(λ), γ) < 0. This corresponds to the use of
Ψ := [ΨT

1 ,Ψ
T
2 ]T and M(λ) := diag(λ1M,λ2M). Note that the vertically stacked multiplier Ψ is

not square and (Ψ,M(λ)) is not a J-spectral factorization.
Using instead the modified dissipation inequality (Theorem 2), i.e. dropping the constraint P ≥ 0,

results in γ2 = 5.01. The optimal decision variables in this case are P ∗ =
[

39.83 2.40
2.40 −0.46

]
, λ∗1 = 64.76,

and λ∗2 = 6.90. The resulting P ∗ has eigenvalues at 39.98 and −0.61 and is therefore indefinite.
The combined multiplier Π(λ∗) is a Strict-PN multiplier. By Lemma 6, a J-spectral factorization
(Ψ̂, Ĵ) of the combined multiplier (Ψ,M(λ∗)) can be constructed. The stabilizing solution of the
corresponding DARE is X = −0.72. yields a storage function P̂ = P ∗ − [ 0 0

0 X ] = [ 39.83 2.40
2.40 0.26 ], as

described in the proof of Theorem 2. As expected, P̂ ≥ 0 with eigenvalues at 39.98 and 0.11. It can
be verified that LMI(G,Ψ̂)(P̂ , Ĵ , γ2) < 0.

This simple example demonstrates that enforcing P ≥ 0 with multiple IQCs can yield
conservative analysis results. Theorem 2 provides a valid dissipation inequality proof (under
additional technical assumptions on Π(λ)) even if the constraint P ≥ 0 and the hard IQC assumption
are dropped.



6. CONCLUSIONS

The paper presented a discrete-time formulation for robustness analysis that combines integral
quadratic constraints (IQCs) and dissipativity theory. A modified dissipation inequality was given
that requires neither non-negative storage functions nor hard IQCs. The proof of this result used
game-theoretic concepts and J-spectral factorizations. A simple numerical example was used to
demonstrate that the modified dissipation inequality approach can lead to less conservative results
than the standard dissipation inequalities.
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37. Kågström B, Poromaa P. Computing eigenspaces with specified eigenvalues of a regular matrix pair (A, B) and

condition estimation: theory, algorithms and software. Numerical Algorithms 1996; 12(2):369–407.
38. Schaft A. L2-gain and passivity in nonlinear control. Springer-Verlag New York, Inc., 1999.
39. Jönsson U. Stability analysis with Popov multipliers and integral quadratic constraints. Systems & Control Letters

1997; 31(2):85 – 92.
40. Helmersson A. An IQC-based stability criterion for systems with slowly varying parameters. Technical Report

LiTH-ISY-R-1979, Linköping University 1997.
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APPENDIX

A. IQC MULTIPLIERS AND DARE STABILIZING SOLUTIONS

This appendix presents one key lemma stating that if Π satisfies the Strict-PN condition then there
exists a stabilizing solution to a related DARE. The multiplier Π is assumed to be bounded on the
unit circle but can, in general, be non-proper. Moreover, the feedthrough matrix can be singular.
Hence the proof requires descriptor system notation and matrix pencil techniques to resolve both
these issues. Some background on descriptor form and matrix pencil techniques can be found



in [28, 55–57]. The proof in this appendix also relies on the connection between the invariant
subspace of a Hamiltonian matrix and its related Riccati equation. A summary of the developments
on this connection can be found in [56, Section III].

A few basic facts regarding descriptor form are provided before stating and proving the lemma.
Consider a discrete-time system H in descriptor form:

Ex(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(56)

This system has the transfer function H(z) := C(zE −A)−1B +D. The matrix inversion lemma
can be used to show H∼(z) = −zBT (zAT − ET )−1CT +DT . Thus H∼ has the following
descriptor representation:

ATx(k + 1) = ETx(k)− CTu(k)

y(k) = BTx(k + 1) +DTu(k)
(57)

Next, a descriptor realization for H−1(z) is[
E 0

0 0

]
xin(k + 1) =

[
A B

C D

]
xin(k) +

[
0

−I

]
y(k)

u(k) =
[
0 I

]
xin(k)

(58)

where xTin := [xT uT ] is the state of the inverse system H−1.
These facts are used to construct the required descriptor representations for the multiplier Π and

its inverse Π−1. Let Π = Ψ∼MΨ be any factorization with Ψ stable. Define Q := CTψMCψ, S :=

CTψMDψ and R := DT
ψMDψ where (Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. A descriptor

representation for Π is given by:

Eπxπ(k + 1) = Aπxπ(k) +Bπu(k)

y(k) = Cπxπ(k) +Dπu(k)
(59)

where xπ ∈ R2nψ is the state of Π and the descriptor matrices are defined as:

Eπ :=

[
I 0

0 ATψ

]
,

[
Aπ Bπ

Cπ Dπ

]
:=

 Aψ 0 Bψ

−Q I −S
ST zBTψ R

 (60)

Notice Cπ = [ ST zBTψ ] and hence y(k) in (59) partially depends on xπ(k + 1). This is similar to
Equation (57).

A descriptor representation for Π−1 is given by:

Einxin(k + 1) = Ainxin(k) +Biny(k)

u(k) = Cinxin(k) +Diny(k)
(61)

where xin := [xTπ , u
T ]T ∈ R2nψ+(nv+nw) is the state of Π−1 and the matrices are defined as:

Ein :=

I 0 0

0 ATψ 0

0 −BTψ 0

 , [ Ain Bin

Cin Din

]
:=


Aψ 0 Bψ 0

−Q I −S 0

ST 0 R −I
0 0 I 0

 (62)

It is emphasized that the filter Ψ is proper but the descriptor notation is required because Aψ and/or
R may be singular. In particular, if Aψ is singular then Ψ∼ (and hence Π) is non-proper. In addition,
if R is singular then Π−1 is non-proper. The lemma is now stated.



Lemma 7. Let Π = Ψ∼MΨ ∈ RL(nv+nw)×(nv+nw)
∞ be any factorization with Ψ ∈ RHnr×(nv+nw)

∞
and M = MT ∈ Rnr×nr . Define Q := CTψMCψ, S := CTψMDψ and R := DT

ψMDψ where
(Aψ, Bψ, Cψ, Dψ) are the state matrices of Ψ. If Π is a Strict-PN multiplier then there exists a
unique, real, stabilizing solution X = XT to DARE(Aψ, Bψ, Q,R, S). In addition, R+BTψXBψ
is nonsingular.

Proof
The multiplier Π has 2nψ zeros (possibly at z =∞) where nψ is the state dimension of Ψ. These
zeros are symmetric about the unit disk because Π = Π∼. The block-determinant formula yields

det
(
Π
(
ejω
))

= det
(
Π22

(
ejω
))

det
(
Π11

(
ejω
)
−Π12

(
ejω
)

Π−1
22

(
ejω
)

Π∗12

(
ejω
))

Then the Strict-PN conditions imply that Π is nonsingular, i.e. contains no zeros, on the unit circle.
Therefore Π has nψ zeros strictly inside the unit circle. The poles of Π−1 are the zeros of Π and thus
the matrix pencil λEin −Ain has nψ generalized eigenvalues inside the unit disk. The generalized
stable eigenspace of (Ein, Ain) is spanned by the columns of some matrixXs ∈ R(2nψ+nv+nw)×nψ .
Hence there exists a Schur stable matrix Λ ∈ Rnψ×nψ such that

AinXs = EinXsΛ (63)

Partition Xs =
[
XT

1 , X
T
2 , X

T
3

]T
compatibly with the blocks of Ain so that X1, X2 ∈ Rnψ×nψ and

X3 ∈ R(nv+nw)×nψ .
Next it is shown by contradiction that X1 is nonsingular. Assume that X1 is singular and let

ψ0 ∈ Rnψ denote a non-trivial vector in the null space of X1. This vector cannot lie in the null
space of

[
X2

X3

]
otherwise Xs would not span an nψ-dimensional space. Define the signals u, y, xπ

as follows:

u(k) =

{
0 for k < 0

X3Λkψ0 for k ≥ 0
(64)

y(k) =

{
BTψ (ATψ)−k−1X2ψ0 for k < 0

0 for k ≥ 0
(65)

xπ(k) =

{ [
0

(ATψ)−kX2ψ0

]
for k < 0[

X1

X2

]
Λkψ0 for k ≥ 0

(66)

The signals u, y, and xπ are all in `2
¶ since Aψ and Λ are Schur stable matrices. In addition,

u, xπ, and y are input, state, and output solutions for Π (Equation (59)) with boundary condition
xπ(0) =

[
0

X2ψ0

]
. This can be directly verified for k < 0. For k ≥ 0, define xin(k) := XsΛ

kψ0. Use
Equation (63) to show that xin(k) is a forward solution of Π−1 (Equation (61)) with initial condition
xin(0) = Xsψ0 and input y(k) = 0. This verifies that the signals u, y, and xπ defined above are also
a solution to Π for k ≥ 0. Therefore, the Fourier transforms of u and y, denoted as U and Y , satisfy

Y (ejω) = Π(ejω)U(ejω) ∀ω ∈ [0, 2π]

Partition the signals as u = [ uT1 uT2 ]
T and y = [ yT1 yT2 ]

T such that u1, y1 ∈ `nv2 and u2, y2 ∈ `nw2 .
By construction, the inner products satisfy 〈u1, y1〉 = 〈u2, y2〉 = 0. Use Parseval’s theorem and the
Strict-PN sign-definiteness conditions to show‖:

0 = 〈u1, y1〉 = 〈u1,Π11u1 + Π12u2〉 ≥ 〈u1,Π12u2〉
0 = 〈u2, y2〉 = 〈u2,Π21u1 + Π22u2〉 ≤ 〈u2,Π21u1〉

¶A slight abuse of notation is used here as these are two-sided signals.
‖The inner product 〈u1,Π11u1〉 can be interpreted, via Parseval’s theorem, in the frequency domain. For example,
〈u1,Π11u1〉 = 1

2π

∫ 2π
0

U1(ejω)∗Π11(ejω)U1(ejω)dω.



This immediately implies 〈u1,Π11u1〉 = 〈u2,Π22u2〉 = 0 because 〈u1,Π12u2〉 = 〈u2,Π21u1〉. The
Strict-PN conditions then yield u1 = u2 = 0 and hence u = y = 0. As a consequence 0 = u(0) :=
X3ψ0 and it must be thatX2ψ0 is non-trivial. In addition, u = 0 implies that xπ(k) for k ≥ 0 satisfies

Eπxπ(k + 1) = Aπxπ(k) +Bπu(k) = Aπxπ(k)

This is impossible since the nontrivial initial condition xπ(0) =
[

0
X2ψ0

]
is in the antistable

eigenspace of the pair (Eπ, Aπ) and this initial condition cannot yield a forward `2 solution
xπ(k) =

[
X1

X2

]
Λkψ0 for k ≥ 0.

By contradiction, X1 is nonsingular. Define X := X2X
−1
1 . It follows from [57, Section 4] that

R+BTψXBψ is nonsingular and X is the unique stabilizing solution to DARE(Aψ, Bψ, Q,R, S).
This is a standard result and the remainder of the proof is only sketched. DefineK := −X3X

−1
1 and

X̃s := [ I XT −KT ]
T . Equation (63) is equivalent to

AinX̃s = EinX̃sΛ̃ (67)

where Λ̃ := X1ΛX−1
1 is a Schur stable matrix. This leads to the following three equations:

Aψ −BψK = Λ̃ (68)

−Q+X + SK = ATψXΛ̃ (69)

ST −RK = −BTψXΛ̃ (70)

Substituting the expression for Λ̃ (Equation (68)) into Equation (70) yields K = (R+

BTψXBψ)−1
(
ATψXBψ + S

)T
. This expression along with Equations (68) and (69) can be used

to show, via standard manipulations, that X satisfies the DARE(Aψ, Bψ, Q,R, S). Based on (68),
Aψ −BψK is a Schur stable matrix. Therefore,X is a stabilizing solution to theDARE. The above
steps require a few additional facts to be demonstrated, e.g. X is symmetric and R+BTψXBψ is
nonsingular. These details can be found in [57].

As mentioned before, the above lemma can also be proved by connecting the PN multipliers
defined here with the coercive operator theory in [11, Theorem 4.12.8].


