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Abstract

We develop a simple routine unifying the analysis of several important recently-developed stochas-

tic optimization methods including SAGA, Finito, and stochastic dual coordinate ascent (SDCA).

First, we show an intrinsic connection between stochastic optimization methods and dynamic jump

systems, and propose a general jump system model for stochastic optimization methods. Our pro-

posed model recovers SAGA, SDCA, Finito, and SAG as special cases. Then we combine jump

system theory with several simple quadratic inequalities to derive sufficient conditions for conver-

gence rate certifications of the proposed jump system model under various assumptions (with or

without individual convexity, etc). The derived conditions are linear matrix inequalities (LMIs)

whose sizes roughly scale with the size of the training set. We make use of the symmetry in the

stochastic optimization methods and reduce these LMIs to some equivalent small LMIs whose sizes

are at most 3× 3. We solve these small LMIs to provide analytical proofs of new convergence rates

for SAGA, Finito and SDCA (with or without individual convexity). We also explain why our pro-

posed LMI fails in analyzing SAG. We reveal a key difference between SAG and other methods,

and briefly discuss how to extend our LMI analysis for SAG. An advantage of our approach is

that the proposed analysis can be automated for a large class of stochastic methods under various

assumptions (with or without individual convexity, etc).

Keywords: Empirical risk minimization, SAGA, Finito, SDCA, SAG, semidefinite programming,

jump systems, quadratic constraints, control theory

1. Introduction

Convergence proofs for optimization methods are typically derived in a case-by-case manner. It

is an important task to develop more unifying analysis which can be automatically generalized for

complicated algorithms. The aim of this paper is to develop a unified analysis routine for a class of

recently-developed stochastic optimization methods used in empirical risk minimization. Consider

the following finite sum minimization

minimize
x∈Rp

g(x) :=
1

n

n
∑

i=1

fi(x) (1)

where g : Rp → R is the objective function. The framework of (1) is useful for empirical risk

minimization problems, e.g. ℓ2-regularized logistic regression problems (Teo et al., 2007).
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A widely-used approach for solving (1) is the stochastic gradient (SG) method (Robbins and

Monro, 1951; Bottou and LeCun, 2003). However, the SG method only linearly converges to some

tolerance of the optimum of (1) given a well-chosen constant stepsize. If a diminishing stepsize is

used, the SG method will converge to the optimum but at a sublinear rate.

More recently, a class of new stochastic optimization methods have been proposed based on

the idea of gradient aggregation. These methods converge linearly to the optimum point while

preserving the iteration cost of the SG method. This family of gradient aggregation methods include

SAG (Roux et al., 2012; Schmidt et al., 2013), SAGA (Defazio et al., 2014a), Finito (Defazio et al.,

2014b), SDCA (Shalev-Shwartz and Zhang, 2013; Shalev-Shwartz, 2016) and SVRG (Johnson and

Zhang, 2013). Existing linear rate bounds of SAG, SAGA, Finito, SDCA and SVRG are derived in

a case-by-case manner. Moreover, the existing rate results for SAG, SAGA and Finito require the

individual convexity of fi. It is beneficial to develop a unified analysis framework which can be

used to justify the existing rate results and obtain new rate bounds under various conditions (with or

without individual convexity, etc).

Recently, semidefinite programs have been used to certify the performance of deterministic opti-

mization methods (Drori and Teboulle, 2014; Kim and Fessler, 2016; Lessard et al., 2016; Nishihara

et al., 2015; Taylor et al., 2017). Specifically, Lessard et al. (2016) provides a general analysis for

deterministic first-order optimization methods (full gradient method, Nesterov’s method, heavy ball

method, etc) by adapting the integral quadratic constraint (IQC) framework (Megretski and Rantzer,

1997) from control theory. The key insight there is that the deterministic first-order methods can be

viewed as interconnections of a linear time-invariant (LTI) dynamic system and a nonlinearity. Then

quadratic inequalities can be used to characterize the nonlinearity and formulate LMI conditions.

In this paper, we present a unified analysis framework for a large class of stochastic optimization

methods including SAGA, Finito and SDCA. Our approach here is inspired by the work of Lessard

et al. (2016), and can be viewed as its stochastic extension. In our paper, the key insight is that many

stochastic first-order methods can be viewed as an interconnection of a linear jump system and a

static nonlinearity. Notice that a linear jump system is described by a linear state space model whose

state matrices are functions of a jump parameter sampled from a given distribution. Since Lyapunov

theory for jump systems has been well established in the controls field, we can incorporate quadratic

constraints to obtain semidefinite programs for linear rate analysis of these stochastic optimization

methods. Our main contributions are summarized as follows.

1. We present a unified jump system perspective on SAG, SAGA, Finito and SDCA. Specifically,

we propose a general jump system model which governs the dynamics of a large family of

stochastic methods including SAG, SAGA, Finito and SDCA.

2. We present a unified (and in some sense even automated) analysis framework for SAGA,

Finito and SDCA using jump system perspectives and quadratic constraints. LMI conditions

for a large class of stochastic methods under various conditions (with or without individual

convexity, etc) are derived using one technique, and then solved to provide rate certificates.

3. We analytically solve the resultant LMIs to prove linear rate bounds for SAGA, Finito, and

SDCA under different assumptions on g and fi. Our results provide alternative proofs for

many existing rate bounds. In addition, we prove that SAGA without individual convex-

ity achieves an ǫ-optimal iteration complexity Õ
(

( L
2

m2 + n) log(1
ǫ
)
)

. We also prove Finito

without individual convexity achieves an ǫ-optimal complexity of Õ
(

n log(1
ǫ
)
)

if n ≥ 48L2

m2 .
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4. Our quadratic constraint approach reveals a key difference between SAG and other methods.

Specifically, SAGA, SDCA, and Finito only require simple quadratic inequalities used in this

paper while SAG further requires more advanced quadratic inequalities to decode convexity.

For this reason, the analysis of SAG is more involved, and our proposed LMI fails in analyzing

SAG. We briefly sketch how to extend our LMI analysis for SAG. The extension requires

incorporating more advanced quadratic inequalities into the LMI formulations.

The main advantage of our framework is its flexibility. The existing analysis for SAG, SAGA,

Finito and SDCA is derived in a case-by-case manner. Our jump system framework provides a uni-

fied routine for analysis of such methods. Our analysis is highly repeatable and even “automated” in

the sense that all LMI conditions are formulated using one technique and can be numerically solved

to guide our analytical rate proof constructions. We emphasize that we view our LMI-based method

as a complement rather than a replacement for existing proof techniques. One can always solve

our proposed LMIs numerically and use the numerical results to narrow down possible Lyapunov

function structures and useful function inequalities even before trying to construct proofs. This

complements several existing proof techniques which more or less require guessing the required

Lyapunov functions at the early stage of proof constructions. We will further explain this point after

our main LMI condition is presented.

The rest of the paper is organized as follows. Section 2 introduces the notation and reviews

the concepts of linear jump systems. In Section 3, we present a general jump system model which

governs the dynamics of a large family of stochastic optimization methods including SAG, SAGA,

Finito and SDCA. Section 4 presents a unified LMI analysis for the proposed jump system model.

A unified LMI condition is derived using jump system theory and several function properties in the

form of simple quadratic constraints. We apply the LMI condition and successfully prove various

rate bounds for SAGA, SDCA, and Finito with or without individual convexity. We also explain

why our proposed LMI fails in analyzing SAG. We reveal a key difference between SAG and other

methods, and briefly discuss how to extend our LMI analysis for SAG. We present the main technical

proofs in Section 5. Finally, we conclude with several future directions (Section 6).

2. Preliminaries

2.1. Notation and Background

The set of p-dimensional real vectors is denoted as R
p. The p × p identity matrix and the p × p

zero matrix are denoted as Ip and 0p, respectively. The n × n identity matrix is denoted as In, and

the n × n zero matrix is denoted as 0n. Let ei denote the n-dimensional vector whose entries are

all 0 except the i-th entry which is 1. Let e denote the n-dimensional vector whose entries are all

1. Let 0̃ denote the n-dimensional vector whose entries are all 0. For simplicity, 0 is occasionally

used to denote a zero vector or a zero matrix when there is no confusion on the dimension. The

Kronecker product of two matrices A and B is denoted by A⊗ B. Notice (A⊗ B)T = AT ⊗BT

and (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD) when the matrices have compatible dimensions. When a

matrix P is negative semidefinite (definite), we will use the notation P ≤ (<)0. When P is positive

definite, we use the notation P > 0.

A continuously differentiable function f : Rp → R is L-smooth if for all x, y ∈ R
p we have

‖∇f(x)−∇f(y)‖ ≤ L‖x−y‖. The continuously differentiable function f is said to be m-strongly

convex if for all x, y ∈ R
p we have f(x) ≥ f(y) +∇f(y)T (x− y) + m

2 ‖x− y‖2. Notice f is said

3
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to be convex if f is 0-strongly convex. Let F(m,L) denote the set of continuously differentiable

functions f : Rp → R that are L-smooth and m-strongly convex. Hence F(0, L) denotes the set of

continuously differentiable convex functions that are L-smooth.

For any f ∈ F(m,L) with m > 0, there exist a unique x∗ ∈ R
p such that ∇f(x∗) = 0. In

addition, the following inequality holds for any x ∈ R
p (Lessard et al., 2016, Proposition 5)

[

x− x∗

∇f(x)

]T [ −2mLIp (L+m)Ip
(L+m)Ip −2Ip

] [

x− x∗

∇f(x)

]

≥ 0 (2)

However, a function satisfying the above inequality may not belong to F(m,L), and may not

even be convex. The set of continuously differentiable functions satisfying (2) with some unique

global minimum x∗ is denoted as S(m,L). This class of functions has sector-bounded gradients,

and includes F(m,L) as its subset. We emphasize that the functions in S(m,L) may not be convex.

A general assumption adopted in this paper is that g ∈ S(m,L) with m > 0. This is weaker than

the assumption g ∈ F(m,L). Three sets of assumptions are typically used for fi, i.e. fi ∈ F(m,L),
fi ∈ F(0, L) or fi being L-smooth. Given an arbitrary reference point x∗ (the value of ∇fi(x

∗)
may not be 0) and any x ∈ R

p, the following inequality always holds

[

x− x∗

∇fi(x)−∇fi(x
∗)

]T [
2LγIp (L− γ)Ip

(L− γ)Ip −2Ip

] [

x− x∗

∇fi(x)−∇fi(x
∗)

]

≥ 0 (3)

where γ is determined by the assumptions on fi as follows

γ :=







−m if fi ∈ F(m,L)
0 if fi ∈ F(0, L)
L if fi is L-smooth

. (4)

Notice (3) is just a summary of the definition of L-smoothness and the so-called co-coercivity

condition (Lessard et al., 2016, Proposition 5).

Finally, the underlying probability space for the sampling index ik is denoted as (Ω,F ,P). Let

Fk be the σ-algebra generated by (i1, i2, . . . , ik). Clearly, ik is Fk-adapted and we obtain a filtered

probability space (Ω,F , {Fk},P) which the stochastic method is defined on.

2.2. Stochastic Jump Systems

A linear jump system is described by the following set of recursive equations:

ξk+1 = Aikξ
k +Bikw

k

vk = Cikξ
k +Dikw

k.
(5)

At each step k, the jump parameter ik is a random variable taking value in a finite set N =
{1, · · · , n}. In addition, Aik : N → R

nξ×nξ , Bik : N → R
nξ×nw , Cik : N → R

nv×nξ , and

Dik : N → R
nv×nw are functions of ik. When ik = i ∈ N , clearly we have Aik = Ai, Bik = Bi,

Cik = Ci, and Dik = Di. If the process {ik : k = 1, 2, . . .} is a Markov chain, the resultant jump

system (5) is termed as a discrete-time Markovian jump linear system (MJLS). There is a large body

of literature on MJLS in the controls field (Costa et al., 2006; Dragan et al., 2010). We confine our

scope to the special case where ik is an identically and independently distributed (IID) process, i.e.

4
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P(ik = i | Fk−1) = P(ik = i) for all k ≥ 0 and i ∈ N . When ik is sampled from a uniform

distribution, we have P(ik = i) = 1
n

. When ik is generated cyclically based on a deterministic

order, (5) is not a jump system but a linear periodic system. There is also a large body of control

literature on linear periodic systems (Bittanti and Colaneri, 2008). When ik is a constant, then the

state matrices are constant matrices and the model (5) is just an LTI system. LTI system theory is

also well established (Hespanha, 2009).

3. A General Jump System Model for Stochastic Optimization Methods

Now we introduce the following general jump system model which governs the dynamics of a large

family of stochastic optimization methods.

ξk+1 = Aikξ
k +Bikw

k

vk = Cξk

wk =











∇f1(v
k)

∇f2(v
k)

...

∇fn(v
k)











(6)

The above model builds upon the linear jump system model (5) by further enforcing a nonlinear

relationship between wk and vk, i.e. wk =
[

∇f1(v
k)T · · · ∇fn(v

k)T
]T

. We can represent a large

family of stochastic optimization methods using the unified jump system model (6) with properly

chosen (Aik , Bik , C). In this paper, we consider the following stochastic methods.

1. SAGA (Defazio et al., 2014a): The iteration rule is the follows

xk+1 = xk − α

(

∇fik(x
k)− ykik +

1

n

n
∑

i=1

yki

)

(7)

where at each step k, a random training example ik is drawn uniformly from the set N and

yk+1
i :=

{

∇fi(x
k) if i = ik

yki otherwise
. (8)

2. SAG (Roux et al., 2012; Schmidt et al., 2013): The main iteration rule is

xk+1 = xk − α

(

∇fik(x
k)− ykik
n

+
1

n

n
∑

i=1

yki

)

(9)

where at each k, ik is uniformly drawn from the set N and yki is updated by (8).

3. Finito (Defazio et al., 2014b): Suppose xki ∈ R
p and yki ∈ R

p for each k and all i ∈ N . At

each k, an index ik is drawn from the set N , and xk+1
i is updated as

xk+1
i :=

{

1
n

∑n
i=1 x

k
i − α

∑n
i=1 y

k
i if i = ik

xki otherwise
. (10)

5
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where α is the stepsize 1. Then yk+1
i is updated as

yk+1
i :=

{

∇fi(x
k+1
i ) if i = ik

yki otherwise
. (11)

4. SDCA (Shalev-Shwartz, 2016, Algorithm 1): There are several versions of SDCA. For sim-

plicity, we consider SDCA without duality, which solves the ℓ2-regularized problem

minimize
x∈Rp

g(x) :=
1

n

n
∑

i=1

fi(x) +
m

2
‖x‖2 (12)

To solve the above problem, SDCA without duality requires updating xk ∈ R
p and yk+1

i ∈ R
p

at each step. It first updates xk using yki as follows

xk =
1

mn

n
∑

i=1

yki (13)

Then yk+1
i is updated as

yk+1
i :=

{

yki − αmn(∇fi(x
k) + yki ) if i = ik

yki otherwise
. (14)

where ik is randomly sampled from N . In the actual computation, the update (13) for k ≥ 1
is performed using the formula xk = xk−1 − α(∇fik−1

(xk−1) + yk−1
i ) due to efficiency

considerations. However, (13) is more general and governs the updates of SDCA for all k.

To represent the above methods in the general jump system model (6), we can choose the state

matrices as Aik = Ãik ⊗ Ip, Bik = B̃ik ⊗ Ip, and C = C̃ ⊗ Ip where Ãik , B̃ik and C̃ are defined

according to Table 1.

Method Ãik B̃ik C̃

SAGA

[

In − eike
T
ik

0̃

−α
n
(e− neik)

T 1

]

[

eike
T
ik

−αeTik

]

[

0̃T 1
]

SAG

[

In − eike
T
ik

0̃

−α
n
(e− eik)

T 1

]

[

eike
T
ik

−α
n
eTik

]

[

0̃T 1
]

Finito

[

In − eike
T
ik

0̃

−α(eike
T ) In − eik(e

T
ik
− 1

n
eT )

] [

eike
T
ik

0̃0̃T

]

[

−αeT 1
n
eT
]

SDCA In − αmneike
T
ik

−αmneike
T
ik

1
mn

eT

Table 1: State Matrices for Feedback Representations of SAG, SAGA, Finito, and SDCA

For illustrative purposes, we explain the jump system formulation for SAGA. The jump system

formulations for SAG, Finito, and SDCA are further explained in Appendix A. For SAGA, we

1. One typical choice of α under the big data condition is α =
1

2nm
.

6
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define the stacked vector yk :=
[

(yk1 )
T · · · (ykn)

T
]T

. Then the SAGA gradient update rule (8)

can be rewritten as:

yk+1 =
(

(In − eike
T
ik
)⊗ Ip

)

yk +
(

(eike
T
ik
)⊗ Ip

)

wk (15)

where wk =
[

∇f1(x
k)T · · · ∇fn(x

k)T
]T

. Notice
∑n

i=1 y
k
i = (eT ⊗ Ip)y

k and ∇fik(x
k) − ykik =

(eTik ⊗ Ip)(w
k − yk). Thus the iteration rule (7) can be rewritten as follows:

xk+1 = xk − α(eTik ⊗ Ip)(w
k − yk)− α

n
(eT ⊗ Ip)y

k

= xk − α

n

(

(e− neik)
T ⊗ Ip

)

yk − α(eTik ⊗ Ip)w
k

(16)

Now the update rules in (15) and (16) can be expressed as:

[

yk+1

xk+1

]

=

[

(In − eike
T
ik
)⊗ Ip 0̃⊗ Ip

−α
n
(e− neik)

T ⊗ Ip Ip

] [

yk

xk

]

+

[

(eike
T
ik
)⊗ Ip

(−αeTik)⊗ Ip

]

wk

vk =
[

0̃T ⊗ Ip Ip
]

[

yk

xk

]

wk =







∇f1(v
k)

...

∇fn(v
k)







(17)

which is exactly in the form of the general jump system model (6) with ξk =
[

yk

xk

]

.

The computation of wk at each k requires a full gradient computation (or n individual oracle

accesses). However, Bik is sparse such that Bikw
k only involves one individual oracle access. The

low per-iteration cost of stochastic methods is captured by the sparsity of Bik . Most entries of wk

are “phantom” iterates which facilitates our analysis but do not appear in the actual computation.

Since g ∈ S(m,L) with m > 0, there exists unique x∗ ∈ R
p satisfying ∇g(x∗) = 0. To

make (6) a good model for optimization methods, we have to ensure its equilibrium point is related

to x∗. Define w∗ :=
[

∇f1(x
∗)T . . . ∇fn(x

∗)T
]T

, and v∗ := x∗. If (6) is an optimization

method which converges to x∗, then ξk should converge to some equilibrium state ξ∗ capturing the

information of x∗ and satisfying

ξ∗ = Aiξ
∗ +Biw

∗

v∗ = Cξ∗

w∗ =







∇f1(v
∗)

...

∇fn(v
∗)







(18)

for all i ∈ N . Now we set up ξ∗ for SAGA, SAG, Finito, and SDCA as follows.

1. For SAG and SAGA, we have ξk :=
[

yk

xk

]

and ξ∗ :=
[

w∗

x∗

]

. If we can show that ξk converges

to ξ∗, then we can conclude that xk converges to x∗ and yki converges to ∇fi(x
∗).

7
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2. For Finito, we have xk :=
[

(xk1)
T · · · (xkn)

T
]T

, ξ∗ =

[

yk

xk

]

and ξ∗ =

[

w∗

e⊗ x∗

]

. If we can

show that ξk converges to ξ∗, then yki converges to ∇fi(x
∗) and xki converges to x∗.

3. For SDCA (without duality), we have ξk = yk and ξ∗ = −w∗. For the ℓ2-regularized problem

(12) with strongly-convex g, the optimal point x∗ satisfies mx∗ + 1
n

∑n
i=1 ∇fi(x

∗) = 0.

Hence, if ξk converges to ξ∗, then yki converges to −∇fi(x
∗) and xk converges to x∗.

It is straightforward to verify that (18) holds for the above ξ∗ due to the fact ∇g(x∗) = 0.

4. Analysis of Stochastic Methods Using Semidefinite Programs

4.1. An Unified LMI Condition for Analysis of Stochastic Methods

From the above discussion, we always want to show ξk converges to ξ∗ at a given linear rate ρ. Now

we present a unified LMI condition for such linear convergence using jump system theory and the

basic quadratic inequalities (2) (3) which capture the key properties of the loss functions.

Theorem 1 Consider the general jump system model (6), where Ai = Ãi⊗ Ip, Bi = B̃i ⊗ Ip, and

C = C̃ ⊗ Ip. Assume ik is sampled in an IID manner from a uniform distribution P(ik = i) = 1
n

.

Suppose there exists a unique x∗ ∈ R
p such that ∇g(x∗) = 0. The function fi is assumed to satisfy

the following two inequalities for any x ∈ R
p,

[

x− x∗
∑n

i=1
∇fi(x)
n

−
∑n

i=1
∇fi(x∗)
n

]T
[

2LνIp (L− ν)Ip
(L− ν)Ip −2Ip

]

[

x− x∗
∑n

i=1
∇fi(x)
n

−
∑n

i=1
∇fi(x∗)
n

]

≥ 0

(19)
[

x− x∗

∇fi(x)− fi(x
∗)

]T [
2LγIp (L− γ)Ip

(L− γ)Ip −2Ip

] [

x− x∗

∇fi(x)− fi(x
∗)

]

≥ 0 (20)

where ν and γ are some prescribed scalars. Define D̃ψ1 ∈ R
2n+2 and D̃ψ2 ∈ R

(2n+2)×n as

D̃ψ1 =
[

L ν L γ . . . L γ
]T

D̃ψ2 =
[

− 1
n
e 1

n
e −e1 e1 . . . −en en

]T
.

(21)

If ∃ an nξ × nξ matrix P̃ = P̃ T > 0 and nonnegative scalars λ1, λ2 such that

[

1
n

∑n
i=1 Ã

T
i P̃ Ãi − ρ2P̃ 1

n

∑n
i=1 Ã

T
i P̃ B̃i

1
n

∑n
i=1 B̃

T
i P̃ Ãi

1
n

∑n
i=1 B̃

T
i P̃ B̃i

]

+

[

C̃T D̃T
ψ1

D̃T
ψ2

]

([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0 1
1 0

])

[

D̃ψ1C̃ D̃ψ2

]

≤ 0

(22)

then all k ≥ 1 and ξ0 ∈ R
nξ , the following inequality holds

E

[

(ξk+1 − ξ∗)T (P̃ ⊗ Ip)(ξ
k+1 − ξ∗)

]

≤ ρ2E
[

(ξk − ξ∗)T (P̃ ⊗ Ip)(ξ
k − ξ∗)

]

. (23)

Consequently, E
[

‖ξk − ξ∗‖2
]

≤ ρ2k
(

cond(P̃ )‖ξ0 − ξ∗‖2
)

holds for all k ≥ 1 and ξ0 ∈ R
nξ ,

where cond denotes the condition number of a given positive definite matrix.

8
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Proof A detailed proof is presented in Section 5.1. Here we briefly sketch the proof idea. Denote

P = P̃ ⊗ Ip, and define a Lyapunov function by V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗). Then one

can use the LMI condition and the basic quadratic inequalities (19) (20) to show that V satisfies

EV (ξk+1)−ρ2EV (ξk) ≤ 0. This immediately leads to the desired conclusion. We can see the LMI

condition gives us an automated way to search quadratic Lyapunov functions.

The initial condition ‖ξ0 − ξ∗‖2 is related to the so-called variance term since ξ∗ is typically

determined by x∗ and ∇fi(x
∗). When ρ2 is given, the testing condition (22) is linear in P̃ , λ1, and

λ2. Therefore, (22) is an LMI whose feasible set is convex and can be effectively searched using

the state-of-the-art convex optimization techniques, e.g. interior point method. Many optimization

solvers are available such that coding this LMI condition is a straightforward task.

One can automate the proposed LMI analysis of stochastic optimization methods by modifying

the values of ν and γ to reflect various assumptions on g and fi. For SAG, SAGA and Finito, we

always assume g ∈ S(m,L) with m > 0 and hence we should set ν = −m in our analysis. The

value of γ is chosen based on the assumptions on fi as follows.

γ =







−m if fi ∈ F(m,L)
0 if fi ∈ F(0, L)
L if fi is L-smooth

For SDCA, (12) is considered. We assume 1
n

∑n
i=1 fi ∈ F(0, L). By co-coercivity, we can set

ν = 0. In addition, we have γ = 0 if fi ∈ F(0, L) and γ = L if fi is only assumed to be L-smooth.

4.2. Numerical Pre-Analysis of Stochastic Methods Using Semidefinite Programs

Theorem 1 provides a simple unified tool for linear rate analysis of stochastic optimization methods

governed by the general jump system model (6). In principle, one can implement LMI (22) once.

Then given a stochastic method (6), one only needs to modify the (Ãi, B̃i, C̃) matrices in the code.

Notice the size of the LMI condition (22) scales proportionally with n, and hence we can only solve

LMI (22) numerically for n up to several hundred. However, these numerical results with n being

several hundred provide informative clues for further proof constructions. Notice the following two

questions are important when analyzing a finite-sum method using Lyapunov arguments:

1. Which inequalities describing the function properties should be used in the proof?

2. What is the simplest form of Lyapunov function required by the proof?

Answers to these questions in the early stage of the analysis can guide researchers in their search

for proofs. Usually one has to make a rough guess based on personal expertise. Theorem 1 provides

a complementary numerical tool for this purpose. The numerical feasibility results from LMI (22)

with n being several hundred roughly answer the questions above by providing clues for selecting

related function inequalities and simplified forms of Lyapunov functions. For example, numerical

tests of LMI (22) for SAGA show that enforcing the Lyapunov function to be diagonal does not

change the feasibility results. This suggests using a diagonal Lyapunov function for SAGA. When

analyzing Finito, the numerical tests of (22) immediately indicate that Finito requires Lyapunov

functions with off-diagonal terms. When we test the existing rate results for SAG (Schmidt et al.,

2013, Theorem 1), LMI (22) becomes infeasible. This indicates that the analysis of SAG requires

9
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less conservative function inequalities in addition to the simple quadratic inequalities (19) (20). The

details of the numerical tests of LMI (22) are presented in Appendix B. Notice our proposed analysis

heavily relies on the quadratic constraints used in the LMI formulations. Some stochastic methods,

e.g. SAGA, SDCA and Finito, are relatively easier to analyze, since they only require the simple

quadratic inequalities (19) (20). Some other methods, e.g. SAG, are more involved, and require

more advanced quadratic constraints in addition to (19) (20). Theorem 1 provides a simple tool to

distinguish these two classes of stochastic methods. We will further discuss SAG in Section 4.5.

Next, we reduce LMI (22) to some equivalent small LMIs for SAGA, Finito, and SDCA.

4.3. Dimension Reduction for the Proposed LMI

The preliminary numerical test results of LMI (22) actually shed light on possible simplifications

of the proposed LMI condition. Based on the preliminary numerical tests documented in Appendix

B, it seems that (22) is sufficient for analysis of SAGA, Finito, and SDCA. As mentioned before,

we notice various simplified parameterizations of P̃ are required for different algorithms. These

simplified parameterizations seem not to introduce further conservatism into our analysis. The

resultant LMI (22) with such P̃ consists of blocks which have the special form µIn + qeeT where

µ and q are some scalars. We summarize our preliminary findings in Table 2.

Method Parameterization of P̃ Matrix Form of the Resultant LMI (22)

SAGA

[

p1In 0̃

0̃T p2

]





µ1In + q1ee
T q4e µ6In + q6ee

T

q4e
T µ2 q5e

T

µ6In + q6ee
T q5e µ3In + q3ee

T





SDCA p1In + p2ee
T

[

µ1In + q1ee
T µ3In + q3ee

T

µ3In + q3ee
T µ2In + q2ee

T

]

Finito

[

p1In + p2ee
T p3ee

T

p3ee
T p4In + p5ee

T

]





µ1In + q1ee
T µ4In + q4ee

T µ6In + q6ee
T

µ4In + q4ee
T µ2In + q2ee

T µ5In + q5ee
T

µ6In + q6ee
T µ5In + q5ee

T µ3In + q3ee
T





Table 2: Parameterization of P̃ and Matrix Forms in (22) for SAGA, SDCA and Finito

The special matrix form of (22) is due to the same assumption on fi for all i and the uniform

sampling of ik. We can take advantage of the special matrix forms and convert (22) into equivalent

small LMIs whose sizes do not depend on n. For example, we know
[

µ1In+q1eeT µ3In+q3eeT

µ3In+q3eeT µ2In+q2eeT

]

≤ 0

if and only if [ µ1 µ3µ3 µ2 ] ≤ 0 and [ µ1 µ3µ3 µ2 ]+n [ q1 q3q3 q2 ] ≤ 0. Hence the analysis of SDCA actually involves

two coupled 2 × 2 LMIs. Similar linear algebra tricks can be used to convert (22) into equivalent

small LMIs for SAGA and Finito. This leads to the following simplified testing conditions.

Theorem 2 Suppose ik is uniformly sampled and m > 0. Let a testing rate 0 ≤ ρ ≤ 1 be given.

1. (SAGA): Suppose g ∈ S(m,L), and γ is defined by (4) based on assumptions on fi. If there

exist positive scalars p1, p2, and non-negative scalars λ1, λ2 such that
[

p2α
2 +

(

n−1
n

− ρ2
)

np1 −α2p2
−α2p2 p1 + α2p2 − 2λ2

]

≤ 0 (24)

[

(1− ρ2)p2 − 2λ1mL+ 2λ2Lγ −αp2 + (m+ L)λ1 + (L− γ)λ2

−αp2 + (m+ L)λ1 + (L− γ)λ2 p1 + α2p2 − 2λ2 − 2λ1

]

≤ 0 (25)

10
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Then SAGA (7) (8) initialized with any x0 ∈ R
p and y0i ∈ R

p satisfies

E

[

‖xk − x∗‖2 + p1
p2

n
∑

i=1

‖yki −∇fi(x
∗)‖2

]

≤ ρ2kR0 (26)

where R0 = ‖x0 − x∗‖2 + p1
p2

∑n
i=1 ‖y0i −∇fi(x

∗)‖2.

2. (Finito): Suppose g ∈ S(m,L), and γ is defined by (4) based on assumptions on fi. If there

exist scalars p1, p2, p3, p4, p5 and non-negative scalars λ1, λ2 such that p1 > 0, p4 > 0 and

[

p1 + np2 np3
np3 p4 + np4

]

> 0 (27)





p2 − p1 + n(1− ρ2)p1 p3 −p2
p3 p5 − p4 + n(1− ρ2)p4 −p3
−p2 −p3 p1 + p2 − 2λ2



 ≤ 0 (28)







X11 X12 X13

X12 (p4 + np5)(1− ρ2)− 2Lmλ1−2Lγλ2
n

p3 +
(L+m)λ1+(L−γ)λ2

n

X13 p3 +
(L+m)λ1+(L−γ)λ2

n
p1+p2−2λ1−2λ2

n






≤ 0 (29)

X11 = (1− 1

n
− ρ2)p1 +

p2
n

− nρ2p2 + (n− 2)p2 − 2(1− 1

n
)p3αn

+ (p4 + p5 − 2Lmλ1 + 2Lγλ2)α
2n

(30)

X12 = (1− ρ2)p3n− p3 − (p4 + np5 − 2Lmλ1 + 2Lγλ2)α (31)

X13 = (1− 1

n
)p2 − (p3 + λ1(L+m) + λ2(L− γ))α (32)

Then Finito (10) (11) with any initial condition x0i ∈ R
p and y0i ∈ R

p satisfies

EV k ≤ ρ2kV 0 (33)

where V k = (ξk − ξ∗)TP (ξk − ξ∗), ξk =

[

yk

xk

]

, P =

[

p1In + p2ee
T p3ee

T

p3ee
T p4In + p5ee

T

]

⊗ Ip.

3. (SDCA): Suppose 1
n

∑n
i=1 fi ∈ F(0, L). Set γ = 0 if fi ∈ F(0, L), and set γ = L if fi is

only L-smooth. Denote α̃ = αmn. If there exist real scalars p1, p2 and nonnegative λ1, λ2

such that p1 > 0, p1 + np2 > 0, and

[

p1(α̃
2 − 2α̃ + n(1− ρ2)) + p2α̃

2 p1(α̃
2 − α̃) + α̃2p2

p1(α̃
2 − α̃) + α̃2p2 (p1 + p2)α̃

2 − 2λ2

]

≤ 0 (34)

[

X11 X12

X12 (p1 + p2)α̃
2 − 2(λ1 + λ2)

]

≤ 0 (35)

X11 = p1(α̃
2 − 2α̃+ n(1− ρ2)) + p2(α̃− n)2 − n2ρ2p2 +

2γLλ2

m2
(36)

X12 = p1(α̃
2 − α̃) + α̃(α̃− n)p2 +

λ1L+ (L− γ)λ2

m
(37)

11
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Then SDCA (13) (14) with stepsize α and initial condition yk0 satisfies

E

[

‖xk − x∗‖2 + p1
p2m2n2

n
∑

i=1

‖yki +∇fi(x
∗)‖2

]

≤ ρ2kR0 (38)

where R0 = ‖x0 − x∗‖2 + p1
p2m2n2

∑n
i=1 ‖y0i +∇fi(x

∗)‖2.

Proof One can compute analytical expressions of the matrix on the left side of (22) and prove this

theorem using the linear algebra tricks mentioned before. Detailed proofs are left to Appendix C.

4.4. New Analytical Rate Bounds for SAGA, Finito, and SDCA

We can analytically solve the LMIs in Theorem 2, and prove the following rate results for SAGA,

Finito and SDCA.

Corollary 3 (Rate Bounds for SAGA) Assume ik is uniformly sampled from N , and g ∈ S(m,L)
with m > 0. Consider SAGA (7) (8) initialized from x0 ∈ R

p and y0i ∈ R
p.

1. If fi ∈ F(m,L), then for any 0 < α ≤ 1
2L , one has

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

2Lα− 1

(Lα− 1)n
, 2mα− αm2

(1− Lα)L

})k

R0 (39)

where R0 = ‖x0 − x∗‖2 + α
L

∑n
i=1 ‖y0i − ∇fi(x

∗)‖2. The following bound also holds for

any α ≤ 4
9L

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

9Lα− 4

(3Lα− 4)n
, 2mα− 3αm2

(4− 3Lα)L

})k

R0 (40)

where R0 = ‖x0 − x∗‖2 + 2α
3L

∑n
i=1 ‖y0i −∇fi(x

∗)‖2.

2. If fi ∈ F(0, L), then for any 0 < α ≤ 1
2L , one has

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

2Lα− b

(Lα− b)n
, 2(1 − b)mα− αm2(1− b)2

(2− b− Lα)L

})k

R0 (41)

where b can be any scalar in [2Lα, 1], and R0 = ‖x0 − x∗‖2 + bα
L

∑n
i=1 ‖y0i − ∇fi(x

∗)‖2.

More specifically, when α = 1
3L , we can set b = 5

6 and get the following bound:

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

1

3n
,
m

10L

})k

R0 (42)

where R0 = ‖x0 − x∗‖2 + 5
18L2

∑n
i=1 ‖y0i −∇fi(x

∗)‖2.

12
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3. If fi is only assumed to be L-smooth, then the following bound holds for any α ≤ 3m
8L2 ,

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

b− 2

(b− 1)n
,
3mα

2
− 2bL2α2

})k

R0 (43)

where b can be any scalar satisfying 2 ≤ b ≤ 3m
4αL2 , and R0 = ‖x0−x∗‖2+ bα2

∑n
i=1 ‖y0i −

∇fi(x
∗)‖2. Specifically, when α = m

8L2 , we can set b = 3 and get the following bound:

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

1

2n
,
3m2

32L2

})k

R0 (44)

where R0 = ‖x0 − x∗‖2 + 3m2

64L4

∑n
i=1 ‖y0i − ∇fi(x

∗)‖2. When α = m
4(m2n+L2)

, we can set

b = 2(m2n+L2)
L2 and obtain

E

[

‖xk − x∗‖2
]

≤
(

1− m2

8(m2n+ L2)

)k

R0 (45)

where R0 = ‖x0−x∗‖2+ m2

8(m2n+L2)L2

∑n
i=1 ‖y0i−∇fi(x

∗)‖2. Hence, the ǫ-optimal iteration

complexity of SAGA without individual convexity is Õ
(

( L
2

m2 + n) log(1
ǫ
)
)

.

Corollary 4 (Rate Bounds for Finito) Assume ik is uniformly sampled from N , and g ∈ S(m,L)
with m > 0. Consider Finito (10) (11) initialized from x0i ∈ R

p and y0i ∈ R
p. Define vk =

1
n

∑n
i=1 x

k
i − α

∑n
i=1 y

k
i .

1. If fi ∈ F(m,L) and n ≥
√

50L
m

, then Finito with α = 1
5L satisfies

E

[

m

10L

n
∑

i=1

‖xki − x∗‖2 + ‖vk − x∗‖2
]

≤
(

1−min

{

1

2n
,
m

20L

})k

R0 (46)

where R0 = m
10L

∑n
i=1 ‖x0i − x∗‖2 + 1

5L2

∑n
i=1 ‖y0i −∇fi(x

∗)‖2 + ‖v0 − x∗‖2.

2. If fi ∈ F(0, L) and n ≥
√

64L
m

, then Finito with α = 1
8L satisfies

E

[

m

16L

n
∑

i=1

‖xki − x∗‖2 + ‖vk − x∗‖2
]

≤
(

1−min

{

1

3n
,
5m

176L

})k

R0 (47)

where R0 = m
16L

∑n
i=1 ‖x0i − x∗‖2 + 1

16L2

∑n
i=1 ‖y0i −∇fi(x

∗)‖2 + ‖v0 − x∗‖2.

3. If fi is L-smooth and n ≥ 48L2

m2 , then Finito with α = 1
2nm satisfies

E

[

3

8n

n
∑

i=1

‖xki − x∗‖2 + ‖vk − x∗‖2
]

≤
(

1− 1

3n

)k

R0 (48)

where R0 = 3
8n

∑n
i=1 ‖x0i − x∗‖2 + 1

n2m2

∑n
i=1 ‖y0i −∇fi(x

∗)‖2 + ‖v0 − x∗‖2.
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Corollary 5 (Rate Bounds for SDCA without Duality) Assume ik is uniformly sampled from N ,

and
∑n

i=1 fi ∈ F(0, L). Consider SDCA (13) (14) initialized from y0i .

1. If fi ∈ F(0, L), then for any 0 < α ≤ 2
L+2mn , one has

E

[

‖xk − x∗‖2 + α

(1− αmn)mn

n
∑

i=1

‖yki +∇fi(x
∗)‖2

]

≤ (1−mα)k R0 (49)

where R0 = ‖x0 − x∗‖2 + α
(1−αmn)mn

∑n
i=1 ‖y0i +∇fi(x

∗)‖2.

2. If fi is L-smooth, then (49) holds for any 0 < α ≤ m
L2+m2n

. When α = m
(m2n+L2)

, the

following bound holds

E

[

‖xk − x∗‖2 + 1

L2n

n
∑

i=1

‖yki +∇fi(x
∗)‖2

]

≤
(

1− m2

m2n+ L2

)k

R0 (50)

where R0 = ‖x0 − x∗‖2 + 1
L2n

∑n
i=1 ‖y0i +∇fi(x

∗)‖2.

All the proofs are presented in Section 5. All three corollaries are actually proved via ana-

lytically solving the LMI conditions in Theorem 2. When fi is assumed to be only smooth (not

necessarily convex), we only need to modify the value of γ to be L and then analytically construct

a feasible solution for the resultant LMIs. We believe our rate bounds for SAGA and Finito without

individual convexity (Statement 3 in Corollary 3 and Statement 3 in Corollary 4) are new. Now we

briefly discuss the connections between our results and some existing rate bounds.

1. (SAGA) Statement 1 in Corollary 3 is new in the sense that it works for a range of α and also

highlights the trade-off between the dependence of ρ2 on n and m
L

. Notice that (39) works

better under the big data condition while (40) is less conservative with large condition number

L/m. Suppose fi ∈ F(m,L). If one chooses α = 1
3L in (40) and applies the fact L ≥ m,

(40) directly leads to

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

1

3n
,
m

3L

})k
(

‖x0 − x∗‖2 + 2

9L2

n
∑

i=1

‖y0i −∇fi(x
∗)‖2

)

(51)

The convergence rate in the above bound agrees with the result in Defazio et al. (2014a,

Section 2). On the other hand, one can also choose α = 1
3L in (39) and obtain

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

1

2n
,
m

6L

})k
(

‖x0 − x∗‖2 + 1

3L2

n
∑

i=1

‖y0i −∇fi(x
∗)‖2

)

(52)

Clearly, the above bound is better than (51) under the big data condition n ≥ 3L
m

. In principle,

one can generate a family of bounds to describe this trade-off in more details. But all these

bounds will only affect the iteration complexity Õ
(

(n+ L
m
) log(1

ǫ
)
)

by a constant factor.
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Actually, we can also recover some other existing rate bounds for SAGA with individual

convexity by modifying the proofs. See Remark 6 for further discussions.

We notice that for any fixed m and L, SAGA (with n sufficiently large) can achieve a rate

ρ2 = 1− 1
cn

where c is arbitrarily close to 1. For example, consider fi ∈ F(m,L). Given any

c ∈ (1,∞), we can choose a sufficiently small α to ensure Lα−1
2Lα−1 < c. For this specific value

of α, (39) just leads to a rate bound ρ2 = 1− 1
cn

under the condition
(

2mα− αm2

(1−Lα)L

)

n ≥
2Lα−1
Lα−1 . Similar arguments also work when fi ∈ F(0, L) or fi being L-smooth.

2. (Finito): When fi ∈ F(m,L) with m > 0, our result states a linear rate bound for α = 1
5L ,

which is a stepsize independent of the parameter m. This could be useful since sometimes

m is unknown for practical problems. On the other hand, the rate proofs in Defazio et al.

(2014b, Theorem 1) work for α = 1
2nm under the big data condition n ≥ 2L

m
.

In general, our rate bounds for Finito are not as good as the rate bounds for SAGA. This is due

to the fact that the LMI conditions for Finito are more complicated and involve more decision

variables. We are only able to analytically solve these LMIs under the big data condition,

although our preliminary numerical tests on the feasibility of these LMIs suggest that Finito

and SAGA have similar convergence rates.

3. (SDCA) Statement 1 in the above corollary is very similar to Shalev-Shwartz (2015, Theorem

1). Actually, when α = 1
L+mn , (49) becomes

E

[

‖xk − x∗‖2 + 1

Lmn

n
∑

i=1

‖yki +∇fi(x
∗)‖2

]

≤
(

1− m

L+mn

)k

R0 (53)

where R0 = ‖x0 − x∗‖2 + 1
Lmn

∑n
i=1 ‖y0i +∇fi(x

∗)‖2. This is almost identical to Shalev-

Shwartz (2015, Theorem 1). Statement 1 in Corollary 5 is slightly stronger since it only

requires α ≤ 2
L+2mn . Notice Shalev-Shwartz (2015, Theorem 1) requires α ≤ 1

L+mn . Sim-

ilarly, Statement 2 in Corollary 5 slightly improves Shalev-Shwartz (2015, Theorem 2) by

allowing a slightly larger value of α.

4.5. Further Discussion on SAG

Finally, we explain why Theorem 1 fails in recovering the existing SAG rate bounds in Schmidt

et al. (2013, Theorem 1), and briefly sketch how to extend our LMI-based analysis for SAG. The

fundamental reason is that the proof of Schmidt et al. (2013, Theorem 1) requires g ∈ F(m,L),
which is stronger than the condition g ∈ S(m,L). Notice in Theorem 1, we only incorporate one

property of g, i.e.

[

vk − x∗

∇g(vk)

]T [ −2mLIp (L+m)Ip
(L+m)Ip −2Ip

] [

vk − x∗

∇g(vk)

]

≥ 0 (54)

The above inequality couples vk with x∗, and is satisfied for any g ∈ S(m,L). However, the

proof for Schmidt et al. (2013, Theorem 1) actually relies on some advanced inequalities 2 coupling

f(vk+1) with f(vk). Such advanced inequalities typically require g ∈ F(m,L). In other words, the

2. See (11) in Schmidt et al. (2013) for such an inequality.
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convexity of g is required in the convergence proof of SAG while our proofs for SAGA and Finito

hold for some non-convex g.

Here is a similar example. The linear convergence of the full gradient descent method does

not require convexity of the objective function, and can be proved using a basic quadratic inequality

similar to (54). However, the linear convergence of Nesterov’s accelerated method cannot be proved

using this simple inequality and relies on some advanced inequalities coupling the current iterates

with the past iterates. These advanced inequalities decode convexity much better than the simple

inequality used in the proof of the full gradient descent method. One such advanced inequality is the

so-called weighted off-by-one IQC (Lessard et al., 2016, Lemma 10). See Lessard et al. (2016, Sec-

tion 4.5) for a detailed discussion on how to incorporate the weighted off-by-one IQC for analysis

of Nesterov’s accelerated method. The use of the weighted off-by-one IQC typically leads to larger

LMIs which are difficult to solve analytically. Very recently, Hu and Lessard (2017) have proposed

another inequality of similar nature to simplify the LMI-based analysis of Nesterov’s accelerated

method. The resultant LMI in Hu and Lessard (2017) is smaller and can be solved analytically to re-

cover the standard rate of Nesterov’s method. To summarize, more advanced quadratic inequalities

which further exploit the property of convexity are required in the analysis of Nesterov’s accelerated

method, and this makes the analysis of Nesterov’s accelerated method much more complicated than

the analysis of the full gradient descent method.

Due to similar reasons, the analysis of SAG is more involved than other stochastic methods.

Our quadratic constraint approach actually reveals the difficulties in analyzing different methods:

SAGA, SDCA, and Finito only require simple constraints (19) (20) while SAG further requires

more advanced quadratic constraints, e.g. weighted off-by-one IQC.

Now we briefly sketch two ways to address the analysis of SAG. First, one can combine our

proposed jump system theory with the quadratic constraint derivation procedure in Hu and Lessard

(2017). We can obtain a modified LMI condition which searches for a Lyapunov function in the

form of
(

(ξk − ξ∗)TP (ξk − ξ∗) + g(vk)− g(x∗)
)

where P is some positive semidefinite matrix.

We have some preliminary numerical rate results indicating that formulating such an LMI to search

for Lyapunov functions in the more general form is sufficient to numerically analyze SAG. Actually,

the original proof of Schmidt et al. (2013, Theorem 1) constructs such a Lyapunov function (Schmidt

et al., 2013, Section B.2).

Another way to address the analysis of SAG is to incorporate the weighted off-by-one IQC

(Lessard et al., 2016, Lemma 10) into our jump system framework. In this case, we can formulate

an LMI condition to search for a quadratic function which is not a Lyapunov function in the tech-

nical sense but serves the purpose of linear convergence certifications. See Lessard et al. (2016,

Remarks on Lyapunov Functions) for more explanations. We also have some preliminary numerical

rate results suggesting that applying the weighted off-by-one IQC can recover the linear conver-

gence rates in Schmidt et al. (2013, Theorem 1) and lead to new linear rate bounds under various

assumptions on fi.
Although there is no technical difficulty in incorporating these more advanced quadratic con-

straints into the LMI formulations for SAG, we have not been able to analytically solve these resul-

tant LMIs. In addition, the use of such advanced quadratic constraints requires much heavier math-

ematical notation. For readability purposes, we do not include a detailed numerical rate analysis of

SAG in this paper. See Lessard et al. (2016) and Hu and Lessard (2017) for detailed discussions on

weighted off-by-one IQC and other more advanced quadratic constraints.
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5. Main Technical Proofs

We present the proofs of Theorem 1, Corollary 3, Corollary 4, and Corollary 5 in this section. The

proof of Theorem 2 is quite tedious, and hence left to Appendix C.

5.1. Proof of the Main LMI Condition (Theorem 1)

Based on the state space model in (6) and (18), we have

ξk+1 − ξ∗ = Aik(ξ
k − ξ∗) +Bik(w

k − w∗)

vk − v∗ = C(ξk − ξ∗)
(55)

Denote P = P̃ ⊗ Ip, and define the Lyapunov function by V (ξk) = (ξk − ξ∗)TP (ξk − ξ∗).
Based on (55), we have the following key relation:

E[V (ξk+1) | Fk−1]

=E[(ξk+1 − ξ∗)TP (ξk+1 − ξ∗) | Fk−1]

=

n
∑

i=1

P(ik = i)
[

Ai(ξ
k − ξ∗) +Bi(w

k − w∗)
]T

P
[

Ai(ξ
k − ξ∗) +Bi(w

k − w∗)
]

=

[

ξk − ξ∗

wk − w∗

]T
[

1
n

∑n
i=1A

T
i PAi

1
n

∑n
i=1A

T
i PBi

1
n

∑n
i=1B

T
i PAi

1
n

∑n
i=1 B

T
i PBi

]

[

ξk − ξ∗

wk − w∗

]

(56)

Suppose Dψ1 = D̃ψ1 ⊗ Ip and Dψ2 = D̃ψ2 ⊗ Ip. Notice we always have

[

2LνIp (L− ν)Ip
(L− ν)Ip −2Ip

]

=

[

LIp −Ip
νIp Ip

]T [
0p Ip
Ip 0p

] [

LIp −Ip
νIp Ip

]

(57)

Moreover, we have C(ξk − ξ∗) = vk − x∗. Hence another key relation also holds as follows

[

ξk − ξ∗

wk − w∗

]T [
CTDT

ψ1

DT
ψ2

]([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0p Ip
Ip 0p

])

[

Dψ1C Dψ2

]

[

ξk − ξ∗

wk − w∗

]

=λ1

[

vk − x∗
∑n

i=1
(∇fi(vk)−∇fi(x∗))

n

]T
[

2LνIp (L− ν)Ip
(L− ν)Ip −2Ip

]

[

vk − x∗
∑n

i=1
(∇fi(vk)−∇fi(x∗))

n

]

+
λ2

n

n
∑

i=1

[

vk − x∗

∇fi(v
k)−∇fi(x

∗)

]T [
2LγIp (L− γ)Ip

(L− γ)Ip −2Ip

] [

vk − x∗

∇fi(v
k)−∇fi(x

∗)

]

≥ 0

(58)

The last step follows from (19) and (20), which are some simple quadratic inequalities capturing

the properties of fi. Now we can take the Kronecker product of the left side of (22) with Ip and

immediately get

[

1
n

∑n
i=1A

T
i PAi − ρ2P 1

n

∑n
i=1 A

T
i PBi

1
n

∑n
i=1B

T
i PAi

1
n

∑n
i=1 B

T
i PBi

]

+

[

CTDT
ψ1

DT
ψ2

]([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0p Ip
Ip 0p

])

[

Dψ1C Dψ2

]

≤ 0

(59)
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Therefore, left and right multiply the above inequality by [(ξk − ξ∗)T , (wk − w∗)T ] and [(ξk −
ξ∗)T , (wk − w∗)T ]T and apply (56), (58) to show that V satisfies:

E[V (ξk+1) | Fk−1]− ρ2V (ξk) ≤ 0 (60)

We can take full expectation to get EV (ξk+1)−ρ2EV (ξk) ≤ 0. Consequently, we immediately

have EV (ξk) ≤ ρ2kV (ξ0) and E[‖ξk − ξ∗‖2] ≤ ρ2k
(

cond(P )‖ξ0 − ξ∗‖2
)

.

5.2. Analytical Proof for SAGA (Corollary 3)

To prove Statement 1, we set γ = −m to reflect the assumption fi ∈ F(m,L). Hence LMI (25)

becomes
[

(1− ρ2)p2 − 2λ1mL− 2λ2mL −αp2 + (L+m)(λ1 + λ2)
−αp2 + (L+m)(λ1 + λ2) p1 + α2p2 − 2(λ1 + λ2)

]

≤ 0 (61)

By Shur complements, LMIs (24) (25) are equivalent to

p1 + α2p2 − 2λ2 ≤ 0 (62)

ρ2 ≥ 1− 1

n
−
(

α4p22
p1 + α2p2 − 2λ2

− α2p2

)

1

np1
(63)

ρ2 ≥ 1− 2(λ1 + λ2)mLp−1
2 − (−αp2 + (L+m)(λ1 + λ2))

2

(p1 + α2p2 − 2(λ1 + λ2))p2
(64)

We can see that (63) describes how ρ2 depends on n, while (64) describes how ρ2 depends on m
and L. We need the common feasible set for both (63) and (64).

More formally, given the testing rate ρ2 = 1−min
{

2Lα−1
(Lα−1)n , 2mα− αm2

(1−Lα)L

}

, it is straight-

forward to verify 0 ≤ ρ2 ≤ 1 when α ≤ 1
2L . For this particular rate, the condition (62) (63) (64) is

feasible with p1 = 1
L

, p2 = 1
α

, λ1 = 0, and λ2 = 1
L

. By Theorem 2, (39) holds as desired. Simi-

larly, given the testing rate ρ2 = 1−min
{

9Lα−4
(3Lα−4)n , 2mα− 3αm2

(4−3Lα)L

}

, we can choose p1 = 2
3L ,

p2 =
1
α

, λ1 = 0, and λ2 =
1
L

to prove the bound (40). Therefore, Statement 1 is true.

To prove Statement 2, we set γ = 0 in (25) to reflect the assumption fi ∈ F(0, L). Again, by

Schur complements, LMIs (24) (25) are equivalent to (62) (63) and

ρ2 ≥ 1− 2λ1mLp−1
2 − (−αp2 + (L+m)λ1 + Lλ2)

2

(p1 + α2p2 − 2λ1 − 2λ2)p2
(65)

Given the testing rate ρ2 = 1−min
{

2Lα−b
(Lα−b)n , 2(1 − b)mα− m2(1−b)2α

(2−b−Lα)L

}

, it is straightforward

to verify 0 ≤ ρ2 ≤ 1 when b ≥ 2Lα. For this particular rate, the condition (62) (63) (65) is feasible

with p1 = b
L

> 0, p2 = 1
α

, λ1 = 1−b
L

≥ 0, and λ2 = b
L

. By Theorem 2, (41) holds as desired.

When α = 1
3L , we can choose any b ∈ [23 , 1] and (41) holds. Hence we can easily obtain (42) by

choosing b = 5
6 and applying the fact m

L
≤ 1.

To prove Statement 3, we set γ = L in (25) to reflect the assumption fi being L-smooth. Again,

by Schur complements, LMIs (24) (25) are equivalent to (62), (63) and

ρ2 ≥ 1− 2λ1mLp−1
2 + 2λ2L

2p−1
2 − (−αp2 + (L+m)λ1)

2

(p1 + α2p2 − 2λ1 − 2λ2)p2
(66)
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Given the testing rate ρ2 = 1 − min
{

b−2
(b−1)n ,

3mα
2 − 2bL2α2

}

, it is straightforward to verify

0 ≤ ρ2 ≤ 1 when 2 ≤ b ≤ 3m
4αL2 . For this particular rate, the condition (62) (63) (66) is feasible

with p1 = bα > 0, p2 = 1
α

, λ1 = 1
L

≥ 0, and λ2 = bα. Notice the facts m ≤ L and b ≥ 2 are

required when checking the feasibility of the LMI condition. By Theorem 2, (43) holds as desired.

When α = m
8L2 , we can choose any b ∈ [2, 3] and (43) holds. Hence we can easily obtain (44) by

choosing b = 3 and applying the fact m
L

≤ 1. Similarly, when α = m2

4(m2n+L2)
, we can choose any

2 ≤ b ≤ 3(m2n+L2)
L2 and (43) holds. Hence we can also obtain (45) by choosing b = 2(m2n+L2)

L2 and

apply the fact 2m2

2m2n+L2 ≥ m2

8(m2n+L2)
. This completes the proof.

Remark 6 Based on the above proof, we can actually recover two other known results in Defazio

et al. (2014a). First, it is known that SAGA achieves the rate ρ2 = 1− m
2(mn+L) given the assumption

fi ∈ F(m,L) and the stepsize α = 1
2(mn+L) . To recover this result, we first consider the case where

L ≥ 2m. Clearly αL < 1
2 . Then the formula (39) leads to a rate ρ2 = 1− m

mn+L + m2

(L+2mn)L . If

L ≥ 2m, then the above rate bound is always better than ρ2 = 1 − m
2(mn+L) . On the other hand,

if L ≤ 2m, we can use p2 = 1
α

, λ1 = 0, λ2 = 1
L

and p1 = 0.75λ2 to prove the LMI condition is

feasible with ρ2 = 1−min
{

15mn−L
n(15mn+9L) ,

m
mn+L − 2m2

(3L+5mn)L

}

. Under the condition L ≤ 2m, this

rate bound is always lower than 1 − m
2(mn+L) . Consequently, we successfully recover the existing

rate bound ρ2 = 1 − m
2(mn+L) for α = 1

2(mn+L) . Second, when fi is only assumed to convex and

smooth, i.e. fi ∈ F(0, L), we can also choose α = 1
3(mn+L) in (41) and set b = 2

3 . This leads to

E

[

‖xk − x∗‖2
]

≤
(

1−min

{

2m

L+ 2mn
,

2m

9(L+mn)
− m2

27L2 + 36mnL

})k

R0

=

(

1− 2m

9(L+mn)
+

m2

27L2 + 36mnL

)k

R0

≤
(

1− m

6(mn+ L)

)k

R0

(67)

where R0 = ‖x0−x∗‖2+ 2
9(mn+L)L

∑n
i=1 ‖y0i −∇fi(x

∗)‖2. The rate bound here is also consistent

with the known result in Defazio et al. (2014a).

5.3. Analytical Proof for Finito (Corollary 4)

First, we need the following linear algebra result to relax the LMI conditions (28) (29) to some

simpler testing conditions.

Lemma 7 Suppose Y11, Y12, Y22, α, and n are scalars. In addition, Y11 ≤ 0, Y22 ≤ 0, α > 0 and

n > 0. The following two statements are true.

1. If Y12 ≤ 0, then

[

Y11 + αnY12 Y12

Y12 Y22 +
Y12
αn

]

≤ 0.

2. If Y12 ≥ 0, then

[

Y11 − αnY12 Y12

Y12 Y22 − Y12
αn

]

≤ 0.
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Proof Statement 1 can be proved using the fact
[

αn 1
1 1

αn

]

≥ 0. Statement 2 can be proved using the

fact
[

αn −1
−1 1

αn

]

≥ 0.

Next, we relax the LMIs (28) (29) to some simpler (but more conservative) testing conditions.

The relaxed conditions are sufficiently useful for analysis of Finito under some big data condition.

Corollary 8 Consider Finito (10) (11) with ik sampled from a uniform distribution. Define vk =
1
n

∑n
i=1 x

k
i − α

∑n
i=1 y

k
i . Suppose g ∈ S(m,L) with m > 0, and γ is defined by (4) based on

assumptions on fi. Given any testing rate 1− 1
n
≤ ρ2 ≤ 1, if there exist positive scalars p1, p4, and

nonnegative scalars λ1, λ2 such that

α2 − 2λ2 + p1 < 0 (68)

n(1− ρ2)p1 − p1 + 2α2 − 2α4

α2 − 2λ2 + p1
≤ 0 (69)

n(1− ρ2)p4 − p4 +
2

n2
− 2α2

n2(α2 − 2λ2 + p1)
≤ 0 (70)

p4 − ρ2 + 2Lγλ2 − 2Lmλ1 + 1− ((L+m)λ1 + (L− γ)λ2 − α)2

α2 − 2λ1 − 2λ2 + p1
≤ 0 (71)

then Finito (10) (11) with any initial condition x0i ∈ R
p and y0i ∈ R

p satisfies

E

[

p4

n
∑

i=1

‖xki − x∗‖2 + p1

n
∑

i=1

‖yki −∇fi(x
∗)‖2 + ‖vk − x∗‖2

]

≤ ρ2kR0 (72)

where R0 = p4
∑n

i=1 ‖x0i − x∗‖2 + p1
∑n

i=1 ‖y0i −∇fi(x
∗)‖2 + ‖v0 − x∗‖2.

Proof Consider p2 = α2, p3 = −α
n

, and p5 =
1
n2 . Clearly, we have

[

p1 + np2 np3
np3 p4 + np5

]

=

[

p1 0
0 p4

]

+ n

[

−α
1
n

]

[

−α 1
n

]

> 0 (73)

Applying Schur complement with respect to the (3, 3)-entry of (28), we can immediately rewrite

(28) as p1 + p2 − 2λ2 = α2 − 2λ1 + p1 ≤ 0 and
[

Y11+αnY12 Y12

Y12 Y22+
Y12
αn

]

≤ 0, where Y11 is equal to

the left side of (69), Y22 is equal to the left side of (70), and Y12 =
α3

n(α2−2λ2+p1)
− α

n
. Similarly, we

can apply Schur complement with respect to the (3, 3)-entry of (29) and rewrite (29) as p1 + p2 −
2λ1−2λ2 ≤ 0 and

[

Z11−αnZ12 Z12

Z12 Z22−Z12

αn

]

≤ 0, where Z11 = p1(1−ρ2− 1
n
), Z22 = p4(1−ρ2− 1

n
),

and Z12 is equal to the multiplication of α and the left side of (71). Based on the conditions in the

corollary statement, we can directly apply Lemma 7 to show that (28) and (29) hold. Finally, notice

[

p1In + p2ee
T p3ee

T

p3ee
T p4In + p5ee

T

]

=

[

p1 0
0 p4

]

⊗ In +

[

−αe
1
n
e

]

[

−αeT 1
n
eT
]

(74)

We can directly apply Statement 3 in Theorem 2 to complete the proof of this corollary.
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Now we can choose p1, p4, λ1 and λ2 to prove Corollary 4. Notice (69), (70), and (71) are

equivalent to

ρ2 ≥ 1− 1

n
+

2α2(p1 − 2λ2)

np1(α2 − 2λ2 + p1)
(75)

ρ2 ≥ 1− 1

n
+

2(p1 − 2λ2)

n3p4(α2 − 2λ2 + p1)
(76)

ρ2 ≥ 1− 2Lmλ1 + 2Lγλ2 + p4 −
((L+m)λ1 + (L− γ)λ2 − α)2

α2 − 2λ1 − 2λ2 + p1
(77)

1. To prove Statement 1, we set γ = −m to reflect the assumption fi ∈ F(m,L). We choose

p1 =
α
L

, p4 = 0.5mα, λ1 = 0, and λ2 =
α
L

. Then (75), (76), and (77) become

ρ2 ≥ 1− 1

n
+

2αL

n(1− αL)
(78)

ρ2 ≥ 1− 1

n
+

4

n3mα(1− Lα)
(79)

ρ2 ≥ 1− 1.5mα +
m2α

L(1− Lα)
(80)

When α = 1
5L , the testing rate ρ2 = 1 − min

{

1
2n ,

m
20L

}

satisfies (78) and (80). In addi-

tion, this testing rate also satisfies (79) under the further assumption n ≥
√

50L
m

. Therefore,

Statement 1 directly follows from Corollary 8.

2. To prove Statement 2, we set γ = 0 to reflect the assumption fi ∈ F(0, L). We choose

p1 =
α
2L , p4 = 0.5mα, λ1 =

α
2L , and λ2 =

α
2L . Then (75), (76), and (77) become

ρ2 ≥ 1− 1

n
+

4αL

n(1− 2αL)
(81)

ρ2 ≥ 1− 1

n
+

4

n3mα(1 − 2Lα)
(82)

ρ2 ≥ 1− 0.5mα+
m2α

2L(3 − 2Lα)
(83)

When α = 1
8L , the testing rate ρ2 = 1 − min

{

1
3n ,

5m
176L

}

satisfies (81) and (83). In addi-

tion, this testing rate also satisfies (82) under the further assumption n ≥
√

64L
m

. Therefore,

Statement 2 directly follows from Corollary 8.

3. To prove Statement 3, we set γ = L to reflect the assumption fi being L-smooth. We choose

p1 = 4α2, p4 = 0.75mα, λ1 =
α
L

, and λ2 = 4α2. Then (75), (76), and (77) become

ρ2 ≥ 1− 1

3n
(84)

ρ2 ≥ 1− 1

n
+

32

9n3mα
(85)

ρ2 ≥ 1− 1.25mα + 8L2α2 +
m2α

L(2 + 3Lα)
(86)
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When α = 1
2nm , the testing rate ρ2 = 1 − 1

3n satisfies (84). This testing rate also satisfies

(85) if n ≥ 11. Moreover, this testing rate also satisfies (86) under the further assumption

n ≥ 48L2

m2 . Due to the fact L ≥ m, we always have n ≥ 11 when n ≥ 48L2

m2 . Therefore,

Statement 3 directly follows from Corollary 8.

Now the proof is complete.

5.4. Analytical Proof for SDCA (Corollary 5)

To prove Statement 1 in Corollary 5, we set γ = 0 to reflect the assumption fi ∈ F(0, L). When

α ≤ 2
L+2mn , we have α̃ = αmn ≤ 2mn

L+2mn < 1. Given the testing rate ρ2 = 1 − mα = 1 − α̃
n

,

it is straightforward to verify 0 ≤ ρ2 ≤ 1 when α ≤ 2
L+2mn . For this particular rate, the coupled

LMI conditions (34) and (35) in Statement 2 of Theorem 2 are feasible with p1 = 1
α̃

, p2 = 1−α̃
α̃2 ,

λ1 = 0, and λ2 = (1−α̃)mn
α̃L

. To see this, first notice p2 > 0 and 0 < λ2 ≤ 1
2 given the fact

α̃ ≤ 2mn
L+2mn < 1. With the given rate ρ2 = 1 − α̃

n
and the current choice of (p1, p2, λ1, λ2), LMIs

(34) and (35) become

[

n
α̃
(1− ρ2)− 1 0

0 1− 2λ2

]

=

[

0 0
0 1− 2λ2

]

≤ 0 (87)

[

−1− 2n(1−α̃)
α̃

+ (1− ρ2)(n
α̃
+ n2(1−α̃)

α̃2 ) 0
0 1− 2λ2

]

=

[

n(1− 1
α̃
) 0

0 1− 2λ2

]

≤ 0 (88)

The above LMIs hold due to the fact λ2 ≤ 1
2 and α̃ < 1. By Theorem 2, (49) holds.

To prove Statement 2 in Corollary 5, we set γ = 0 to reflect the assumption fi ∈ F(0, L). When

α ≤ m
L2+m2n

, we have α̃ = αmn ≤ m2n
L2+m2n

< 1. Given the testing rate ρ2 = 1−mα = 1− α̃
n

, it is

straightforward to verify 0 ≤ ρ2 ≤ 1 when α ≤ m
L2+m2n

. For this particular rate, the coupled LMI

conditions (34) and (35) in Statement 2 of Theorem 2 are feasible with p1 = 1
α̃

, p2 = 1−α̃
α̃2 , λ1 =

(1−α̃)mn
α̃L

, and λ2 =
1
2 . With the given rate ρ2 = 1− α̃

n
and the current choice of (p1, p2, λ1, λ2), the

left side of (34) becomes a zero matrix and clearly (34) holds. In addition, (35) becomes

[

n(1− 1
α̃
) + L2

m2 0
0 −2λ1

]

≤ 0 (89)

The above inequality holds since we have α̃ ≤ m2n
L2+m2n

. By Theorem 2, we can conclude that

Statement 2 is true.

6. Conclusion and Future Work

In this paper, we developed a unified routine for analysis of stochastic optimization methods and

demonstrate the utility of our proposed routine by analyzing SAGA, Finito, and SDCA under vari-

ous conditions (with or without individual convexity, etc). Our routine includes five steps:

1. Choose proper (Ai, Bi, C) to rewrite the stochastic optimization method as a special case of

our general jump system model (6).

2. Apply Theorem 1 to obtain an LMI testing condition for the linear convergence rate analysis.
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3. Test LMI (22) numerically to narrow down Lyapunov function structures and useful function

inequalities required by the further analysis.

4. Apply linear algebra tricks to convert LMI (22) into some equivalent small LMIs whose size

do not depend on n.

5. Construct analytical proofs for linear convergence rate bounds using the resultant small LMIs.

The first step is case-dependent. However, this step is usually straightforward and technically

not difficult. The second and third steps are completely automated and require no tricks at all.

These two steps can even be done for non-uniform sampling strategy if we slightly modify the

LMI condition in Theorem 1. In principle, one can implement (22) once, and just needs to update

(Ãi, B̃i, C̃) matrices given any new method. The fourth step is case-dependent but only requires

very basic linear algebra tricks. As long as the assumptions on fi are the same for all i and a uniform

sampling is used, one should be able to obtain such equivalent small LMIs. The fifth step is the most

technical step. This step is case-dependent and can be non-trivial for some complicated algorithms,

e.g. Finito. However, at least one can numerically solve the resultant small LMIs using semidefinite

programming solvers and use the numerical results to guide the analytical proofs.

In the third step, one may realize that LMI (22) is not sufficient for analysis of certain meth-

ods, e.g. SAG. Then one needs to exploit more advanced function properties and incorporate more

advanced quadratic constraints into the LMI formulations. See Lessard et al. (2016) and Hu and

Lessard (2017) for detailed discussions on weighted off-by-one IQC and other advanced quadratic

constraints. The applications of these advanced quadratic constraints require much heavier mathe-

matical notation. A detailed analysis of more complicated stochastic methods using such advanced

quadratic constraints is beyond the scope of this paper, and will be pursued in future research.

We believe our work is just a starting point for further studies of empirical risk minimization

using tools from control theory. We briefly comment on several possible extensions of our proposed

framework to conclude the paper.

Non-uniform sampling strategy: Theorem 1 can be easily modified to handle non-uniform

sampling strategy. However, the LMI dimension reduction in this case is non-trivial since the solu-

tion for the resultant LMI cannot be easily parameterized using a few scalar decision variables. It

requires more efforts to investigate how to reduce the dimension of the resultant LMI in this case. A

possible solution may involve properly scaling Lyapunov functions with the sampling distribution.

Stochastic quadratic constraints and SVRG: SVRG (Johnson and Zhang, 2013) is an impor-

tant method which cannot be represented by our jump system model (6). The main issue is that

SVRG has a deterministic periodic component which cannot be captured by a jump system model.

One needs to take the periodicity and the randomness into accounts simultaneously. It will be in-

teresting to develop an LMI-based approach for automated analysis and design of SVRG and its

non-convex variants (Allen-Zhu and Hazan, 2016). One possible idea is to absorb the randomness

and the periodicity into an uncertainty block whose input/output behavior can be characterized by

some stochastic quadratic constraints. Similar ideas have already been used to recover the standard

convergence results of the SG method (Hu, 2016, Chapter 6).

Automated design procedure of stochastic optimization methods: One may apply our pro-

posed LMIs to numerically design stochastic optimization methods for practical problems. A direct

design approach relies on grid search and is similar to the design procedure in Lessard et al. (2016,
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Section 6). A more general design approach may be developed using the following sparse optimiza-

tion formulation. Based on our general model (6), a stochastic method is typically characterized by

the matrices (Ai, Bi, C). Hence, the design of stochastic methods can be formulated as a sparse

optimization problem where we need to select (Ai, C) and sparse Bi for i = 1, . . . , n to minimize

the convergence rate ρ under the LMI constraint (22) and some other structure constraints. The

sparsity of Bi is important since it ensures the per-iteration cost of the resultant method to be low.

Larger family of non-convex functions: Notice the main assumption in this paper is g ∈
S(m,L), and the convexity of g is not required. There exist convergence results for other families

of non-convex functions, e.g. functions satisfying Polyak-Lojasiewicz (PL) inequality (Karimi et al.,

2016; Reddi et al., 2016a,b). It is interesting to investigate how to extend our quadratic constraint

approach for more general non-convex functions.

Accelerated methods: Various acceleration techniques (Nitanda, 2014; Lin et al., 2015; Shalev-

Shwartz and Zhang, 2016; Defazio, 2016) have been proposed to improve the convergence guaran-

tees of the stochastic optimization methods when the big data condition is not met. We will extend

our LMI method to analyze stochastic accelerated methods (with or without individual convexity)

in the future.

Randomly-Permuted ADMM with multiple blocks: The alternating direction method of mul-

tipliers (ADMM) (Boyd et al., 2011) is an important distributed optimization algorithm. There are

some initial convergence results on ADMM with multiple blocks (Hong and Luo, 2012; Chen et al.,

2016). The quantification of the mean-square convergence rates of the so-called randomly-permuted

ADMM with multiple blocks (Sun et al., 2015) remains an open topic. IQCs have been successfully

applied to analyze ADMM with two blocks (Nishihara et al., 2015). The extension of jump system

theory for random-permuted ADMM with multiple blocks is an important future task.

Asynchronous settings: In parallel computing, the algorithm performance will typically be

impacted by the communication delay and memory contention (Recht et al., 2011; Zhang and Kwok,

2014). In this case, it is necessary to assess the robustness of the optimization methods with respect

to the delays in the gradient update. There exist many IQCs for time-varying delays in the controls

literature (Kao, 2012; Kao and Lincoln, 2004; Kao and Rantzer, 2007; Pfifer and Seiler, 2015). One

may apply a scaling trick to tailor these IQCs for convergence rate analysis (Hu and Seiler, 2016).

Hence the IQC analysis may be extended to study the impacts of time delays on SAG, SAGA, Finito,

SDCA and other related stochastic optimization methods.
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Appendix A. Jump System Formulations of SAG, Finito, and SDCA

1. (SAG): Define wk =
[

∇f1(x
k)T · · · ∇fn(x

k)T
]T

, and then the SAG gradient update rule (8)

can still be rewritten as (15). Notice
∑n

i=1 y
k
i = (eT ⊗ Ip)y

k and ∇fik(x
k) − ykik = (eTik ⊗

Ip)(w
k − yk). Thus the iteration rule (9) can be rewritten as follows:

xk+1 = xk − α

(

∇fik(x
k)− ykik
n

+
1

n

n
∑

i=1

yki

)

= xk − α

n
(eTik ⊗ Ip)(w

k − yk)− α

n
(eT ⊗ Ip)y

k

= xk − α

n

(

(e− eik)
T ⊗ Ip

)

yk − α

n
(eTik ⊗ Ip)w

k

(90)

At this point, both the gradient update in (15) and the iteration update in (90) depend on

wk =
[

∇f1(x
k)T · · · ∇fn(x

k)T
]T

. The key step in the modeling is to ”separate out” this

nonlinear term. Setting vk = xk and then wk =
[

∇f1(v
k)T · · · ∇fn(v

k)T
]T

. Now the

update rules in (15) and (90) can be expressed as:

[

yk+1

xk+1

]

=

[

(In − eike
T
ik
)⊗ Ip 0̃⊗ Ip

−α
n
(e− eik)

T ⊗ Ip Ip

] [

yk

xk

]

+

[

(eike
T
ik
)⊗ Ip

(−α
n
eTik)⊗ Ip

]

wk

vk =
[

0̃T ⊗ Ip Ip
]

[

yk

xk

]

wk =







∇f1(v
k)

...

∇fn(v
k)







(91)

which is exactly in the form of the general jump system model (6) with ξk =
[

yk

xk

]

. Recall

that w∗ =
[

∇f1(x
∗)T . . . ∇fn(x

∗)T
]T

. It is trivial to set ξ∗ =
[

(w∗)T (x∗)T
]T

, and

verify that (18) holds.

2. (Finito): Recall that we denote yk =
[

(yk1 )
T · · · (ykn)

T
]T

and xk =
[

(xk1)
T · · · (xkn)

T
]T

.

We set vk as

vk =
1

n

n
∑

i=1

xki − α

n
∑

i=1

yki (92)

Again, we set wk =
[

∇f1(v
k)T · · · ∇fn(v

k)T
]T

. Then we can immediately rewrite (11) as

yk+1 =
(

(In − eike
T
ik
)⊗ Ip

)

yk +
(

(eike
T
ik
)⊗ Ip

)

wk (93)

It is also straightforward to rewrite (10) as

xk+1 =

(

(In − eike
T
ik
+

1

n
(eike

T ))⊗ Ip

)

xk − α
(

(eike
T )⊗ Ip

)

yk (94)
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Therefore, we can combine (92), (93), and (94) to obtain

[

yk+1

xk+1

]

=

[

(In − eike
T
ik
)⊗ Ip (0̃0̃T )⊗ Ip

−α(eike
T )⊗ Ip (In − eike

T
ik
+ 1

n
(eike

T ))⊗ Ip

] [

yk

xk

]

+

[

(eike
T
ik
)⊗ Ip

(0̃0̃T )⊗ Ip

]

wk

vk =
[

−αeT ⊗ Ip
1
n
eT ⊗ Ip

]

[

yk

xk

]

wk =







∇f1(v
k)

...

∇fn(v
k)







(95)

which is exactly in the form of the general jump system model (6) with ξk =
[

yk

xk

]

.

Notice ξk ∈ R
(n+1)p for SAG and SAGA, but ξk ∈ R

2np for Finito. Hence in general, Finito

requires more memory compared with SAG and SAGA. Based on the fact
∑n

i=1∇fi(x
∗) =

0, we can set ξ∗ =

[

w∗

e⊗ x∗

]

, and verify that (18) holds. Therefore, if ξk converges to ξ∗,

then yki converges to ∇fi(x
∗) and xki converges to x∗.

3. (SDCA): We still have yk =
[

(yk1 )
T · · · (ykn)

T
]T

. The update rule (13) can be rewritten

as

xk =
1

mn
(eT ⊗ Ip)y

k (96)

Again, wk =
[

∇f1(v
k)T · · · ∇fn(v

k)T
]T

. Hence we can set vk = xk and rewrite the update

rule (14) as

yk+1 =
(

(In − αmneike
T
ik
)⊗ Ip

)

yk − αmn
(

(eike
T
ik
)⊗ Ip

)

wk (97)

We can augment (96) and (97) as

yk+1 =
(

(In − αmneike
T
ik
)⊗ Ip

)

yk − αmn
(

(eike
T
ik
)⊗ Ip

)

wk

vk =

(

1

mn
eT ⊗ Ip

)

yk

wk =







∇f1(v
k)

...

∇fn(v
k)







(98)

which is exactly in the form of the general jump system model (6) with ξk = yk. Notice the

state ξk is completely determined by yk, and does not directly depend on xk.

Appendix B. Numerical Tests Using the LMI Condition in Theorem 1

We can numerically solve LMI (22) in Theorem 1 and get some rough ideas of the feasibility of the

proposed LMI conditions.
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First, we apply the proposed LMI condition to analyze the convergence rate of SAGA. The most

relevant existing result for this case was presented in Defazio et al. (2014a, Section 2) and states

the following fact. Under the assumption that g ∈ F(m,L) and fi ∈ F(m,L), the SAGA iteration

with the stepsize α = 1
3L converges at a linear rate ρ =

√

1−min{ m3L , 1
4n} in the mean square

sense. Therefore, for any m, L, and n, we can choose ρ =
√

1−min{ m3L , 1
4n} and numerically test

the feasibility of the resultant LMI (22) using CVX (CVX Research, 2012; Grant and Boyd, 2008)

with the solver SDPT3 (Tutuncu et al., 2003; Toh et al., 1999). As discussed before, we should set

ν = γ = −m to reflect the assumptions g ∈ F(m,L) and fi ∈ F(m,L). A practical issue is

that the LMI is homogeneous, i.e. if (P̃ , λ1, λ2) is a feasible solution then (cP̃ , cλ1, cλ2) is also a

feasible solution for any c > 0. This homogeneity can cause numerical issues. One method to break

this homogeneity is to replace P̃ > 0 with the condition P̃ ≥ 10−2I . Based on some preliminary

feasibility tests with relatively small n (n < 100), the proposed LMI remains feasible even if the

following simple parameterization of P̃ is used

P̃ =

[

p1In 0̃

0̃T p2

]

(99)

We notice that LMI (22) seems always feasible with the choice of ρ =
√

1−min{ m3L , 1
4n}. This

numerically confirms the existing rate result for n being up to several hundred. We further notice

that the LMI can be feasible with ρ2 smaller than 1−min{ m3L , 1
4n}. This indicates that one may get

sharper rate bounds for SAGA using our proposed LMI. Finally, treating P̃ as an unknown matrix

or parameterizing P̃ as (99) often does not change the feasibility of the resultant LMI. This implies

that adopting the parameterization (99) does not introduce further conservatism into our analysis.

Similar testing can also be performed if fi is only assumed to be L-smooth. We only need to

modify the value of γ to be L. The numerical results suggest that using a simple parameterization

(99) does not introduce further conservatism in this case. We can also perform such naive numerical

analysis for SDCA, Finito and SAG for n being up to several hundred. The numerical results

obtained by the proposed semidefinite programs actually inspire our analytical proofs for SAGA,

SDCA, and Finito.

Appendix C. Proof of Theorem 2

The proof is based on the following key linear algebra result which can be used to transform certain

high dimensional LMIs into two much smaller coupled LMIs.

Lemma 9 The following statements are true:

1. µ1In + q1ee
T > 0 if and only if µ1 > 0 and µ1 + nq1 > 0.

2.

[

µ1In + q1ee
T µ3In + q3ee

T

µ3In + q3ee
T µ2In + q2ee

T

]

≤ 0 (100)
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if and only if
[

µ1 µ3

µ3 µ2

]

≤ 0, (101)

[

µ1 µ3

µ3 µ2

]

+ n

[

q1 q3
q3 q2

]

≤ 0 (102)

3.




µ1In + q1ee
T q4e µ6In + q6ee

T

q4e
T µ2 q5e

T

µ6In + q6ee
T q5e µ3In + q3ee

T



 ≤ 0 (103)

if and only if




µ1 0 µ6

0 µ2 0
µ6 0 µ3



 ≤ 0, (104)





µ1 + nq1
√
nq4 µ6 + nq6√

nµ4 µ2
√
nq5

µ6 + nq6
√
nq5 µ3 + nq3



 ≤ 0 (105)

4.




µ1In + q1ee
T µ4In + q4ee

T µ6In + q6ee
T

µ4In + q4ee
T µ2In + q2ee

T µ5In + q5ee
T

µ6In + q6ee
T µ5In + q5ee

T µ3In + q3ee
T



 ≤ 0 (106)

if and only if




µ1 µ4 µ6

µ4 µ2 µ5

µ6 µ5 µ3



 ≤ 0, (107)





µ1 µ4 µ6

µ4 µ2 µ5

µ6 µ5 µ3



+ n





q1 q4 q6
q4 q2 q5
q6 q5 q3



 ≤ 0 (108)

Proof Let Q ∈ R
n×(n−1) be a matrix such that

[

e√
n

Q
]

is orthogonal. Then

[

e√
n

Q
]T

(µ1In + q1ee
T )
[

e√
n

Q
]

= diag(µ1 + nq1, µ1, . . . , µ1) (109)

Statement 1 directly follows since
[

e√
n

Q
]

is invertible. Similarly, Statement 2 can be immediately

proved using the following fact:

[

e√
n

0̃ Q 0Q

0̃ e√
n

0Q Q

]T
[

µ1In + q1ee
T µ3In + q3ee

T

µ3In + q3ee
T µ2In + q2ee

T

]

[

e√
n

0̃ Q 0Q

0̃ e√
n

0Q Q

]

(110)

=diag

([

µ1 + nq1 µ3 + nq3
µ3 + nq3 µ2 + nq2

]

,

[

µ1 µ3

µ3 µ2

]

⊗ In−1

)

(111)
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Statement 4 can be proved using a similar argument. Finally, Statement 3 can be proved using

Statement 2 and a Schur complement argument.

When analyzing SDCA, we can apply Statement 2 of the above lemma to convert LMI (22) into

two coupled 2×2 LMIs whose feasibility can be checked analytically. Similarly, Statement 3 of the

above lemma is useful for the rate analysis of SAGA, and Statement 4 of the above lemma is useful

for the rate analysis of Finito. Now we only need to substitute (Ãi, B̃i, C̃) and P̃ into the left side

of (22), and then Theorem 2 directly follows from the above lemma.

1. To prove Statement 1 of Theorem 2, recall that we have P̃ =

[

p1In 0̃

0̃T p2

]

. For SAGA, it is

straightforward to verify

1

n

n
∑

i=1

ÃiP̃ Ãi =

[

(p2α
2

n
+ n−1

n
p1)In − α2p2

n2 eeT 0̃

0̃T p2

]

(112)

1

n

n
∑

i=1

B̃iP̃ Ãi =

[

−α2p2
n

In +
α2p2
n2 eeT

−αp2
n
eT

]

(113)

1

n

n
∑

i=1

B̃iP̃ B̃i =
p1 + α2p2

n
In (114)

In addition, we have
[

C̃T D̃T
ψ1

D̃T
ψ2

]

([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0 1
1 0

])

[

D̃ψ1C̃ D̃ψ2

]

=

λ1





0n 0̃ 0n
0̃T −2mL m+L

n
eT

0n
m+L
n

e − 2
n2 ee

T



+ λ2





0n 0̃ 0n
0̃T 2Lγ L−γ

n
eT

0n
L−γ
n

e − 2
n
In





(115)

Now we can directly prove Statement 1 of Theorem 2 by applying Statement 3 of Lemma 9

to convert (22) into small coupled LMIs.

2. To prove Statement 2 of Theorem 2, recall that we have

P̃ =

[

p1In + p2ee
T p3ee

T

p3ee
T p4In + p5ee

T

]

(116)

Hence it is straightforward to verify:

1

n

n
∑

i=1

ÃiP̃ Ãi =

[

W11 W12

W T
12 W22

]

(117)

1

n

n
∑

i=1

B̃iP̃ Ãi =





−p2
n
In +

1
n
(p2 − p3α)ee

T

−p3
n
In +

(n+1)p3
n2 eeT



 (118)

1

n

n
∑

i=1

B̃iP̃ B̃i =
p1 + p2

n
In (119)
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where W11, W12 and W22 are computed as

W11 =

(

p2
n

+
n− 1

n
p1

)

In +

(

(1− 2

n
)p2 − 2(1 − n−1)p3α+ (p4 + p5)α

2

)

eeT (120)

W12 =
p3
n
In +

(n− 1− n−1)p3 − p4α− np5α

n
eeT (121)

W22 =

(

p5
n

+ (1− 1

n
)p4

)

In +

(

p4
n2

+ (1− 1

n2
)p5

)

eeT (122)

Then we can combine Statement 4 of Lemma 9 with the following formula to prove State-

ment 2 of Theorem 2.

[

C̃T D̃T
ψ1

D̃T
ψ2

]

([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0 1
1 0

])

[

D̃ψ1C̃ D̃ψ2

]

=

λ1









−2Lmα2eeT 2Lmα
n

eeT − (m+L)α
n

eeT

2Lmα
n

eeT −2mL
n2 eeT L+m

n2 eeT

− (m+L)α
n

eeT L+m
n2 eeT − 2

n2 ee
T









+ λ2









2Lγα2eeT −2Lγα
n

eeT − (L−γ)α
n

eeT

−2Lγα
n

eeT 2Lγ
n2 eeT L−γ

n2 eeT

− (L−γ)α
n

eeT L−γ
n2 eeT − 2

n
In









(123)

3. To prove Statement 3 of Theorem 2, we have P̃ = p1In + p2ee
T and α̃ = αmn. Hence it is

straightforward to obtain the following formulas:

1

n

n
∑

i=1

ÃiP̃ Ãi =

(

p1(α̃
2 − 2α̃+ n)

n
+

p2α̃
2

n

)

In −
p2(2α̃ − n)

n
eeT (124)

1

n

n
∑

i=1

B̃iP̃ Ãi =

(

p1(α̃
2 − α̃)

n
+

p2α̃
2

n

)

In −
α̃p2
n

eeT (125)

1

n

n
∑

i=1

B̃iP̃ B̃i =
(p1 + p2)α̃

2

n
In (126)

In addition, we can directly obtain

[

C̃T D̃T
ψ1

D̃T
ψ2

]

([

λ1 0̃T

0̃ λ2
n
In

]

⊗
[

0 1
1 0

])

[

D̃ψ1C̃ D̃ψ2

]

=

λ1

[

0n
L
mn2 ee

T

L
mn2 ee

T − 2
n2 ee

T

]

+ λ2

[

2Lγ
m2n2 ee

T L−γ
mn2 ee

T

L−γ
mn2 ee

T − 2
n
In

] (127)

Now Statement 3 of Theorem 2 directly follows from Statement 2 of Lemma 9.

Now the proof of Theorem 2 is complete.
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