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Abstract

The goal of this paper is to assess the robustness of an
uncertain linear time-varying (LTV) system on a finite
time horizon. The uncertain system is modeled as a con-
nection of a known LTV system and a perturbation. The
input/output behavior of the perturbation is described
by time-domain, integral quadratic constraints (IQCs).
Typical notions of robustness, e.g. nominal stability and
gain/phase margins, can be insufficient for finite-horizon
analysis. Instead, this paper focuses on robust induced
gains and bounds on the reachable set of states. Suffi-
cient conditions to compute robust performance bounds
are formulated using dissipation inequalities and IQCs.
The analysis conditions are provided in two equivalent
forms as Riccati differential equations and differential
linear matrix inequalities. A computational approach is
provided that leverages both forms of the analysis condi-
tions. The approach is demonstrated with two examples.

1 Introduction

This paper develops theoretical and computational meth-
ods to analyze the robustness of linear time-varying
(LTV) systems over finite time horizons. Motivating ap-
plications for this work include robotic systems [19, 28]
and space launch / re-entry vehicles [16, 32] both of which
undergo finite-time trajectories. Typical notions of ro-
bustness, e.g. nominal stability and gain/phase margins,
can be insufficient for such systems. For example, one
approach is to evaluate the stability and performance of
the LTV system at “frozen” time instances along the tra-
jectory. However, there are LTV systems ẋ(t) = A(t)x(t)
for which A(t) is stable for each frozen time t but with
trajectories that grow unbounded [12].

This paper moves beyond the frozen analysis technique
and instead evaluates time-domain metrics over the finite
horizon. The analysis is performed on an uncertain LTV
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system modeled, as shown in Figure 1, by an intercon-
nection of a known, nominal LTV system G and a per-
turbation ∆. The perturbation is used to model difficult
to analyze elements including nonlinearities and dynamic
or parametric uncertainty. The input-output properties
of ∆ are characterized by integral quadratic constraints
(IQCs) [17]. An extensive list of IQCs for various classes
of perturbations is given in [17, 33]. The main result
in [17] is an (infinite-horizon), input-output L2 stability
theorem using frequency domain IQCs. The proof relies
on an operator theoretic, homotopy method.
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Figure 1: Interconnection Fu(G,∆) of a nominal LTV
system G and perturbation ∆.

The main contribution of this paper is an algorithm to
compute robustness metrics on a finite horizon. First,
nominal finite-horizon LTV performance is reviewed
(Section 2) focusing on induced L2 and L2-to-Euclidean
gains. The L2-to-Euclidean gain is useful for computing
bounds on the reachable set of states. Next, sufficient
conditions are given (Section 3) to bound the induced L2

and L2-to-Euclidean gains for uncertain LTV systems.
The analysis is formulated with dissipation inequalities
and IQCs. This yields performance conditions in the
form of infinite-dimensional differential linear matrix in-
equalities (DLMIs). These conditions can be equivalently
re-written with a Riccati Differential Equation (RDE).
This equivalence is based on a variation of the strict
bounded real lemma (Theorem 1 in Section 2) which gen-
eralizes existing results in [29, 24, 10, 4]. The algorithm
to compute finite horizon robustness metrics (Section 4)
leverages both forms of these conditions. The proposed
approach is demonstrated with two examples (Section 5).

This paper adds to existing results to assess robust-
ness of time-varying systems. The most closely related
work is [11] which also considers finite horizon robustness
with IQCs. However, the work in [11] does not consider
disturbances and the theoretical approach / resulting nu-
merical algorithm are different than given here. The work
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in [23] and [9] is also relevant. Uncertain linear param-
eter varying systems are considered in [23]. The analy-
sis is formulated using dissipation inequalities and IQCs.
A similar approach is used in [9] to provide robustness
conditions for discrete-time LTV systems. The theoret-
ical and computational approaches provided here differ
from these previous works in order to handle continuous-
time LTV systems on finite horizons. Other related work
includes robustness analysis for finite horizon batch pro-
cesses [14], nonlinear systems [30], and periodic LTV sys-
tems via time-domain lifting [6, 15, 13] or harmonic bal-
ance / frequency domain lifting [34, 7, 27].

Notation: Let Rn×m and Sn denote the sets of n-
by-m real matrices and n-by-n real, symmetric matrices.
The finite-horizon L2[0, T ] norm of a signal v : [0, T ] →

Rn is defined as ‖v‖2,[0,T ] :=
(∫ T

0
v(t)T v(t)dt

)1/2

. If

‖v‖2,[0,T ] is finite then v ∈ L2[0, T ]. RL∞ denotes the
set of rational functions with real coefficients that have
no poles on the imaginary axis. RH∞ is the subset of
functions in RL∞ that are analytic in the closed right-
half of the complex plane. Finally, let E ∈ Sn and α ∈ R
be given with E ≥ 0 and α > 0. Define an ellipsoid in
terms of (E,α) as E(E,α) := {x ∈ Rn | xTEx ≤ α2}

2 Nominal Performance

2.1 Finite Horizon LTV Systems

Consider an LTV system G defined on [0, T ]:

ẋ(t) = A(t)x(t) +B(t)d(t) (1)

e(t) = C(t)x(t) +D(t)d(t) (2)

x ∈ Rnx is the state, d ∈ Rnd is the input, and e ∈ Rne is
the output. The state matrices A : [0, T ]→ Rnx×nx , B :
[0, T ] → Rnx×nd , C : [0, T ] → Rne×nx , and D : [0, T ] →
Rne×nd are piecewise-continuous (bounded) functions of
time. It is assumed throughout that T < ∞. Thus d ∈
L2[0, T ] implies x and e are in L2[0, T ] for any x(0) [3].

Many different performance metrics can be defined for
this (nominal) finite-horizon LTV system. This paper
mainly focuses on two specific metrics. First, the finite-
horizon induced L2-gain of G is

‖G‖2,[0,T ] := sup

{‖e‖2,[0,T ]

‖d‖2,[0,T ]

∣∣∣∣ x(0) = 0, 0 6= d ∈ L2,[0,T ]

}
.

As noted above, d ∈ L2[0, T ] implies e ∈ L2[0, T ]. Thus
the L2 gain is finite for any fixed horizon T <∞.

Next, assume D(T ) = 0. Then the finite-horizon L2-
to-Euclidean gain of G is

‖G‖E,[0,T ] := sup

{
‖e(T )‖2
‖d‖2,[0,T ]

∣∣∣∣ x(0) = 0, 0 6= d ∈ L2,[0,T ]

}
.

The L2-to-Euclidean gain depends on the system output
e only at the final time T . The assumption thatD(T ) = 0
ensures this gain is well-defined.

The L2-to-Euclidean gain can be used to bound the
set of states x(T ) reachable by disturbances of a given
norm. This reachable set is formally defined as follows:

Rβ :=
{
x(T )

∣∣ x(0) = 0, ‖d‖2,[0,T ] ≤ β
}
.

If C(T ) = Inx and D(T ) = 0 then e(T ) = x(T ). In this
special case, if ‖G‖E,[0,T ] ≤ γ then ‖x(T )‖2 ≤ γ‖d‖2,[0,T ].
This implies the reachable setRβ is contained in a sphere
of radius γβ. More general ellipsoidal bounds on the
reachable set can be obtained by proper selection of the
output matrices. For example, select C := E

1
2 and D :=

0 for some given E ∈ Snx with E ≥ 0. With these
choices ‖G‖E,[0,T ] ≤ γ implies an ellipsoidal bound on the
reachable set: Rβ ⊆ E(E, βγ). The size of the reachable
set scales with the norm of the disturbance input. The
state x(t) at intermediate times t ∈ [0, T ] can similarly
be bounded using the L2-to-Euclidean gain ‖G‖E,[0,t].

2.2 Generic Quadratic Cost

The two nominal performance metrics introduced above
are generalized in Section 3 to assess robustness of uncer-
tain systems. A generic quadratic cost function is defined
next in order to unify these various nominal and robust
performance metrics. Specifically, let Q : [0, T ] → Snx ,
R : [0, T ] → Snd , S : [0, T ] → Rnx×nd , and F ∈ Rnx×nx
be given. (Q,S,R) are assumed to be piecewise con-
tinuous (bounded) functions. A quadratic cost function
J : L2[0, T ]→ R is defined by (Q,S,R, F ) as follows:

J(d) := x(T )TFx(T ) +

∫ T

0

[
x(t)
d(t)

]T [ Q(t) S(t)

S(t)T R(t)

] [
x(t)
d(t)

]
dt

subject to: Eq. 1 with x(0) = 0 (3)

The finite-horizon induced L2 gain of G can be related
to the quadratic cost J by proper choice of (Q,S,R, F ).
In particular, let γ > 0 be given and select Q(t) :=
C(t)TC(t), S(t) := C(t)TD(t), R(t) := D(t)TD(t) −
γ2Ind , and F := 0. This yields the following cost function

J(d) = ‖e‖22,[0,T ] − γ
2‖d‖22,[0,T ] (4)

Thus J(d) ≤ 0 ∀d ∈ L2[0, T ] if and only if ‖G‖2,[0,T ] ≤ γ.

The finite-horizon L2-to-Euclidean gain of G can also
be related to the quadratic cost J but with different
choices for (Q,S,R, F ). Let γ > 0 be given and se-
lect Q(t) := 0, S(t) := 0, R(t) := −γ2Ind , and F :=
CT (T )C(T ). This yields the following cost function

J(d) = ‖e(T )‖22 − γ2‖d‖22,[0,T ] (5)

Thus J(d) ≤ 0 ∀d ∈ L2[0, T ] if and only if ‖G‖E,[0,T ] ≤ γ.

2.3 Strict Bounded Real Lemma

The next theorem states an equivalence between a bound
on the quadratic cost J and the existence of a solution



to a Riccati Differential Equation (RDE) or Riccati Dif-
ferential Inequality (RDI). The theorem is expressed in
terms of strict inequalities and generalizes existing results
for the induced L2 gain of LTV systems [29, 24, 10, 4].

Theorem 1. Let (Q,S,R, F ) be given with R(t) ≺ 0 for
all t ∈ [0, T ]. The following statements are equivalent:

1. ∃ε > 0 such that J(d) ≤ −ε‖d‖22,[0,T ] ∀d ∈ L2[0, T ].

2. There exists a differentiable function Y : [0, T ]→ Sn
such that Y (T ) = F and

Ẏ +ATY + Y A+Q− (Y B + S)R−1(Y B + S)T = 0

This is a Riccati Differential Equation (RDE).

3. There exists ε > 0 and a differentiable function P :
[0, T ]→ Sn such that P (T ) � F and

Ṗ +ATP + PA+Q

− (PB + S)R−1(PB + S)T � −εI

This is a strict Riccati Differential Inequality (RDI).

Proof. The proof of (3 ⇒ 1) is given below as it high-
lights the dissipation inequality framework. The remain-
der of the proof is in Appendix A for completeness.

(3⇒ 1) By the Schur complement lemma [2], the RDI
and R(t) ≺ 0 imply ∃ε̃ > 0 such that[

Ṗ +ATP + PA PB
BTP 0

]
+

[
Q S
ST R

]
� −ε̃I (6)

Next define a a quadratic storage function V (x, t) :=
xTP (t)x. Let x(t) be a solution of the LTV system
(Equation 1) starting from x(0) = 0 and forced by some
input d ∈ L2[0, T ]. Multiply Equation 6 on the left and
right by [x(t)T d(t)T ] and its transpose to obtain the fol-
lowing dissipation inequality:

V̇ +

[
x
d

]T [
Q S
ST R

] [
x
d

]
≤ −ε̃

[
x
d

]T [
x
d

]
(7)

Integrate the dissipation inequality from t = 0 to t = T :

V (x(T ), T )− V (x(0), 0)

+

∫ T

0

[
x(t)
d(t)

]T [ Q(t) S(t)

S(t)T R(t)

] [
x(t)
d(t)

]
dt ≤ −ε̃ ‖[ xd ]‖22,[0,T ]

Apply the boundary condition P (T ) � F to obtain:

J(d) ≤ V (x(0), 0)− ε̃‖d‖22,[0,T ] (8)

This bound is valid for any d ∈ L2[0, T ]. Hence, applying
x(0) = 0 yields J(d) ≤ −ε̃‖d‖22,[0,T ] ∀d ∈ L2[0, T ].

This theorem assumes zero initial conditions x(0) = 0.
This implies that the initial stored energy V (x(0), 0) is
zero and hence is dropped from Equation 8 in the proof.

Non-zero initial conditions can be incorporated by retain-
ing this initial stored energy in the performance bound.

Nominal performance is most easily assessed using the
RDE. The performance J(d) ≤ −ε‖d‖22,[0,T ] is achieved if

the associated RDE exists on [0, T ] when integrated back-
ward from Y (T ) = F . The assumption R(t) ≺ 0 ensures
R(t) is invertible and hence the RDE is well-defined for all
t ∈ [0, T ]. Thus the solution of the RDE exists on [0, T ]
unless it grows unbounded. As a concrete example, it was
noted in Section 2.2 that J(d) = ‖e‖22,[0,T ] − γ

2‖d‖22,[0,T ]

for specific choices of (Q,S,R, F ). The matrix R, and
hence the RDE, depends on the choice of γ. For a fixed
γ > 0, the performance ‖G‖2,[0,T ] < γ is achieved if the
associated RDE exists on [0, T ] when integrated back-
ward from Y (T ) = 0. The smallest bound on the induced
L2 gain can be found via bisection. The RDI will be used
later to assess the robustness of uncertain LTV systems.

3 Robust Performance

3.1 Uncertain LTV Systems

An uncertain, finite-horizon LTV system is given by the
interconnection Fu(G,∆) of a nominal LTV system G
and a perturbation ∆ as shown in Figure 1. The LTV
system G is described by the following state-space model:

ẋG(t) = AG(t)xG(t) +BG1(t)w(t) +BG2(t) d(t)

v(t) = CG1(t)xG(t) +DG11(t)w(t) +DG12(t) d(t)

e(t) = CG2(t)xG(t) +DG21(t)w(t) +DG22(t) d(t)

(9)

where xG ∈ RnG is the state. The inputs are w ∈ Rnw
and d ∈ Rnd while v ∈ Rnv and e ∈ Rne are outputs.
The state matrices are piecewise continuous (bounded)
functions of time with appropriate dimensions, e.g. AG :
[0, T ] → RnG×nG . The perturbation ∆ : Lnv2 [0, T ] →
Lnw2 [0, T ] is a bounded, causal operator. Well-posedness
of the interconnection Fu(G,∆) is defined as follows.

Definition 2. Fu(G,∆) is well-posed if for all xG(0) ∈
RnG and d ∈ Lnd2 [0, T ] there exists unique solutions
xG ∈ LnG2 [0, T ], v ∈ Lnv2 [0, T ], e ∈ Lne2 [0, T ], and
w ∈ Lnw2 [0, T ] satisfying Equation (9) and w = ∆(v)
with a causal dependence on d.

The perturbation ∆ can have block-structure as is
standard in robust control modeling [37]. It can include
blocks that are hard nonlinearities (e.g. saturations) and
infinite dimensional operators (e.g. time delays) in ad-
dition to true system uncertainties. The term “uncer-
tainty” is used for simplicity when referring to ∆.

3.2 Integral Quadratic Constraints (IQCs)

IQCs [17] are used to describe the input/output behav-
ior of ∆. They can be formulated in either the fre-
quency or time domain. The time domain formulation



is more useful for analysis of uncertain time-varying sys-
tems. This formulation is based on the graphical inter-
pretation in Figure 2. The inputs and outputs of ∆ are
filtered through an LTI system Ψ with zero initial condi-
tion xψ(0) = 0. The dynamics of Ψ are given as follows:

ẋψ(t) = Aψ xψ(t) +Bψ1 v(t) +Bψ2 w(t)

z(t) = Cψ xψ(t) +Dψ1 v(t) +Dψ2 w(t)
(10)

where xψ ∈ Rnψ is the state. A time domain IQC is an
inequality enforced on the output z over a finite horizon.
The formal definition is given next.

v
- ∆

w
-

-

- Ψ
z-

Figure 2: Graphical interpretation for time domain IQCs

Definition 3. Let Ψ ∈ RHnz×(nv+nw)
∞ and M : [0, T ]→

Snz be given with M piecewise continuous. A bounded,
causal operator ∆ : Lnv2 [0, T ] → Lnw2 [0, T ] satisfies the
time domain IQC defined by (Ψ,M) if the following in-
equality holds for all v ∈ Lnv2 [0, T ] and w = ∆(v):∫ T

0

z(t)TM(t)z(t) dt ≥ 0 (11)

where z is the output of Ψ driven by inputs (v, w) with
zero initial conditions xψ(0) = 0.

The notation ∆ ∈ I(Ψ,M) is used when ∆ satisfies
the corresponding IQC. Time domain IQCs, as defined
above, are specified as finite-horizon constraints on the
outputs of Ψ. These are often referred to as hard IQCs
[17]. The definition given here only requires the IQC to
hold over the analysis horizon [0, T ]. This is in contrast to
hard IQCs used for infinite horizon analysis which require
the constraint to hold over all finite time horizons. Two
examples of time domain IQCs are provided below.

Example 4. Consider an LTI uncertainty ∆ ∈ RH∞
with ‖∆‖∞ ≤ 1. Let Π11 ∈ RL∞ be given with Π11(jω) =
Π11(jω)∗ ≥ 0 for all ω ∈ R ∪ {+∞}. Then the following
frequency domain IQC holds ∀v ∈ Lnv2 and w = ∆(v)∫ ∞
−∞

[
V (jω)
W (jω)

]∗ [
Π11(jω) 0

0 −Π11(jω)

]
︸ ︷︷ ︸

:=Π(jω)

[
V (jω)
W (jω)

]
dω ≥ 0 (12)

where V and W are Fourier transforms of v and w. This
IQC corresponds to the use of D-scales used in struc-
tured singular value µ analysis [25, 5, 20, 37]. A fac-
torized representation for Π yields a valid time domain

IQC. Specifically, let Π = Ψ∼MΨ where

Ψ :=
[

Ψ11 0
0 Ψ11

]
with Ψ ∈ RHnz×1

∞

M :=
[
M11 0

0 −M11

]
with M ∈ Snz and M11 � 0

(13)

It is shown in [1] that (Ψ,M) is a valid time domain IQC
for ∆ over any finite horizon T <∞.

Example 5. Time domain IQCs are often specified with
Ψ as an LTI system and M as a constant matrix. Defi-
nition 3 above allows M to be time-varying. This gener-
alization is useful for time-varying real parameters. Let
∆ := δ(t) where δ(t) ∈ R and |δ(t)| ≤ 1 for all t ∈ [0, T ].

Define Ψ := I2 and M(t) :=
[
m11(t) 0

0 −m11(t)

]
where

m11 : [0, T ] → R is piecewise continuous and satisfies
m11(t) ≥ 0. Then ∆ satisfies the time domain IQC de-
fined by (Ψ,M). Time-varying IQCs can be defined for
other uncertainties, e.g. see related work in [22].

An extensive library of IQCs is provided in [17] for
various types of perturbations. Most IQCs are specified
in the frequency domain using a multiplier Π. Under
some mild assumptions, a valid time-domain IQC (Ψ,M)
can be constructed from Π via a J-spectral factorization
[26]. This allows the library of known (frequency domain)
IQCs to be used for time-domain, finite-horizon analysis.
More general IQC parameterizations are not necessarily
“hard” but can be handled with the method in [8].

3.3 Robust Induced L2 Gain

The robustness of Fu(G,∆) is analyzed using the inter-
connection shown in Figure 3. The extended system of
G (Equation 9) and the IQC filter Ψ (Equation 10) is
governed by the following state space model:

ẋ(t) = A(t)x(t) + B(t)
[
w(t)
d(t)

]
z(t) = C1(t)x(t) +D1(t)

[
w(t)
d(t)

]
e(t) = C2(t)x(t) +D2(t)

[
w(t)
d(t)

] (14)

The extended state vector is x := [
xG
xψ ] ∈ Rn where n :=

nG+nψ. The state-space matrices are given by (dropping
the dependence on time t):

A :=

[
AG 0

Bψ1CG1 Aψ

]
, B :=

[
BG1 BG2

Bψ1DG11 +Bψ2 Bψ1DG12

]
C1 :=

[
Dψ1CG1 Cψ

]
, C2 :=

[
CG2 0

]
,

D1 :=
[
Dψ1DG11 +Dψ2 Dψ1DG12

]
D2 :=

[
DG21 DG22

]
The actual system to be analyzed is Fu(G,∆) with

input d and initial condition xG(0) = xG,0. The analy-
sis is instead performed with the extended LTV system
(Equation 14) and the constraint ∆ ∈ I(Ψ,M). The
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z(t)TM(t)z(t) dt ≥ 0
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Figure 3: Extended LTI system of G and filter Ψ.

constrained extended system has inputs (d,w) and initial
condition x(0) = [ xG,00 ]. The IQC implicitly constrains
the input w. The IQC covers ∆ such that the constrained
extended system without ∆ includes all behaviors of the
original system Fu(G,∆).

The following differential matrix inequality is used to
assess the robust performance of Fu(G,∆) 1:[

Ṗ +ATP + PA PB
BTP 0

]
+

[
Q S
ST R

]
+ (·)TM

[
C1 D1

]
� −εI

(15)

This inequality depends on the extended system, IQC,
and quadratic cost (Q,S,R, F ). It is compactly denoted
as DLMIRob(P,M, γ2, t) � −εI. This notation em-
phasizes that the constraint is a differential linear ma-
trix inequality (DLMI) in (P,M, γ2) for fixed (G,Ψ) and
(Q,S,R, F ). The dependence on (G,Ψ) and (Q,S,R, F )
is not explicitly denoted but will be clear from context.

The next theorem formulates a sufficient condition
to bound the (robust) induced L2 gain of Fu(G,∆).
The proof uses IQCs and a standard dissipation argu-
ment [31, 35, 36, 12]. For induced L2 gains the quadratic
cost matrices are chosen as F := 0 and

Q(t) := C2(t)TC2(t), S(t) := C2(t)TD2(t)

R(t) := D2(t)TD2(t)− γ2
[

0nw 0
0 Ind

] (16)

Theorem 6. Let G be an LTV system defined by (9) and
∆ : Lnv [0, T ]→ Lnw [0, T ] be a bounded, causal operator.
Assume Fu(G,∆) is well-posed and ∆ ∈ I(Ψ,M). If
there exists ε > 0, γ > 0 and a differentiable function
P : [0, T ]→ Sn such that P (T ) � F and

DLMIRob(P,M, γ2, t) � −εI ∀t ∈ [0, T ] (17)

then ‖Fu(G,∆)‖2,[0,T ] < γ.

Proof. Let d ∈ L2[0, T ] and xG(0) = xG,0 be
given. By well-posedness, Fu(G,∆) has a unique solution
(xG, v, w, e). As noted above, the extended system and
IQC “cover” this system. In particular, forcing Ψ with

1The notation (·)T in (15) corresponds to an omitted factor re-
quired to make the corresponding term symmetric.

(v, w) from xψ(0) = 0 yields (xψ, z). Define x := [
xG
xψ ].

Then (x, z, e) are a solution of the extended system (14)
with inputs (w, d) and initial condition x(0) = [ xG,00 ].
Moreover, z satisfies the the IQC defined by (Ψ,M).

Define a storage function by V (x, t) := xTP (t)x. Left
and right multiply the DLMI (15) by [xT , wT , dT ] and its
transpose to show that V satisfies the following dissipa-
tion inequality for all t ∈ [0, T ]:

V̇ +

[
x

[wd ]

]T [
Q S
ST R

] [
x

[wd ]

]
+ zTMz ≤ −ε dT d (18)

Use the choices for (Q,S,R) in (16) to rewrite the second
term as eT e− γ2dT d. Integrate over [0, T ] to obtain:

x(T )TP (T )x(T )− xTG,0P11(0)xG,0 +

∫ T

0

zT (t)M(t)z(t)dt

− (γ2 − ε)‖d‖22,[0,T ] + ‖e‖22,[0,T ] ≤ 0.

Apply P (T ) � F = 0 and ∆ ∈ I(Ψ,M) to conclude:

‖e‖22,[0,T ] ≤ x
T
G,0P11(0)xG,0 + (γ2 − ε)‖d‖22,[0,T ] (19)

Finally, if xG(0) = 0 then ‖Fu(G,∆)‖2,[0,T ] < γ.

The effect of non-zero initial conditions xG,0 6= 0 is
captured in Equation 19. If d ≡ 0, this simplifies to
xTG,0P11(0)xG,0 ≥ ‖e‖22,[0,T ] ≥ 0 implying P11(0) � 0.

Furthermore, on [τ, T ] this implies P11(τ) � 0 for all
τ ∈ [0, T ]. The IQC is valid only for xψ(0) = 0 and
hence P (τ) � 0 need not hold in general.

3.4 Robust L2-to-Euclidean Gain

A similar theorem provides a bound on the L2-to-
Euclidean gain of Fu(G,∆). This requires the additional
assumptions that DG21(T ) = 0 and DG22(T ) = 0 so that
D2(T ) = 0. Hence e(T ) = C2(T )x(T ) and the gain from
d to e(T ) is well-defined. To assess the robust L2-to-
Euclidean gain define (Q,S,R, F ) as:

Q(t) := 0, S(t) := 0, R(t) := −γ2
[

0nw 0
0 Ind

]
,

F := CT2 (T )C2(T ) =
[
CG2(T )TCG2(T ) 0

0 0

] (20)

With these choices for (Q,S,R, F ) the next theorem is a
minor adaptation of Theorem 6 and the proof is omitted.

Theorem 7. Let G be an LTV system defined by (9)
with DG21(T ) = 0 and DG22(T ) = 0. Let ∆ :
Lnv [0, T ] → Lnw [0, T ] be a bounded, causal operator.
Assume Fu(G,∆) is well-posed and ∆ ∈ I(Ψ,M). If
there exists ε > 0, γ > 0, and a differentiable function
P : [0, T ]→ Sn and such that P (T ) � F and

DLMIRob(P,M, γ2, t) � −εI ∀t ∈ [0, T ] (21)

then ‖Fu(G,∆)‖E,[0,T ] < γ.



The condition in Theorem 7 robustly bounds the states
xG(T ) reachable by disturbances for any uncertainty ∆ ∈
I(Ψ,M). Note C2(T ) :=

[
CG2(T ) 0

]
so that e(T ) only

depends on xG(T ). The IQC filter Ψ is used only for
analysis and xψ(T ) is neglected in the bound.

Robust reachable sets with non-zero initial conditions
xG(0) 6= 0 can be computed with minor modifications.
For example, assume the initial condition of G lies within
the ellipsoid xG(0) ∈ E(E0, 1) for some E0 � 0. The
IQC still requires xψ(0) = 0. Next, enforce P (0) �
α1

[
E0 0
0 0

]
for some α1 > 0 (in addition to the condi-

tions in Theorem 7). It follows from the dissipation in-
equality proof that the terminal state of G is bounded
by ‖CG2(T )xG(T )‖2 < α1 + γ‖d‖2,[0,T ]. Additional vari-
ations on robust reachable sets with non-zero initial con-
ditions can be found in Chapter 2 of [18].

3.5 RDE Condition for Robust Performance

Theorems 6 and 7 provide a DLMI (15) to bound the
induced L2 and L2-to-Euclidean gain of Fu(G,∆). More
general robust performance conditions can be formulated
by proper choice of (Q,S,R, F ). The numerical algo-
rithm proposed in Section 4 relies on an equivalence be-
tween the DLMI (15) and a related RDE condition. This
equivalence is demonstrated with an extended quadratic
cost function J that combines the performance specifica-
tion (Q,S,R, F ) and the IQC (Ψ,M). Specifically, define
J with the extended dynamics in (14): ẋ = Ax+ B [wd ].
The cost matrices (Q,S,R,F) are chosen as:[

Q S
ST R

]
:= (·)TM

[
C1 D1

]
+

[
Q S
ST R

]
F := F

(22)

The quadratic cost associated with these choices is:

J ([wd ]) := x(T )TFx(T ) +

∫ T

0

zT (t)M(t)z(t)dt

+

∫ T

0

[
x(t)[
w(t)
d(t)

]]T [ Q(t) S(t)
S(t)T R(t)

][ x(t)[
w(t)
d(t)

]]
dt

The next corollary states the equivalence between the
DLMI and RDE conditions. The DLMI can be rewritten
as an RDI by the Schur complement lemma [2]. Hence
the corollary follows directly from Theorem 1.

Corollary 8. Let (Q,S,R,F) be given by (22). The
following are equivalent for any ε > 0 and γ > 0:

1. There exists a differentiable function P : [0, T ]→ Sn
such that P (T ) � F and DLMIRob(P,M, γ2, t) �
−εI.

2. R(t) ≺ 0 for all t ∈ [0, T ]. In addition, there exists
a differentiable function Y : [0, T ] → Sn such that
Y (T ) = F and

Ẏ +ATY + YA+Q− (Y B + S)R−1(Y B + S)T = 0

4 Computational Approach

This section describes computational details and presents
an algorithm that combines complementary aspects of
the DLMI and RDE robust performance conditions.

4.1 IQC Parameterization

There is typically an infinite set of valid IQCs for a given
uncertainty ∆. Numerical implementations using IQCs
often involve a fixed choice for Ψ and optimization sub-
ject to convex constraints on M [17, 33, 21]. The algo-
rithms given in the following sections will use such pa-
rameterizations. Two examples are given below.

Example 9. Consider an LTI uncertainty ∆ ∈ RH∞
with ‖∆‖∞ ≤ 1. By Example 4, ∆ satisfies any IQC
(Ψ,M) with Ψ :=

[
Ψ11 0

0 Ψ11

]
, M :=

[
M11 0

0 −M11

]
, and

M11 � 0. A typical choice for Ψ11 is [33]:

Ψv
11 :=

[
1,

1

(s+ p)
, . . .

1

(s+ p)v

]T
with p > 0 (23)

The robustness analysis is performed by selecting (p, v)
to obtain (fixed) Ψ and optimizing over M11 � 0. The
results depend on the choice of (p, v). Larger values of v
represent a richer class of IQCs and hence yield less con-
servative results but with increasing computational cost.
Further details on this parameterization are given in [33].

Example 10. The analysis can incorporate conic com-
binations of multiple IQCs. Let (Ψ1,M1) and (Ψ2,M2)

define valid IQCs for ∆. Hence
∫ T

0
zTi Mizi dt ≥ 0 where

zi is the output Ψi driven by v and w = ∆(v). For any
λ1, λ2 ≥ 0 the two constraints can be combined to yield:∫ T

0

λ1z
T
1 M1z1 + λ2z

T
2 M2z2 dt ≥ 0 (24)

Thus a valid time-domain IQC for ∆ is given by

Ψ :=
[

Ψ1

Ψ2

]
and M(λ) :=

[
λ1M1 0

0 λ2M2

]
(25)

The analysis is performed by selecting (Ψi,Mi) and op-
timizing over λ.

4.2 Analysis with the DLMI Condition

Assume the IQC is (Ψ,M) with Ψ fixed and M con-
strained to lie within a feasible set M described by
LMIs. The DLMI (15) has the same form for induced
L2 and L2-to-Euclidean gains but with different choices
of (Q,S,R, F ). In both cases the DLMI is linear in
(P,M, γ2) for fixed (G,Ψ). The dependence on γ2 enters
via R. The best (smallest) bound on the robust gain can
be computed from a convex semidefinite program (SDP):

min γ2

subject to: M ∈M, P (T ) � F
DLMIRob(P,M, γ2, t) � −εI ∀t ∈ [0, T ]



There are two main issues with solving this SDP. First,
the DLMI corresponds to an infinite number of con-
straints since it must hold for all t ∈ [0, T ]. This can
be approximated by enforcing the DLMI on a finite time

grid tDLMI := {tk}
Ng
k=1 ⊂ [0, T ].

Second, the optimization requires a search over the
space of functions P : [0, T ]→ Sn. This issue is addressed
by restricting P to be a linear combination of differen-
tiable basis functions. Specifically, let hj : [0, T ] → R
(j = 1, . . . , Ns) and Hk : [0, T ] → Sn (k = 1, . . . , Nm)
be given scalar and matrix differentiable basis functions.
The storage function and its derivative are given by:

P (t) =

Ns∑
j=1

hj(t)Xj +

Nm∑
k=1

Hk(t)xk (26)

Ṗ (t) =

Ns∑
j=1

ḟj(t)Xj +

Nm∑
k=1

Ḟk(t)xk (27)

Here {Xj}Nsj=1 ⊂ Sn and {xk}Nmk=1 ⊂ R are optimization
variables. Many choices are possible for the basis func-
tions. Initial work in [18] used scalar basis functions gen-
erated with a cubic spline and no matrix basis functions.
The spline is constructed by selecting an interpolation
time grid τsp := {τj}Nsj=1 where τj < τj+1. Note, the
spline grid τsp is distinct from the DLMI grid tDLMI . The
spline consists of Ns − 1 cubic functions defined on the
intervals [τj , τj+1]. It interpolates the decision variables

{Xj}Nsj=1, i.e. P (τj) = Xj . The cubic functions satisfy
boundary conditions to ensure continuity of the spline
and its first/second derivatives at the interval endpoints.
The corresponding spline basis functions {hj}Nsj=1 are not
easy to express in explicit form but they can be evalu-
ated numerically at any t ∈ [0, T ]. Additional details are
given in [18]. The algorithm proposed below also uses a
matrix basis function generated by the RDE condition.

The approximations for the DLMI and P lead to a fi-
nite dimensional SDP in variables {Xj}Nsj=1, {xk}Nmk=1, M ,

and γ2. The optimization can be performed with stan-
dard SDP solvers. Enforcing the DLMI only on a finite
grid decreases the optimal cost relative to the original
infinite-dimensional SDP. Conversely, restricting P to lie
in a finite dimensional subspace increases the optimal
cost. The solution accuracy depends on the choice for
the constraint time grid and basis functions. A denser
time grid and additional bases functions will improve the
accuracy but with increased computation time.

4.3 Analysis with the RDE Condition

The RDE conditions for (robust) induced L2 and L2-to-
Euclidean gains do not require the constraint and ba-
sis function approximations needed for the correspond-
ing DLMI. Specifically for any (M,γ2) the RDE can be
integrated2 within a specified numerical accuracy using

2It is still assumed that (G,Ψ) are given and fixed.

standard ODE solvers. If the RDE exists on [0, T ] when
integrated backward from Y (T ) = F then the robust
gain is less than γ. Bisection on γ can be used to find
the smallest bound on the robust gain. The difficulty
with the RDE condition is that IQC matrix M enters in
a non-convex fashion. In most cases it would be computa-
tionally expensive to perform numerical gradient searches
over M to find the smallest bound γ.

4.4 Combined Algorithm

Algorithm 1 combines the DLMI and RDE conditions.
The plant G and IQC filter Ψ are given. The algorithm is
initialized with a stopping tolerance tol, a max number of
iterations Niter, a time grid tDLMI to enforce the DLMI,
a time grid τsp for the (scalar) spline basis functions, and
a single (zero) matrix basis function H1.

The first step is to solve the finite SDP by enforcing the

DLMI on tDLMI . This returns, if feasible, γ
(1)
SDP , M (1),

and the storage function decision variables {X(1)
j }

Ns
j=1.

The next step is to hold the IQC matrix fixed at M (1)

and bisect to find the smallest γ such that the RDE so-

lution exists on [0, T ]. This yields γ
(1)
RDE , P

(1)
RDE , and

t
(1)
RDE . Here t

(1)
RDE denotes the (dense) grid of time points

returned by the ODE solver associated with P
(1)
RDE .

Two updates are performed before the next iteration.
First, the matrix basis function is set equal to the RDE

solution if γ
(1)
RDE < ∞. This choice is optimal for M (1).

At the next iteration the cubic splines are essentially used

to perturb around P
(1)
RDE . The second update involves the

DLMI time grid. In particular, if the DLMI time grid is

too coarse then γ
(1)
SDP < γ

(1)
RDE . In this case the DLMI

is evaluated on the (dense) grid of time points t
(1)
RDE .

The time points where the DLMI is infeasible (or some
subset) are added to tDLMI . The algorithm terminates
if the RDE and SDP results are close or the maximum
number of iterations has been reached. Otherwise the
subsequent iterations proceed in the same fashion.

5 Examples

5.1 Robust Induced L2 Gain

Consider an uncertain system Fu(G,∆) with ∆ ∈ RH∞
and ‖∆‖∞ ≤ 1. G is an LTI system defined by:

AG :=

[−0.8 −1.3 −2.1 −2.5
2 −0.9 −8.4 0.7
2 8.6 −0.5 12.5

2.1 −0.3 −12.6 −0.6

]
BG :=

[−0.6 1
0 0.2
0 0.4
−1.3 −0.2

]
CG :=

[−1.4 0 0.5 0
0 −0.1 1 0

]
DG :=

[−0.3 0
0 0

]
The infinite-horizon, worst-case induced L2 gain is 1.49
as computed with the wcgain function in Matlab. Finite-
horizon robust gains are computed with Algorithm 1.
The IQC parameterization in Example 9 is used with
v = 1 and p = 10. Algorithm 1 is initialized for each



Algorithm 1 Combined DLMI/RDE Approach

1: Given: G and Ψ

2: Initialize: tol, Niter, tDLMI := {tk}
Ng
k=1, τsp :=

{τj}Nsj=1, and H1 ≡ 0.

3: for i = 1 : Niter do

4: Solve SDP: Enforce DLMI on tDLMI . Use

spline basis functions defined by τsp and matrix

basis function H1.

5: Output: γ
(i)
SDP , M (i), and decision vars. for P .

6:

7: Solve RDE: Hold M (i) fixed and bisect to find

smallest γ such that the RDE exists on [0, T ].

8: Output: γ
(i)
RDE , P

(i)
RDE , and t

(i)
RDE .

9:

10: Updates:

11: If γ
(i)
RDE <∞ then H1 := P

(i)
RDE else H1 := 0.

12: Add time points to tDLMI if γ
(i)
SDP < γ

(i)
RDE .

13:

14: if |γ(i)
SDP − γ

(i)
RDE | < tol · γ(i)

SDP then

15: Terminate iteration

16: end if

17: end for

horizon T with tol = 5× 10−3, Niter = 10, tDLMI as 20
evenly spaced points in [0, T ], and τsp as 10 evenly spaced
points in [0, T ]. Figure 4 shows the finite-horizon robust
gains (blue solid) for T := {1, 2, 5, 10, 20, 30, 40, 50, 100}.
The red dashed line denotes the infinite-horizon robust
gain of 1.49. It took 466 secs to compute all nine finite-
horizon results on a standard laptop. The iteration for
T = 5sec terminated in 3 steps and all other iterations
terminated in 2 steps. Matlab’s LMILab and ode45 were
used to solve the SDP and integrate the RDE in Algo-
rithm 1. The ODE options were set to have an absolute
and relative error of 10−8 and 10−5, respectively.

5.2 Two-link robot arm

This example considers the robustness of a two link robot
arm, shown in Figure 5, as it traverses a given finite-time
trajectory. The mass and moment of inertia of the i-th
link are denoted by mi and Ii. The robot properties are
m1 = 3kg, m2 = 2kg, l1 = l2 = 0.3m, r1 = r2 = 0.15m,
I1 = 0.09kg ·m2, and I2 = 0.06kg ·m2. The equations of
motion [19] for the two-link robot arm are given by:

[
α+ 2β cos(θ2) δ + β cos(θ2)
δ + β cos(θ2) δ

] [
θ̈1

θ̈2

]
+[

−β sin(θ2)θ̇2 −β sin(θ2)(θ̇1 + θ̇2)

β sin(θ2)θ̇1 0

] [
θ̇1

θ̇2

]
=

[
τ1
τ2

] (28)

0 20 40 60 80 100
Horizon Time T, sec

0

0.5

1

1.5

L 2
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Figure 4: Robust Induced L2 Gain vs. Time Horizon
(blue) and infinite horizon result (red dashed)

where τi is the torque applied to the base of the i-th link
and the model parameters are:

α := I1 + I2 +m1r
2
1 +m2(l21 + r2

2) = 0.4425 kg ·m2

β := m2l1r2 = 0.09 kg ·m2

δ := I2 +m2r
2
2 = 0.105 kg ·m2

Figure 5: Two link robot arm [19].

The state and input are denoted by η =[
θ1 θ̇1 θ2 θ̇2

]T
and τ =

[
τ1 τ2

]T
. A trajectory η̄

was selected for the arm and the required input torque τ̄
was computed. Figure 6 shows the desired trajectory for
the tip of arm two (red dashed line) in Cartesian coordi-
nates from t = 0 to T = 5 sec. The robot arm positions
at four different times are also shown.

The objective is for the robot to track this trajectory
in the presence of small torque disturbances d. The input
torque vector is τ = τ̄+u+d where u is an additional con-
trol torque (specified below) to reject the disturbances.
The nonlinear dynamics (28) are linearized around the
trajectory (η̄, τ̄) to obtain an LTV system P :

ẋ(t) = A(t)x(t) +B(t) (u(t) + d(t)) (29)

where x(t) := η(t)− η̄(t) is the deviation of the nonlinear
state from the equilibrium trajectory. The state matrices
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Figure 6: Desired trajectory in Cartesian coordinates
(dotted red line) and robot arm position at four times.

(A,B) were computed at 200 uniformly spaced points in
[0, 5]. These state matrices are linearly interpolated to
obtain the LTV system at any t ∈ [0, T ].

Next, a time-varying state feedback law u(t) =
−K(t)x(t) is designed to improve the disturbance rejec-
tion. The feedback gain is constructed via finite horizon,
LQR design with the following cost function:

J(x, u) = x(T )TFx(T ) +

∫ T

0

[
x(t)
u(t)

]T [
Q S

ST R

] [
x(t)
u(t)

]
dt

where Q := diag(100, 10, 100, 10), R := diag(0.1, 0.1),
S = 0 and F := diag(1, 0.1, 1, 0.1). The optimal feedback
gain is K(t) = R−1B(t)TP (t) where P : [0, T ] → Sn is
the solution of the RDE corresponding to (Q,S,R, F )
with terminal constraint P (T ) = F .

The analysis aims to bound the final position of the
robot arm in the presence of the disturbances d and un-
certainty at the joint connecting the two arms. Figure 7
shows a block diagram for the uncertain, linearized robot
arm dynamics. ∆ ∈ RH∞ is an LTI uncertainty with
‖∆‖∞ ≤ 1. The factors of

√
0.8 are included so that the

overall level of uncertainty at the joint is 0.8. The error
signal e contains the two linearized joint angles:

e(t) =

[
1 0 0 0
0 0 1 0

]
x(t) := Cx(t) (30)
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Figure 7: Uncertain LTV Model for Two-Arm Robot

Algorithm 1 was used to compute bounds on the ro-
bust L2-to-Euclidean gain from d to e over the T = 5sec

trajectory. The IQC is parameterized as in Example 9
with v = 1 and p = 10. Algorithm 1 is initialized with
tol = 5 × 10−3, Niter = 10, tDLMI as 20 evenly spaced
points in [0, T ], and τsp as 10 evenly spaced points in
[0, T ]. The algorithm terminated after 3 iterations with
a robust gain of γCL = 0.0592. It took 103sec to perform
this computation. For comparison, the open-loop robust
gain (with K = 0) is γOL = 941.6. This computation ter-
minated in 7 iterations and took 321 sec. As expected,
the feedback significantly reduces the gain.

The results were tested by randomly generating 100
instances of ∆ with 0 to 6 states. Each instance of ∆
was substituted into Figure 7 to generate a (nominal)
LTV closed-loop. The linearized closed-loop for each ∆
was simulated with disturbances d such that ‖d‖2,[0,T ] ≤
β = 5. Figure 8 shows the linearized simulation results
superimposed on the trim trajectory η̄. The final outputs
e(T ) are designated by the white dots. The light blue cir-
cle corresponds to ‖e(T )‖22 = θ1(T )2 + θ2(T )2 ≤ γ2

CLβ
2.

As expected the simulated trajectories terminate in the
computed bound (cyan circle).

Next, the closed-loop gain was evaluated for each ∆
via bisection with the (nominal) RDE. The largest gain
was 0.0577 achieved with the following uncertainty:

∆wc(s) =
−0.7861s2 − 3.383s− 3.631

0.8s2 + 3.414s+ 3.631
.

A worst-case disturbance was constructed for the closed-
loop with ∆wc. This construction is based on the two-
point boundary value problem that connects the perfor-
mance to the RDE condition (Lemma 11 in Appendix A).
This yields a trajectory with terminal condition very near
to the boundary of the cyan disk (see zoomed inset) in-
dicating that the computed robustness bounds are not
overly conservative. Figure 9 shows the same trajecto-
ries and bound but transformed to the Cartesian space
of the robot arm.

Figure 8: Closed-loop trajectories in the (θ1, θ2) space
with ∆wc and random disturbances ‖d‖2,[0,T ] ≤ 5. The
robust bound on e(T ) is also shown (cyan circle).



Figure 9: Closed-loop trajectories in Cartesian coordi-
nates with ∆wc and random disturbances ‖d‖2,[0,T ] ≤ 5.
The robust bound on e(T ) is also shown (cyan circle).

6 Conclusions

This paper presented robust performance measures for
the analysis of uncertain LTV systems over a finite-
horizon. The proposed numerical algorithm combines dif-
ferential linear matrix inequalities and Riccati differential
equations. The utility of robust gains was demonstrated
with examples including a two-link robot arm. Future
work will include refinements to the algorithm along with
methods to construct worst-case perturbations.
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A Proof of Theorem 1

Theorem 1 states an equivalence between: 1) a bound on
the quadratic cost J , 2) the existence of a solution Y to a
RDE, and 3) the existence of a solution P to a RDI. The
proof of (3 ⇒ 1) is given in the main text and the rest
of the proof is in this appendix. Section A.1 discusses
a related two-point boundary value problem (TPBVP).
The remainder of the appendix provides proofs for (1⇒
2), (2 ⇒ 1), and (1 ⇒ 3). This demonstrates (1 ⇔ 2)
and (1⇔ 3). The equivalence (2⇔ 3) follows from these
results. The TPBVP lemma and proof of (1 ⇒ 2) is
similar to the presentation given in Section 3.7.4 of [10]
for the special case of finite-horizon induced L2 gains.

A.1 Two-Point Boundary Value Problem

The LTV dynamics (Equation 1) and quadratic cost J are
defined by (A,B) and (Q,S,R, F ), respectively. Define
a time-varying Hamiltonian H : [0, T ]→ S2nx as:

H :=

[
A 0
−Q −AT

]
+

[
−B
S

]
R−1

[
ST BT

]
(31)

A two-point boundary value problem (TPBVP) is defined
for t0 ∈ [0, T ] as: [

ẋ∗(t)

λ̇(t)

]
= H(t)

[
x∗(t)
λ(t)

]
(32)[

x∗(t0)
λ(T )

]
=

[
0

Fx∗(T )

]
(33)

Note that x∗ ≡ 0 and λ ≡ 0 is a trivial solution for this
TPBVP. The times (t0, T ) are conjugate points if this
TPBVP has a non-trivial solution.

Lemma 11. Let t0 ∈ [0, T ] be given and assume ∃ε > 0
such that J(d) ≤ −ε‖d‖22,[0,T ] ∀d ∈ L2[0, T ]. Then (t0, T )
are not conjugate points of the TPBVP.

Proof. For t0 = T the boundary conditions immediately
imply x∗(T ) = λ(T ) = 0, i.e. (t0, T ) are not conjugate
points. Thus assume t0 ∈ [0, T ) and let (x∗, λ) be any
solution to the TPBVP. Define the signal:

d̄(t) :=

{
0 t ≤ t0

−R−1(t)(S(t)Tx∗(t) +B(t)Tλ(t)) t > t0

The TPBVP dynamics can be re-written in terms of d̄:[
ẋ∗(t)

λ̇(t)

]
=

[
A 0
−Q −AT

] [
x∗(t)
λ(t)

]
−
[
−B
S

]
d̄(t) (34)

Moreover, the response of the LTV system (Equation 1)
with input d̄ and initial condition x(0) = 0 is given by
x(t) = 0 for t < t0 and x(t) = x∗(t) for t ≥ t0.

The cost associated with the input d̄ is:

J(d̄) = x∗(T )TFx∗(T )

+

∫ T

t0

[
x∗(t)

d̄(t)

]T [ Q(t) S(t)

S(t)T R(t)

] [
x∗(t)

d̄(t)

]
dt

The integrand can be simplified using the definition of d̄
and the TPBVP dynamics in Equation 34:[
x∗

d̄

]T [ Q S

ST R

] [
x∗

d̄

]
= x∗

T (
Qx∗ + Sd̄

)
+ d̄T

(
STx∗ +Rd̄

)
= −x∗

T
(
λ̇+ATλ

)
− (ẋ∗ −Ax∗)T λ

= − d

dt

(
x∗

T

λ
)

These simplifications allow the cost to be rewritten as:

J(d̄) = x∗(T )TFx∗(T )−
∫ T

t0

d

dt

(
x∗

T

(t)λ(t)
)
dt



Integrate the last term and apply the boundary condi-
tions x∗(t0) = 0 and λ(T ) = Fx∗(T ) to show J(d̄) = 0.
It is assumed that J(d̄) ≤ −ε‖d̄‖22,[0,T ] and hence d̄ = 0.
Thus the TPBVP dynamics simplify to:[

ẋ∗(t)

λ̇(t)

]
=

[
A 0
−Q −AT

] [
x∗(t)
λ(t)

]
The boundary condition x∗(t0) = 0 thus implies x∗ ≡ 0.
This further implies that λ̇ = −ATλ with λ(T ) =
Fx∗(T ) = 0. Hence λ ≡ 0. Therefore the TPBVP solu-
tion is trivial and (t0, T ) are not conjugate points.

A.2 Proof of (1⇒ 2)

Assume J(d) ≤ −ε‖d‖22,[0,T ] ∀d ∈ L2[0, T ]. Let Φ(t, T )
denote the transition matrix associated with the Hamil-
tonian dynamics (Equation 32) so that for any t ∈ [0, T ]:[

x∗(t)
λ(t)

]
= Φ(t, T )

[
x∗(T )
λ(T )

]
(35)

Note that a solution of the TPBVP must also satisfy the
boundary conditions in Equation 33. Next define the
following matrix function:[

X1(t, T )
X2(t, T )

]
:= Φ(t, T )

[
I
F

]
(36)

Both X1 and X2 have nx rows compatible with
[
x∗(t)
λ(t)

]
.

It can be shown that X1(t, T ) is nonsingular for all
t ∈ [0, T ]. In particular, assume there exists a vector
v and time t0 ∈ [0, T ] such that X1(t0, T )v = 0. Set
x∗(T ) = v and λ(T ) = Fv. The state transition matrix
(Equation 35) gives a solution (x∗, λ) for the Hamiltonian
dynamics on [0, T ]. From the definition X1 it follows
that x∗(t0) = X1(t0, T )v = 0. Hence (x∗, λ) satisfy the
TPBVP boundary conditions at (t0, T ). By Lemma 11,
J(d) ≤ −ε‖d‖22,[0,T ] implies that (t0, T ) are not conjugate
points, i.e. the solution to the TPBVP is trivial. Thus,
v = x∗(T ) = 0 so that X1(t0, T ) is nonsingular.

Finally, it can be verified that Y (t) :=
X2(t, T )X1(t, T )−1 satisfies the RDE and Y (T ) = F .
It follows from Φ(T, T ) = I and Equation 36 that
X1(T, T ) = I and X2(T, T ) = F . Hence Y (T ) = F .
Next, differentiating Y (t) with respect to time t yields:

Ẏ = Ẋ2X
−1
1 −X2X

−1
1 Ẋ1X

−1
1

=
[
−Y I

] [Ẋ1

Ẋ2

]
X−1

1

(37)

By the definition of X1 and X2 in Equation 36,[
Ẋ1

Ẋ2

]
= Φ̇

[
I
F

]
= HΦ

[
I
F

]
= H

[
X1

X2

]
(38)

The second equality follows because Φ is the state tran-
sition matrix for H. The third equality follows from the
definition of X1 and X2. Combine Equations 37 and 38:

Ẏ =
[
−Y I

]
H

[
I
Y

]
(39)

Substitute for H (Eq. 31) to verify Y solves the RDE.

A.3 Proof of (2⇒ 1)

Assume the RDE has a solution Y . The boundary con-
ditions Y (T ) = F and x(0) = 0 imply that J can be
equivalently written as:

J(d) =

∫ T

0

[
x(t)
d(t)

]T [ Q(t) S(t)

S(t)T R(t)

] [
x(t)
d(t)

]
dt

+

∫ T

0

d

dt

(
x(t)TY (t)x(t)

)
dt

The integrand in the second term can be expanded as
ẋTY x+xT Ẏ x+xTY ẋ. Substitute for ẋ using the system
dynamics (Equation 1) and for Ẏ using the RDE. After
some algebra, this yields the following simplified form:

J(d) =

∫ T

0

(
d(t)− d̄(t)

)T
R(t)

(
d(t)− d̄(t)

)
dt (40)

where d̄ := −R−1(Y B + S)Tx. Thus the cost function
can be bounded as follows:

J(d) ≤ α‖d− d̄‖22,[0,T ] (41)

where α := maxt∈[0,T ] λmax(R(t)) < 0.

Finally, define the LTV system W with input d and
output d− d̄:

W :=

[
A B

R−1(Y B + S)T Ind

]
(42)

This system is invertible since the feedthrough matrix Ind
is nonsingular. Hence W−1 exists and has finite gain, i.e.
‖d‖2,[0,T ] ≤ β‖d− d̄‖2,[0,T ] for some β <∞. This further
yields α‖d− d̄‖22,[0,T ] ≤ −ε‖d‖

2
2,[0,T ] where ε := − α

β2 > 0.
Combine this bound with Equation 41 to conclude that
J(d) ≤ −ε‖d‖22,[0,T ] ∀d ∈ L2[0, T ].

A.4 Proof of (1⇒ 3)

Assume J(d) ≤ −ε‖d‖22,[0,T ] ∀d ∈ L2[0, T ] with J defined

by (Q,S,R, F ). As noted previously, the LTV system (1)
has finite gain from d to x, i.e. ‖x‖2,[0,T ] ≤ β‖d‖2,[0,T ]

for some β <∞. Hence, there exists ε̃ > 0 such that

J(d) ≤ −ε̃
(
‖x‖22,[0,T ] + ‖d‖22,[0,T ]

)
∀d ∈ L2[0, T ] (43)

Define the perturbed cost function J̃(d) with (Q̃, S,R, F )
where Q̃ := Q + ε̃Inx . The bound in Equation 43 is



equivalent to J̃(d) ≤ −ε̃‖d‖22,[0,T ] ∀d ∈ L2[0, T ]. By (1⇒
2), there exists Ỹ : [0, T ]→ Sn such that Ỹ (T ) = F and

˙̃Y +AT Ỹ + Ỹ A+ Q̃− (Ỹ B + S)R−1(Ỹ B + S)T = 0

Substitute Q̃ := Q+ ε̃Inx to obtain:

˙̃Y +AT Ỹ + Ỹ A+Q− (Ỹ B + S)R−1(Ỹ B + S)T = −ε̃Inx

Thus Ỹ satisfies the boundary condition Ỹ (T ) � F and
satisfies the strict RDI defined with (Q,S,R, F ).


	1 Introduction
	2 Nominal Performance
	2.1 Finite Horizon LTV Systems
	2.2 Generic Quadratic Cost
	2.3 Strict Bounded Real Lemma

	3 Robust Performance
	3.1 Uncertain LTV Systems
	3.2 Integral Quadratic Constraints (IQCs) 
	3.3 Robust Induced L2 Gain
	3.4 Robust L2-to-Euclidean Gain
	3.5 RDE Condition for Robust Performance

	4 Computational Approach
	4.1 IQC Parameterization
	4.2 Analysis with the DLMI Condition
	4.3 Analysis with the RDE Condition
	4.4 Combined Algorithm

	5 Examples
	5.1 Robust Induced L2 Gain
	5.2 Two-link robot arm

	6 Conclusions
	A Proof of Theorem 1
	A.1 Two-Point Boundary Value Problem
	A.2 Proof of (12) 
	A.3 Proof of (21) 
	A.4 Proof of (13) 


