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Abstract: The paper introduces the in-flight fault detection and basic reconfiguration of a small
unmanned aerial vehicle equipped with two elevons and an electric motor. The considered fault scenario
is one control surface stuck at a given position during straight and level flight. The fault detection is
solved with Multiple Model Adaptive Estimation considering non-faulty and faulty (left or right surface
stuck) system models. Basic reconfiguration to stabilize the flight against atmospheric disturbances is
done applying the remaining surface in the lateral channel and the total energy control concept to hold
the airspeed and altitude between acceptable limits in the longitudinal channel. Promising results are
achieved in software-in-the-loop simulation with the fault detection and reconfiguration.
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1. INTRODUCTION

Aviation authorities in the United States (US) and European
Union (EU) are developing long-term frameworks for the inte-
gration of Unmanned Aerial Systems (UAS) into their respec-
tive national airspaces. The European Aviation Safety Agency
(EASA) has been developing the UAS concept of operations
using a risk-based approach. In the US, the Federal Aviation
Administration (FAA) regulates civilian UAS via Part 107 of
the Federal Aviation Regulations. Regulatory hurdles aside,
widespread use of UASs is subject to several technical chal-
lenges related to safety and reliability. These include obstacle
detection, collision avoidance, path planning and routing, auto-
mated deconfliction, and on-board fault management. On-board
fault management is a particularly interesting case since UAS
have constraints on their size, weight, and power. Fault diag-
nosis and fault tolerance algorithms solve this problem without
introducing hardware redundancy.

Textbooks such as Gertler (1998); Chen and Patton (1999);
Isermann (2006); Ding (2008) provide details on the various
model-based and data-driven fault detection methods. Hwang
et al. (2010) provides a detailed survey of various fault de-
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tection, isolation, and reconfiguration methods. Fault diagnosis
techniques have been applied to commercial aircraft by Goupil
(2010, 2011) as well as unmanned aircraft by Freeman et al.
(2013); Freeman and Balas (2013). Steinberg (2005) provides a
historical overview of reconfigurable flight control. While faults
can occur in a variety of places, e.g. sensors, avionics, load-
bearing structures, etc., this paper will focus on actuator faults.
Fault-tolerant flight control for managing actuator failures are
discussed in Crider (2004); Boskovic et al. (2007); Nguyen
et al. (2008); Hitachi (2009); Chowdhary et al. (2013).

This paper specifically focuses on detecting and managing ac-
tuator faults on a small UAS that is equipped with two elevons
and a puller-type electric motor. This boils down to three steps:
(1) detecting that a failure has occurred, (2) identifying whether
the failure is in the left or the right elevon, and (3) tolerating
the failure through control reconfiguration. Venkataraman and
Seiler (2016) showed, using flight tests on a different UAS, that
a single aerodynamic control surface is sufficient to stabilize
the aircraft and execute straight & level flight and banked turns.
This was achieved using robust, multi-variable control. This
paper extends this key idea by developing a fault diagnosis
algorithm (Section 4), a new control reconfiguration approach
(Section 5), and validating both via simulations (Section 6).
These three sections contain the novelty of this paper. First,
however, a basic description of the aircraft and its model (Sec-
tion 2) and the baseline controller (Section 3) are presented.

2. SYSTEM MODEL

The aircraft is called the Vireo and is pictured in Figure 1. It
is comprised only of a wing and a fuselage. This aircraft was



Fig. 1. The aircraft has two elevons and a motor.

originally built by Sentera, LLC and is currently maintained and
operated by the University of Minnesota. The fully integrated
aircraft has a gross mass of 1.28 kg, a wing span of 0.97 m,
and a fuselage length of 0.52 m. Control is provided via two
elevons and a puller-type electric motor that drives a fixed-pitch
propeller. Since the aircraft does not have a rudder, directional
control is achieved indirectly via lateral control. The throttle δT ,
left elevon δL, and right elevon δR are independently actuated.
The deflection range of each elevon is [−25,+25]◦, where
positive values correspond to trailing-edge down deflections.
The particular actuators used provide for a maximum rate-of-
deflection of ±338◦ s−1.

Venkataraman (2018) developed a nonlinear, six degrees-of-
freedom model for this aircraft. The pertinent states are the
Euler angles (φ,θ,ψ), the angular velocity in the body axes
(p,q,r), the airspeed in the body axes (u,v,w), and the position
of the aircraft in a local North-East-Down frame (pN , pE , pD).
The dynamics are linearized about a steady, wings-level, con-
stant altitude flight condition at a cruise airspeed of 15 ms−1.
Although each elevon excites both the longitudinal and lateral-
directional dynamics, they may be decomposed into the tradi-
tional elevator δE and the aileron δA via the transformation:

[
δE

δA

]

=
1

2

[
1 1
−1 1

][
δL

δR

]

. (1)

This allows the dynamics to be decoupled. The longitudinal
dynamics Glon are described by:

ẋlon = Alonxlon +Blonulon, (2)

where xlon = [u,w,q,θ]T , ulon = [δT ,δE ]
T ,

Alon =

[
−0.15 0.75 −1.02 −9.8
−0.88 −5.7 13.9 −0.67
0.88 −13 −5.5 0

0 0 1 0

]

, and Blon =

[
6.5 0.15
0 −25
0 −186
0 0

]

. (3)

The lateral-directional dynamics Glat are described by:

ẋlat = Alatxlat +BlatδA, (4)

where xlat = [v, p,r,φ]T ,

Alat =

[
−0.42 1.12 −15.3 9.8
−5.16 −11.3 2.1 0

1.4 −1.5 −0.66 0
0 1 0.068 0

]

, and Blat =

[−0.49
−283
−16.7

0

]

. (5)

The linearized states in the models above use SI units, i.e.
distances are in meters and angles are in radians. In addition,
note that the evolution of ψ, pN , pE , and pD are not listed
above for brevity. They may be obtained from a flight dynamics
textbook, such as Cook (2007).

Finally, the dynamics of the elevon actuators are described by

Gact =
3940

s2 + 97s+ 3940
(6)

Since (1) is a linear transformation, Gact may be treated as
describing the dynamics of the virtual elevator actuator and
the virtual aileron actuator. Later in Section 4 this actuator
dynamics will be applied separately to the left and right elevons.
The linear models described in this section are used to design
the baseline and fault-tolerant controllers as well the fault
diagnosis algorithm.

3. BASELINE CONTROLLER

Separate classical, loop-at-a-time controllers are designed for
the longitudinal (Figure 2) and lateral-directional (Figure 3)
dynamics. Figure 2 shows that the innermost loop implements a
pitch damper by feeding back the pitch rate q. Wrapped around
this is a pitch tracker that tracks a commanded pitch angle
θc. Similarly, the innermost loop of Figure 3 implements a
roll damper by feeding back the roll rate p. Wrapped around
this is a roll tracker that tracks a commanded roll angle φc.
Both dampers use proportional-only gains and both trackers use
proportional-integral gains. Actuator dynamics are considered
in both cases using Gact in series with the plant.

Fig. 2. The baseline longitudinal controller.

Fig. 3. The baseline lateral-directional controller.

The gains are initially designed using the models Glon and
Glat and then iteratively updated using flight tests. The final

gains are: KPD = −0.05, KPT = −0.4 − 0.2
s

, KRD = −0.06,

and KRT = −0.34 − 0.086
s

. These yield a bandwidth of ap-

proximately 1.8 rads−1 in tracking both θc and φc. The pitch
command θc is generated by a proportional-integral controller

KVT = −0.048 − 0.004
s

that tracks the barometric airspeed,

which is defined as V =
√

u2 + v2 +w2.

In addition, note that Figure 2 depicts only the elevator con-
troller for Glon. The throttle commands are generated by a

proportional-integral controller KAT = 0.01 + 6.66×10−4

s
that

tracks the altitude h = −pD. Finally, outer loop guidance con-
trollers are implemented for waypoint and flight path track-
ing. The continuous-time controllers described above are dis-
cretized and implemented on the flight computer of the Vireo at
a sampling rate of 100 Hz. The total closed-loop time delay is
calculated from flight tests to be approximately equal to 0.05 s.
This encompasses delays in the actuators, the flight computer
(numerical implementation of the controller), and the sensors.



4. FAULT DETECTION AND IDENTIFICATION

The so-called Multiple Model Adaptive Estimation (MMAE)
framework is used to detect and isolate the stuck fault of each
of the elevons. MMAE is introduced in detail for example in
Hassani et al. (2009a) and Hassani et al. (2009b) here only
the basic concept is summarized. Consider an LTI plant (G)
with multiple (N) different system models characterized by an
i parameter (7). The different models can represent different
trim points or fault states of the system. By designing LTI state
observers for these models it is possible to estimate the states
of the plant and the actual i parameter and so trim point or fault
state. Figure 4 shows the structure of the MMAE architecture.
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Fig. 4. The MMAE architecture

The fixed parameter Multiple-Input-Multiple-Output LTI sys-
tem models can be characterized by the following discrete time
(DT) equations:

xi(t + 1) = Aixi(t)+Biu(t)+Wiw(t)

yi(t) =Cixi(t)+Diu(t)+Viv(t)
(7)

where xi(t) ∈ R
n denotes the state of the system, u(t) ∈ R

m its
control input, yi(t) ∈ R

p its measured noisy output, w(t) ∈ R
r

is the state noise, and v(t) ∈ R
q is the measurement noise.

Vectors w(t) and v(t) are zero-mean white Gaussian sequences,
mutually uncorrelated with covariances E [w(t);w(τ)] = Qtτ

and E [v(t);v(τ)] = Rtτ. The initial condition x(0) of (7) is a
Gaussian random vector with mean and covariance given by
E {xi(0)} = xi0 and E

{
xi(0)x

T
i (0)

}
= Pi(0). Matrices Ai, Bi,

Wi, Ci, Di, and Vi depend on the parameter i (i = 1 . . .N). Wi = I
and Vi = I is assumed in our case. t and t+1 denote consecutive
discrete time steps.

One possible solution of the observer design is to obtain steady
state Kalman Filters (KFs) which give state estimates x̂i(t)
where i = 1 . . .N. As Figure 4 shows the final state estimate
(x̂(t)) is given by (8), as the weighted sum of the x̂i(t) estimates
provided by the observers.

x̂(t) =
N

∑
i=1

pi(t)x̂i(t) (8)

The pi(t) i = 1 . . .N weights are calculated inside the Posterior
Probability Evaluator (PPE) block. As Figure 4 shows this
block receives the output residuals ri(t) i = 1 . . .N

ri(t) = y(t + 1)− ŷi(t + 1|t)

where

ŷi(t + 1|t) =Cix̄i(t + 1)+Diu(t + 1)

and the estimation error covariances Pi from every filter. Here
x̄i(t + 1) is the predicted state of the ith KF given by

x̄i(t + 1) = Aix̂i(t)+Biu(t)

In Hassani et al. (2009a) the dynamic weights are calculated by
the recursive formula:

pi(t + 1) =
βie

−Ei(t+1)

N

∑
j=1

p j(t)β je
−E j(t+1)

pi(t)
(9)

where pi(t) are the a-priori model probabilities (initialized
usually as pi(0) = 1/N) and Ei(t) and βi are defined as

Ei(t + 1) = ri(t + 1)T P̂−1
i ri(t + 1) (10)

βi =
1

(2π)
p
2

√∣
∣P̂i

∣
∣

(11)

where p is the dimension of y(t) and P̂i is the steady state

covariance matrix of residuals in ith KF given by

P̂i =CiPiC
T
i +Ri (12)

here Pi is the steady state estimation error covariance ma-
trix of the ith KF obtained from the related Riccati equation.

βie
−Ei(t+1) gives a multivariable Gaussian probability density

function. In Hassani et al. (2009a) the authors prove that the
conditional probability of the observer which is closest to the
actual working mode of the plant will converge to one while all
the other probabilities will converge to zero.

4.1 MMAE design models for the Vireo aircraft

In this work the set of possible elevon faults is restricted to stuck
fault of one elevon keeping in mind that different fault scenarios
would possibly need different fault detection strategies. The
basic idea of stuck fault detection design is that the aircraft
lateral dynamics should be more sensitive to elevon stuck
fault than the longitudinal (note that the highest gain in the B
matrix in (3) and (5) is in Blat from aileron δa to roll rate p).
Considering the linearized lateral dynamical model Glat from
(5) of the aircraft it includes the following states:

x = [v p r φ]
T

Meanwhile (5) includes the aileron effect as a single input, for
fault detection of the left and right elevons the associated inputs
should be included considering the transformation in (1). This

way the input of the considered model will be u = [δL δR]
T

.
The possible measurable outputs of the lateral dynamics can
be the roll rate p, the yaw rate r, the roll angle φ and the side
acceleration ay. In MMAE the KF residuals are used to drive



the PPE system. Simulation experiments show that residuals
of states included in the KF measurement update as measured
outputs are usually small after the convergence of the filter.
That’s why it is advantageous not to include the p roll rate into
the measured outputs but calculate and consider its residual in
the selection of the best filter. Finally, the selected output vector
consists of the yaw rate and the roll angle (note that the roll
angle should be estimated on-board, but from a fault detection
point of view it can be considered as known and measurable):

y = [r φ]
T

(13)

The model with the given state and output vectors is observable.
Further issues to be handled are the system time delay and
actuator dynamics.

Handling of system time delay The overall time delay in
the closed loop controlled Vireo system is about 0.05s (see
Section 3). To design MMAE this delay is assumed to be
present at the system output as a pure measurement delay. As
the implementation of the estimators is in DT (in contrast to the
continuous time models presented in Section 2) there are two
possibilities to model the time delay. The first is to make a Pade
approximation and discretize that transfer function, the second
is to add a chain of delay states to the DT model. The control
frequency is set to 100 Hz in the system, however it is enough
to run the estimators at 50 Hz which gives 0.02s sampling time.
With this sampling time two delay state per variable should be
added to approximate the measurement delay. On the contrary,
at least second degree Pade approximation is required but it is
better to apply fourth or fifth degree. This requires at least two,
but possibly even four or five additional states per variable.

Finally, the chain of delay states was applied to the r yaw rate
and φ roll angle outputs. The original and augmented state space
equations of the discrete time system model are shown below:

xk+1 = Axk +Buk

yk+1 =Cxk+1




xk+1

x1
k+1

x2
k+1



=





A 0 0
[0 I2] 0 0

0 I2 0





︸ ︷︷ ︸

Aa





xk

x1
k

x2
k



+

[
B
0
0

]

︸︷︷︸

Ba

uk

yk+1 = [0 0 I2]
︸ ︷︷ ︸

Ca





xk+1

x1
k+1

x2
k+1





(14)

A =







0.984 0.024 −0.29 0.194

−0.08 0.8 0.038 −0.008

0.008 −0.026 0.99 0.0007

−0.0008 0.018 0.0016 1







B =







0.014 −0.014

1.827 −1.827

0.068 −0.068

0.019 −0.019







C =

[
0 0 1 0

0 0 0 1

]

(15)

Here, dim(x1
k) = dim(x2

k) = 2 are the delay states for r and φ and
I2 is a two dimensional unit matrix and the 50 Hz discrete time
state space matrices are shown in (15). The augmented system
(Aa,Ba,Ca) is also observable.

Actuator dynamics In the estimation we can use only the
commanded inputs of the system (see Fig. 5) because the
control surface deflections are not measured on the Vireo. This

means that actuator dynamics (6) will cause a model mismatch.
The transfer function model of the actuator dynamics (6) can be
transformed into discrete time and included in the augmented
system at the input or simply the commanded input can be
’filtered through’ the DT actuator dynamics transfer function.
In the first case the augmented system is not observable, so the
second method is applied and so the filtered commanded inputs
are the inputs of the estimators.

Models for stuck elevons The nominal lateral model of the
system is the augmented one in (14) with two inputs (δL left
and δR right elevon deflections). In case of a stuck fault either
the left or the right elevon goes into a fixed position. This gives
the idea to use two additional lateral models with fixed left or
right elevons to model the possibly faulty system. From these
three models the one giving the lowest residuals shows the
actual fault state of the aircraft (nominal, left elevon stuck, right
elevon stuck).

The faulty system models can be formulated by considering the
stuck surface as a constant state of the system and reorganizing
the model matrices accordingly:






xk+1

x1
k+1

x2
k+1

u(l)




=






A 0 0 B(:, l)
[0 I2] 0 0 0

0 I2 0 0
0 0 0 1






︸ ︷︷ ︸

AaF






xk

x1
k

x2
k

u(l)




+

[
B(:, j)

0
0

]

︸ ︷︷ ︸

BaF

u( j)k

yk+1 = [0 0 I2 0]
︸ ︷︷ ︸

CaF






xk+1

x1
k+1

x2
k+1

u(l)






(16)

Here, B(:, l) is the lth column of the B matrix (l ∈ {1,2}). j is
the other column ( j 6= l). u(l) is the fixed, unknown input, while
u( j)k is the time varying known one (that’s why the constant
u(l) does not have a time index). If the estimators for the faulty
models are accurate enough then the state estimate will give us
also the faulty stuck position of the actuator which can be used
in the reconfiguration of the system. Simulation tests show that
the convergence of the estimated stuck position is slow as it
is assumed to be a constant state, but finally it fits well to the
real stuck value (see the commanded δL signal (which is the
estimated stuck position) relative to the real one in Fig. 9). This
means that regular updates of the estimated stuck position in
the reconfiguration should be done.

4.2 MMAE design and application

KFs for the nominal and the faulty (F) models were designed
by assuming reasonable system and measurement noise. The
nominal system noise covariance matrix is selected as:

QN =< 0.52 (2π/180)2 (2π/180)2 (2π/180)2 0 0 0 0 >

for the faulty system models the additional stuck state noise

is 10−6 making it possible to have a slowly changing stuck
position in the filter and so converge to the real stuck position.
The covariance matrix is:

QF =< 0.52 (2π/180)2 (2π/180)2 (2π/180)2 0 0 0 0 10−6 >

The matrices show that 0.5m/s standard deviation is considered
for the lateral velocity and 2◦/s or 2◦ for the angular rates and



angles respectively. The measurement noise covariance matrix
is:

R =< (2π/180)2 (5π/180)2 >

which shows that the standard deviations of the yaw rate and
roll angle are 2◦/s and 5◦ respectively. Here, <> means a
diagonal matrix. The considered noisy state equations in the
KF design were:

xk+1 = Aa(F)xk +Ba(F)uk +wk

yk+1 =Ca(F)xk+1 + vk+1
(17)

Here, Aa is the matrix of the nominal augmented system, while
Aa(F) = AaF is the matrix of the faulty augmented system so the

(F) term is included only for the faulty system models. This
is the same for the B and C matrices. The designed KFs will
give the predictions and estimates of the augmented state vector.
Note that the actual predicted p̄ roll rate is not delayed by the
model system that is why it should be delayed with 2 discrete
time steps (0.04s) before forming a residual from it. Running
the MMAE in the software-in-the-loop (SIL) simulation has
shown that the yaw rate (r) and roll angle (φ) residuals are
one order of magnitude smaller than the roll rate (p) ones. In
the MMAE originally the residuals are scaled by the inverse
of their covariance matrix in a quadratic form. However, in
the present concept there is no covariance for the p part as it
is not a measured output. That’s why simple diagonal scaling
was applied for the residuals of all filter which increases the
magnitude of the yaw rate and roll angle parts

RES =
[
pmeas − p̄, rmeas − r̄, φmeas − φ̄

]
W





pmeas − p̄
rmeas − r̄

φmeas − φ̄





W =

[
1 0 0
0 100 0
0 0 100

] (18)

These residual values are applied in a modified PPE which
calculates fictitious probabilities in the following way:

pi(t + 1) =
e−RESi(t+1)

Σ3
j=1e−RES j(t+1)p j(t)

pi(t) (19)

The sum of these probabilities is guaranteed to be 1 and the
largest one should show the actual valid model. Assuming that
the system is fault free at initialization the initial probabilities
are selected as pNo = 0.98, pL = pR = 0.01 in contrast to the
default rule presented as pi =

1
N

. Here, No is the probability of
the nominal working mode, L and R are the probabilities for the
left and right stuck modes. None of the initial values should be
zero as in this case they will remain zero all the time (see (19)).

5. BASIC RECONFIGURATION

In case of the stuck fault of one surface on the Vireo the
remaining actuation possibilities will become very limited. One
has one movable surface and the engine to control the whole
aircraft. The first step can be to set the trim position of the
moving surface to the position of the stuck one to not to
generate roll moment in the trim point (that’s why estimation of
the stuck position through the MMAE is also important). This
can only be done if the stuck position does not cause too much

pitching moment so it is around the straight and level flight trim
point.

Then the roll motion (lateral dynamics) of the aircraft can be
controlled by moving the operational surface relative to this
new trim point. The roll tracker gains KRD,KRT can be simply
doubled (Krc

RD = 2KRD and Krc
RT = 2KRT where superscript rc

means the reconfigured roll gain) to substitute the effect of the
other surface’s deflection (assuming linear relation between roll
moment and surface deflection).

The only remaining actuation possibility is to use the throttle
to somehow control the airspeed and altitude (longitudinal dy-
namics) of the aircraft. Controlling two independent variables
with one control input is known to be impossible but a modi-
fication of the total energy control (TECS) concept (see Lam-
bregts (1983a), Lambregts (1983b), Beard (2014) and Argyle
and Beard (2016)) can possibly keep the airspeed and altitude
and so the total energy of the aircraft in an acceptable range by
adding or removing energy from the system through the engine
thrust. This requires that the longitudinal dynamics should be
inherently stable. In case of the Vireo aircraft the longitudinal
poles are as follows:

−0.105± 0.884i, −5.62± 12.7i

so the longitudinal modes are all stable. The total energy is
the sum of potential and kinetic energy. By controlling its
value the system can possibly hold altitude and airspeed within
acceptable limits. So, the throttle can be controlled by a PI

controller (with KT T = 10−3 + 2·10−4

s
gain) relative to its trim

value (δT (0)) based-on the error between the reference and
actual total energies:

δT = δT (0)+KTT ∆E

∆E = mg(hre f − h)+
1

2
m(V 2

re f −V 2)
(20)

Here, hre f and Vre f are the reference altitude and velocity
values, m is the mass of the aircraft and g is the gravitational
constant. Examining deeper this control law shows that ∆E can
be zero in three cases:

(1) State 1: h = hre f , V =Vre f

(2) State 2: h < hre f , V >Vre f

(3) State 3: h > hre f , V <Vre f

State 1 is the targeted state where the system holds altitude and
airspeed. State 2 and 3 can be theoretically arbitrary other states

satisfying V =
√

2g(hre f − h)+V2
re f . However, both of them

characterizes transient points of the Phugoid motion as in state
2 the aircraft should ascend and decelerate and in state 3 the
aircraft should descend and accelerate if the Phugoid motion is
stable (see Cook (2007)) approaching state 1 in both cases. In
a forthcoming work this stability should be examined in detail
through Lyapunov theory for example.

Summing up the things, after reconfiguration the lateral dy-
namics (trajectory tracking) of the aircraft can be controlled
through roll motion with the remaining movable elevon. The
longitudinal dynamics (altitude and airspeed) can be regulated
by applying the total energy concept to control the throttle of
the engine. In the next section the SIL environment and test
results will be introduced.



6. SIL SIMULATION RESULTS

The SIL simulation scheme can be seen in Fig. 5.
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Fig. 5. The scheme of the SIL simulation model

In the scheme the MMAE block includes the actuator model
(6) and fault detection and identification algorithm from Sec-
tion 4, the Controllers block includes the baseline (Section 3)
and reconfiguration (Section 5) controllers together with the
switching between them. The Environment block includes an
Atmosphere model, the Word Magnetic and Gravity models
together with deterministic wind, wind gust and turbulence
(Dryden wind turbulence) models. The References block pro-
vides heading, indicated airspeed (IAS) and altitude references
to the tracking controllers.

Test runs are done for straight and level flight (15 m/s IAS,
100 m altitude, 155 degrees heading) of the aircraft applying
turbulence disturbances through the Dryden wind turbulence
model. Without these disturbances the effect of fault application
and reconfiguration could remain hidden for the steady straight
and level flight case. The 6 m (20 ft) wind velocity was set to
7.72 m/s modeling light turbulence according to DoD (2004).
Three runs were done, one with the nominal system (150
seconds) (Nominal), one with stuck fault of the left surface
at 50 seconds without reconfiguration (Faulty) and one with
stuck fault and reconfiguration (Reconfigured). The results are
summarized in Fig.s 6 to 11.
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Fig. 6 presents the IAS tracking results for Nominal, Faulty and
Reconfigured cases with 15 m/s constant reference. After the
activation of the fault the tracking errors in the faulty case are
larger than in the nominal and there is a high peak at about 75
s. In case of the reconfigured faulty flight the errors are larger
than in the nominal case and smaller or equal then in the faulty
case. There is no large peak with reconfiguration.

Fig. 7 presents the altitude tracking results for Nominal, Faulty
and Reconfigured cases with 100 m constant reference. After
the activation of the fault the tracking errors in the faulty case
are most of the time larger than in the nominal and there is a
low peak at about 75 s. In case of the reconfigured faulty flight
the errors are most of the time smaller then in the faulty case
and even smaller then in the nominal case. There is no large
peak with reconfiguration.

Fig.s 8 and 9 show the commanded and real elevon deflections
with fault activation at 50 s without (Fig. 8) and with (Fig. 9)
reconfiguration. If there is no reconfiguration the left elevon
command can increase to about 25 degrees while the real de-
flection is fixed at about 0.9 degrees. The right elevon command
works about normally until the complete turn at about 75 s.
Finally, the turning is compensated out and tracking of the
given heading is continued as the trajectory parallel with the
reference line in Fig. 10 shows. In case of reconfiguration after
the detection of the fault at about 53 s the commanded left
deflection (which is the output of the left stuck MMAE filter) is
close to the stuck value. Neglecting the switching transient the
right elevon works normally during the whole time.

Regarding the trajectory tracking (Fig. 10) only the heading
reference (155 degrees) is given and tracked no waypoint or
straight line tracking is implemented. However, in the Nominal
and Reconfigured cases the straight flight is pretty nice there
are only small differences from the assumed reference line (not
visible in the figure). On the contrary without reconfiguration
there is a circular trajectory segment (complete turn) and then
there is a large deviation from the line. Of course, in case of
waypoint or line tracking these errors would be smaller but
turbulence can strongly affect the flight qualities if the aircraft
is not reconfigured. The peaks of the IAS and altitude tracking
errors are during this complete turn. These trajectory tracking
results show the effectiveness of the proposed reconfiguration



strategy which makes the completion of a mission with a
reconfigured aircraft possible.
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Fig. 8. Elevon commands and deflections without reconfigura-
tion
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Fig. 9. Elevon commands and deflections with reconfiguration
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Fig. 11. Resulting probabilities from the PPE

Fig. 11 shows the probability outputs in the Nominal case and in
the Faulty case. In the nominal case the probability of nominal
working mode is about 1 and the other probabilities are about
zero all the time. In the faulty case there is a sudden change
around 53 s. The left stuck probability moves to 1 and the
nominal moves to 0. This shows really good detection of the
fault.

Summarizing the results one can conclude that both fault de-
tection and identification and reconfiguration work well and
the aircraft can continue its mission. There is no observable
difference in the tracking of the heading angle with the nominal
or the reconfigured controller. The IAS tracking error changes
from about ±0.5m/s to about ±1.3m/s but this is acceptable
if does not cause stall or overload of the structure. The alti-
tude tracking results are slightly better with the reconfigured
controller (±2m) than with the normal control (±2.5m). The
fault was activated at 50 s and detected at 53 s which seems
to be a long time, but as there is only turbulence disturbance
the reconfiguration is able to stabilize the aircraft. In case of
larger disturbances the detection filters would react faster (as
they would get larger excitation) and so detection and reconfig-
uration could be done earlier.

7. CONCLUSION

This paper has dealt with the in-flight fault detection, identifi-
cation and reconfiguration control of a small unmanned aircraft
equipped with two elevons and an electric engine.

A nonlinear model of the aircraft was developed. This model
was trimmed and linearized at its cruise airspeed, and the
resulting linear models are then used to design the controllers
and fault diagnosis algorithms.

Stuck fault of one elevon is assumed during the mission of the
aircraft. The fault detection and identification is solved with
Multiple Model Adaptive Estimation defining three different
lateral system models, one with all elevons working, one with
left elevon stuck and one with right elevon stuck. LTI Kalman
Filters are designed for all models and their residuals are
processed by a Posterior Probability Evaluator (PPE). The
output of the PPE gives the probabilities with which each model
is valid. It is proven in the literature that the probability of



the model closest to the actual working mode of the system
converges to one, the others converge to zero.

Reconfiguration of the aircraft flight control system is solved
considering the estimated position of the stuck surface. First,
all elevon trim points are set to this value to zero out the lateral
moments resulting from asymmetric deflection (this can only
be applied if the stuck position is small, otherwise there will
be too large pitching moment, but in a normal flight mission
this should be working). Second, the lateral dynamics of the
aircraft is controlled through the remaining working elevon by
doubling the roll gains of the controller. Third the IAS and
altitude are held between acceptable limits by applying total
energy control through the throttle of the engine. This requires
that the longitudinal dynamics of the aircraft should be stable.

A software-in-the-loop (SIL) simulation of the aircraft is built
including the full nonlinear model together with environmental
effects such as wind turbulence. This model is completed by
the fault detection and identification and reconfiguration com-
ponents. Straight and level flight simulations are done with the
nominal system, with a left surface stuck fault without recon-
figuration and a left surface stuck fault with reconfiguration.
Results show that both the fault detection and identification
and the reconfiguration methods work well and the aircraft can
continue the mission despite the stuck fault.

Future research should include proof of the stability of the
total energy control, SIL tests with turns and altitude and IAS
reference changes, then implementation and real flight test of
fault detection and identification and finally reconfiguration on
the Vireo aircraft. Before flight testing, it is advisable to explore
the deflection ranges of the elevons during the planned mission
and check if the longitudinal channel can be stabilized if the
stuck position is the possible maximum during the mission.

ACKNOWLEDGEMENTS

The first author would like to thank Peter J. Seiler, Daniel
Ossmann, Raghu Venkataraman, Curtis Olson and Christopher
Regan for their support and hospitality during his stay in
Summer 2016 and 2017 in Minneapolis which led to the results
of this article.

REFERENCES

Argyle, M.E. and Beard, R.W. (2016). Nonlinear Total Energy
Control for the Longitudinal dynamics of an aircraft. In
2016 American Control Conference (ACC), 6741–6746. doi:
10.1109/ACC.2016.7526733.

Beard, R.W. (2014). UAVBook Supplement To-
tal Energy Control for Longitudinal Autopi-
lot. URL http://uavbook.byu.edu/-

lib/exe/fetch.php?media=shared:-

tecs autopilot.pdf.
Boskovic, J.D., Prasanth, R., and Mehra, R.K. (2007). Retrofit

fault-tolerant flight control design under control effector
damage. Journal of Guidance, Control, and Dynamics, 30,
703712.

Chen, J. and Patton, R. (1999). Robust Model-Based Fault
Diagnosis for Dynamic Systems. Kluwer, Boston, MA.

Chowdhary, G., Johnson, E.N., Chandramohan, R., Kimbrell,
M.S., and Calise, A. (2013). Guidance and control of air-
planes under actuator failures and severe structural damage.
Journal of Guidance, Control, and Dynamics, 36, 1093–
1104.

Cook, M.V. (2007). Flight Dynamics Principles. Elsevier,
second edition.

Crider, L.D. (2004). Control of commercial aircraft with ver-
tical tail loss. In AIAA 4th Aviation Technology, Integration
and Operations (ATIO) Forum.

Ding, S.X. (2008). Model-Based Fault Diagnosis Techniques:
Design Schemes, Algorithms, and Tools. Springer-Verlag,
Germany, first edition.

DoD (2004). Flying Qualities of Piloted Aircraft.
Freeman, P. and Balas, G. (2013). Analytical fault detection

for a small uav. In AIAA Infotech@Aerospace Conference.
Boston, MA, USA.

Freeman, P., Pandita, R., Srivastava, N., and Balas, G. (2013).
Model-based and data-driven fault detection performance for
a small UAV. IEEE Transactions on Mechatronics, 18(4),
1300–1309.

Gertler, J.J. (1998). Fault detection and diagnosis in engineer-
ing systems. Marcel Dekker, first edition.

Goupil, P. (2010). Oscillatory failure case detection in the A380
electrical flight control system by analytical redundancy.
Control Engineering Practice, 18(9), 1110–1119.

Goupil, P. (2011). AIRBUS state of the art and practices on
FDI and FTC in flight control system. Control Engineering
Practice, 19(6), 524 – 539.

Hassani, V., Aguiar, A.P., Athans, M., and Pascoal, A.M.
(2009a). Multiple model adaptive estimation and model
identification using a minimum energy criterion. In Amer-
ican Control Conference (ACC) 2009.

Hassani, V., Aguiar, A.P., Pascoal, A.M., and Athans, M.
(2009b). A performance based modelset-design strategy for
multiple model adaptive estimation. In European Control
Conference (ECC) 2009.

Hitachi, Y. (2009). Damage-Tolerant Control System Design
for Propulsion-Controlled Aircraft. Master’s thesis, Univer-
sity of Toronto.

Hwang, I., Kim, S., Kim, Y., and Seah, C.E. (2010). A survey of
fault detection, isolation, and reconfiguration methods. IEEE
Transactions on Control Systems Technology, 18(3), 636–
653.

Isermann, R. (2006). Fault-Diagnosis Systems: An Introduction
from Fault Detection to Fault Tolerance. Springer-Verlag,
Germany.

Lambregts, A.A. (1983a). Integrated system design for flight
and propulsion control using total energy principles. In
In Proc. of the Aircraft Design, Systems and Technology
Meeting. AIAA, Forth Worth, TX, USA.

Lambregts, A.A. (1983b). Vertical flight path and speed control
autopilot design using total energy principles. In In Proc. of
Guidance and Control Conference. AIAA, Gatlinburg, TN,
USA.

Nguyen, N., Krishnakumar, K., and Kaneshige, J. (2008).
Flight dynamics and hybrid adaptive control of damaged
aircraft. Journal of Guidance, Control, and Dynamics, 31,
751–764.

Steinberg, M. (2005). Historical overview of research in recon-
figurable flight control. Journal of Aerospace Engineering,
219, 263–275.

Venkataraman, R. (2018). Fault-Tolerant Flight Control Using
One Aerodynamic Control Surface, In preparation. Ph.D.
thesis, University of Minnesota.

Venkataraman, R. and Seiler, P.J. (2016). Safe flight using one
aerodynamic control surface. In AIAA Guidance, Navigation,
and Control Conference.


