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Abstract— This paper develops an iterative algorithm to estimate
an invariant set for uncertain systems. The uncertain system is given
as a connection of a nominal linear time-invariant system and a per-
turbation. The input/output behavior of the perturbation is described
by integral quadratic constraints (IQCs). The proposed approach
incorporates IQCs into a dissipation inequality formulation. One issue
is that it is often useful to specify the IQC in the frequency domain or,
equivalently, in the time-domain as a “soft” infinite-horizon constraint.
However, the dissipation inequality formulation requires constraints
that are valid over all finite time horizons. The main technical result
is a finite-horizon bound on soft IQCs constructed using a state-
feedback transformation. This forms the basis for the proposed iterative
algorithm to estimate invariant sets. A simple example is provided to
demonstrate the proposed approach.

I. INTRODUCTION

This paper proposes an algorithm to estimate invariant sets for
uncertain systems. The uncertain system is given as a connection
of a linear, time invariant (LTI) system and a perturbation. Integral
quadratic constraints (IQCs) [7] are used to model the perturbation.
A library of IQCs has been developed for various types of un-
certainties and nonlinearities as summarized in [7], [13]. An IQC
input/output stability theorem was formulated in [7] with frequency
domain conditions and was proved using a homotopy method.

The algorithm proposed in this paper uses a time-domain dis-
sipation inequality [15], [16]. This introduces technical issues
associated with the use of IQCs. In particular, many existing IQCs
are conveniently derived in the frequency domain. These can be
equivalently expressed in the time-domain as infinite horizon “soft”
constraints. However, the dissipation inequality approach requires
constraints that are valid over all finite horizons, often referred to
as “hard” IQCs. In general a time-domain IQC need not be hard,
i.e. it need not specify a valid finite-horizon integral constraint.
Thus additional theory is required to exploit the most general IQC
parameterizations for invariant set calculation. A brief review of
frequency and (soft/hard) time domain IQCs is given in Section II.

The main contribution of this paper is a new method to compute
finite-horizon bounds for soft IQCs. Lemma 3 in Section III-B
introduces an additional freedom involving a state feedback. This
builds upon prior work in [12], [3]. It was shown in [12] that
soft IQCs can be bounded on finite horizons by a min/max game.
The cost of this game can be explicitly computed via an algebraic
Riccati equation (ARE). However, this ARE introduces a non-
convex constraint between variables in the optimization to estimate
an invariant set. This min/max result was subsequently used to
construct a new soft IQC bound in [3]. The bound in [3] is specified
as a (convex) linear matrix inequality (LMI). The drawback is that
the bound in [3] is weaker than the one derived in [12].

The state feedback introduced in Lemma 3 improves upon
the soft IQC bound in [3]. An iterative invariant set algorithm
is proposed in Section III-C to efficiently exploit the additional
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freedom introduced by the state feedback. The first step of the
iterative algorithm is essentially identical to the one given in [3]. It
is shown that the iteration costs are monotonically non-increasing.
Hence the iterative algorithm can provide significantly improved
bounds on the invariant set. A numerical example is provided in
Section IV.

II. INTEGRAL QUADRATIC CONSTRAINTS

A. Notation

Most notation is from [17]. R and R+ denote real and non-
negative real numbers, respectively. C0 and C∞0 := C0 ∪ {∞}
denote the imaginary and extended imaginary axes, respectively.
The para-Hermitian conjugate of G ∈ RLm×n∞ , denoted as G∼,
is defined by G∼(s) := G(−s)T . Next, ARE(A,B,C,D,M)
denotes the following Algebraic Riccati Equation (ARE)

ATX +XA− (XB + S)R−1(XB + S)T +Q = 0 (1)

where Q := CTMC, R := DTMD, and S := CTMD.
The stabilizing solution X = XT , if it exists, yields a gain
Ks = R−1 (XB + S)T such that A − BKs is Hurwitz.
KY P (A,B,C,D,M) denotes the constraint on Y = Y T :[

ATY + Y A Y B
BTY 0

]
+

[
CT

DT

]
M
[
C D

]
< 0 (2)

Finally, for H = HT ≥ 0 and η ≥ 0 define the ellipsoidal set
E(H, η) := {x ∈ Rn : xTHx ≤ η}.

B. Frequency and Time Domain IQCs

IQCs [7] describe the behavior of a system ∆ using quadratic
constraints on its inputs and outputs. In particular, an IQC can be
defined in the frequency domain as follows:

Definition 1. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be given.

A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies the
frequency domain IQC defined by the multiplier Π, if the following
inequality holds for all v ∈ Lnv2 and w = ∆(v)∫ ∞

−∞

[
V (jω)
W (jω)

]∗
Π(jω)

[
V (jω)
W (jω)

]
dω ≥ 0 (3)

where V and W are Fourier transforms of v and w.

IQCs can also be defined in the time domain based on the
graphical interpretation in Figure 1. The input and output signals of
∆ are filtered through an LTI system Ψ with zero initial condition
ψ(0) = 0. In particular, the dynamics of Ψ are given as follows:

ψ̇(t) = Aψψ(t) +Bψ1 v(t) +Bψ2 w(t)

z(t) = Cψψ(t) +Dψ1 v(t) +Dψ2 w(t)
(4)

where ψ ∈ Rnψ is the state and (Aψ, Bψ, Cψ, Dψ) denote the
state matrices of Ψ. Moreover Bψ := [Bψ1, Bψ2] and Dψ :=
[Dψ1, Dψ2] are partitioned conformably with the dimensions of v
and w. A time domain IQC is an inequality enforced on the output
z over infinite (soft IQC) or finite (hard IQC) horizons. The formal
definitions for time domain IQCs are provided next.
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Fig. 1. Graphical interpretation for time domain IQCs

Definition 2. Let Ψ ∈ RHnz×(nv+nw)
∞ and M = MT ∈ Rnz×nz

be given.

(a) A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies
the time domain soft IQC defined by (Ψ,M) if the following
inequality holds for all v ∈ Lnv2 and w = ∆(v)∫ ∞

0

z(t)TMz(t) dt ≥ 0 (5)

where z is the output of Ψ driven by inputs (v, w) with zero
initial conditions.

(b) A bounded, causal operator ∆ : Lnv2e → Lnw2e satisfies the
time domain hard IQC defined by (Ψ,M) if the following
inequality holds for all v ∈ Lnv2e , w = ∆(v) and for all
T ≥ 0 ∫ T

0

z(t)TMz(t) dt ≥ 0 (6)

where z is the output of Ψ driven by inputs (v, w) with zero
initial conditions.

The notation ∆ ∈ IQC(Π), ∆ ∈ SoftIQC(Ψ,M) and ∆ ∈
HardIQC(Ψ,M) is used when ∆ satisfies the corresponding fre-
quency, soft, or hard IQC. A library of IQCs exists for various
types of uncertainties and nonlinearities as summarized in [7], [13].
This library includes IQCs for LTI dynamic and real parametric
uncertainty analogous to the D and G scalings used in structured
singular value µ analysis [8]. It also includes IQCs for static and
time-varying nonlinearities, e.g. the classical Popov and Zames-Falb
multipliers. Many of these existing IQCs are conveniently derived
in the frequency domain. However, Lyapunov and dissipation in-
equality approaches require the use of time domain IQCs. Thus it
is useful to connect frequency and time domain (soft/hard) IQCs.

Note that any time domain IQC yields a valid frequency domain
IQC. Specifically, if ∆ satisfies the (soft or hard) IQC defined
by (Ψ,M) then, by Parseval’s theorem [17], ∆ also satisfies the
frequency domain IQC defined by Π = Ψ∼MΨ. Conversely, any
frequency domain multiplier can be factorized (non-uniquely) as
Π = Ψ∼MΨ with Ψ stable [10]. It follows, again by Parseval’s
theorem, that ∆ ∈ IQC(Π) implies ∆ ∈ SoftIQC(Ψ,M) for any
such factorization. Thus there is an equivalence between frequency
domain and time domain soft IQCs. In special cases, such factor-
izations also yield the stronger condition ∆ ∈ HardIQC(Ψ,M).
However, ∆ ∈ IQC(Π) does not, in general, imply ∆ ∈
HardIQC(Ψ,M). In fact, some factorizations of Π may yield hard
IQCs while others do not. Thus the hard/soft property is not inherent
to the multiplier Π but depends on the factorization (Ψ,M).

C. Game Theoretic Bound for Soft IQCs

As noted above, the dissipation inequality framework requires
the use of time domain IQCs. In particular, it requires the IQC to
be specified as a finite horizon constraint. This is typically done
using hard IQCs where

∫ T
0
z(t)TMz(t) dt ≥ 0 for all T ≥ 0. It is

often useful (for numerical implementations) to instead search over

parameterized soft IQCs specified as infinite horizon constraints.
The use of soft IQCs within the dissipation inequality framework
requires a lower bound on

∫ T
0
z(t)TMz(t) dt valid for all finite

horizons T ≥ 0. This section reviews one such bound from [12].
Assume ∆ : Lnv2e [0,∞) → Lnw2e [0,∞) is a causal, bounded

operator satisfying the soft IQC defined by (Ψ,M). Define the
following min/max game using (Ψ,M):

JΨ,M (ψ0) := inf
v∈Lnv2 [0,∞)

sup
w∈Lnw2 [0,∞)

∫ ∞
0

z(t)TMz(t) dt

subject to z = Ψ [ vw ] (Eq. 4) and ψ(0) = ψ0

(7)

It follows from Lemma 2 in [12] that for all T ≥ 0, v ∈ Lnv2e [0,∞)
and w = ∆(v), the soft IQC is bounded by:∫ T

0

z(t)TMz(t) dt ≥ −JΨ,M (ψ(T )) (8)

where ψ(T ) is the state of Ψ at time T when driven by inputs
(v, w) with initial condition ψ(0) = 0. The proof involves simple
manipulations of the soft IQC and uses the causality of ∆. Tighter
bounds on

∫ T
0
z(t)TMz(t) dt can be derived with additional as-

sumptions on ∆, e.g. the bounds derived in [1] for the case where
∆ is LTI and norm bounded.

The next lemma gives an explicit expression for JΨ,M (ψ(T ))
under additional assumptions on the multiplier.

Lemma 1 ([12]). Let Ψ ∈ RHnz×(nv+nw)
∞ and M = MT ∈

Rnz×nz be given and define Π := Ψ∼MΨ. If Π11 > 0 and Π22 <
0 on C∞0 then1

• DT
ψMDψ is nonsingular and there exists a unique, real,

stabilizing solution X = XT to ARE(Aψ, Bψ, Cψ, Dψ,M).
• If ∆ ∈ SoftIQC(Ψ,M) then for all T ≥ 0, v ∈ Lnv2e [0,∞)

and w = ∆(v),∫ T

0

z(t)TMz(t) dt ≥ −ψ(T )TXψ(T ) (9)

Proof. The first conclusion corresponds to Lemma 4 in [12]. Next,
JΨ,M (ψ(T )) = ψ(T )TXψ(T ) follows from Lemma 5 in [12].
Combining this with the soft IQC min/max bound in Equation 8
yields the second conclusion.

Lemma 1 is valid for multipliers that satisfy the strict conditions
Π11 > 0 and Π22 < 0. Multipliers satisfying the non-strict
conditions Π11 ≥ 0 and Π22 ≤ 0 can be handled via a perturbation
argument [12]. Most multipliers used in IQC analysis satisfy the
non-strict conditions [7], [13]. These conditions have the following
interpretations [6], [4]. Π11 ≥ 0 is necessary and sufficient for
0 ∈ IQC(Π). Π22 < 0 implies any ∆ ∈ IQC(Π) maps zero input
to zero output. Bounded gain operators automatically have this zero
input-zero output property. Moreover, Π22 ≤ 0 further implies that
the set of all ∆ ∈ IQC(Π) is a convex set.

The bound −ψ(T )TXψ(T ) can be interpreted in a dissipation
inequality as the energy stored in the IQC. An issue with this
soft IQC bound is that the multiplier (Ψ,M) and bound X are
related by an ARE. Typically the IQCs are used in optimizations
that search over parameterized multipliers. This is done by selecting
Ψ and optimizing over parameterizations for M . Section IV gives
an example of this numerical procedure. In such situations, the ARE
is a non-convex constraint on M and X .

1The notation Π11 and Π22 refers to the partitioning Π =
[

Π11 Π12
Π∼

12 Π22

]
conformably with the dimensions of v and w. Thus Π11 = Ψ∼1 MΨ1 and
Π22 = Ψ∼2 MΨ2 where Ψ = [Ψ1, Ψ2]. Moreover, Π11 < 0 on C∞0
denotes Π11(jω) < 0 for all ω ∈ R ∪ {∞}.



D. Convex Bound for Soft IQCs

This section reviews a soft IQC bound from [3] specified as a
convex constraint. First set v = 0 in the min/max game (Equation 7)
to obtain the following quadratic optimization:

J̃Ψ,M (ψ0) := sup
w∈Lnw2 [0,∞)

∫ ∞
0

z(t)TMz(t) dt

subject to z = Ψ [ 0
w ] (Eq. 4) and ψ(0) = ψ0

(10)

Selecting v = 0 in the min/max game (Equation 7) can only
increase the cost, i.e. J̃Ψ,M (ψ0) ≥ JΨ,M (ψ0). This yields the
following soft IQC bound (accounting for the sign in Equation 8):∫ T

0

z(t)TMz(t) dt ≥ −J̃Ψ,M (ψ(T )) (11)

where ψ(T ) is the state of Ψ at time T when driven by inputs
(0, w) with initial condition ψ(0) = 0. Note that Equation 10 is a
standard LQ problem and can be explicitly rewritten in the form

J̃Ψ,M (ψ0) := sup
w∈Lnw2 [0,∞)

∫ ∞
0

z(t)TMz(t) dt (12)

subject to:

ψ̇(t) = Aψψ(t) +Bψ2w(t), ψ(0) = ψ0

z(t) = Cψψ(t) +Dψ2w(t)

The next lemma gives an explicit expression for the soft IQC bound
under additional assumptions on the multiplier.

Lemma 2 ([3]). Let Ψ ∈ RHnz×(nv+nw)
∞ and M = MT ∈

Rnz×nz be given and define Π := Ψ∼MΨ. If Π22 < 0 on C∞0
then

• DT
ψ,2MDψ,2 < 0 and there exists a solution Y22 = Y T22 to

KY P (Aψ, Bψ,2, Cψ, Dψ,2,M).
• If ∆ ∈ SoftIQC(Ψ,M) then for all T ≥ 0, v ∈ Lnv2e [0,∞)

and w = ∆(v),∫ T

0

z(t)TMz(t) dt ≥ −ψ(T )TY22ψ(T ) (13)

for any Y22 satisfying KY P (Aψ, Bψ,2, Cψ, Dψ,2,M).

Proof. The assumption Π22 < 0 implies that Π22(∞) :=
DT
ψ,2MDψ,2 < 0. By the KYP Lemma [9], Π22 < 0 also ensures

there exists a Y22 = Y T22 satisfying the KYP constraint. Hence the
first conclusion holds. Next note that Π22 < 0 ensures there exists a
unique stabilizing solution X22 to ARE(Aψ, Bψ,2, Cψ, Dψ,2,M)
such that J̃Ψ,M (ψ(T )) = ψ(T )TX22ψ(T ) [17], [14]. Moreover
the ARE solution is minimal: X22 < Y22 for any feasible solution
to the KYP constraint [5], [11]. Combine this with the soft IQC
bound in Equation 11 to yield the second conclusion.

Lemma 2 relates the multiplier (Ψ,M) and the bound Y22 via
a KYP constraint. As noted above, it is common to search over
classes of IQC by selecting Ψ and optimizing over M . In this case,
the KYP constraint is a convex, linear matrix inequality on M and
Y22. This is the key benefit of the bound in Lemma 2 as compared
to the one in Lemma 1. The drawback is that Lemma 2 is a weaker
lower bound. Specifically, the choice v = 0 yields a smaller soft
IQC bound −JΨ,M (ψ0) ≥ −J̃Ψ,M (ψ0).

Another difference between the two bounds is that Lemma 2 only
requires Π22 < 0. Hence it applies to a larger class of multipliers
than the bound in Lemma 1 which, in addition, requires Π11 > 0.
However, as mentioned previously, most multipliers satisfy Π11 > 0
(or Π11 ≥ 0 using a perturbation argument).

III. ITERATIVE ALGORITHM FOR ROBUST INVARIANT SETS

This section considers the problem of computing invariant sets
for uncertain systems. Subsection III-A formulates the problem and
presents an existing (convex) condition from [3] for computing
invariant sets. The remaining two subsections present the new
results to improve upon the previous result in [3]. These include
a technical lemma (Subsection III-B) and an iterative algorithm to
compute invariant sets (Subsection III-C).

A. Robust Invariant Sets

Consider the uncertain system Fu(G,∆) shown in Figure 2. This
uncertain system is described by the interconnection of a nominal
continuous-time LTI system G and a perturbation ∆. The dynamics
are governed by w = ∆(v) and the following LTI, state-space
dynamics for G:

ẋG(t) = AG xG(t) +BG1 w(t) +BG2 d(t)

v(t) = CG xG(t) +DG1 w(t) +DG2 d(t)
(14)

xG ∈ RnG is the state of G. The inputs to G are w ∈ Rnw and
d ∈ Rnd while v ∈ Rnv is the output. The state matrices of G have
dimensions compatible with these signals, e.g. AG ∈ RnG×nG .

G
d�

∆

v

-

w

�

Fig. 2. Interconnection for an Uncertain System Fu(G,∆)

The perturbation ∆ : Lnv2e → Lnw2e is a bounded, causal operator
whose input/output behavior is specified by IQCs. ∆ can have
block-structure as is standard in robust control modeling [17]. The
operator ∆ can include blocks that are hard nonlinearities (e.g.
saturations) and infinite dimensional operators (e.g. time delays) in
addition to true system uncertainties. The term “uncertainty” is used
for simplicity when referring to the perturbation ∆. Well-posedness
of the interconnection Fu(G,∆) is defined as follows.

Definition 3. Fu(G,∆) is well-posed if for all xG(0) ∈ RnG and
d ∈ Lnd2e there exists a unique solution xG ∈ LnG2e , v ∈ Lnv2e and
w ∈ Lnw2e with a causal dependence on d.

The objective is to compute an invariant set for the uncertain
system Fu(G,∆). The analysis uses a time domain IQC for
∆ defined by (Ψ,M) and relies on the interconnection shown
in Figure 3. The extended system of G (Equation 14) and Ψ
(Equation 4) is governed by the following state space model:

ẋ(t) = Ax(t) + B1w(t) + B2d(t)

z(t) = Cx(t) +D1w(t) +D2d(t)
(15)

where the extended state vector is x :=
[ xG
ψ

]
∈ RnG+nψ and the

state matrices are given by

A :=

[
AG 0

Bψ1CG Aψ

]
,B1 :=

[
BG1

Bψ1DG1 +Bψ2

]
,B2 :=

[
BG2

Bψ1DG2

]
(16)

C :=
[
Dψ1CG Cψ

]
, D1 := Dψ1DG1 +Dψ2, D2 := Dψ1DG2

(17)
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Fig. 3. Extended LTI system of G and filter Ψ

The next theorem provides an analysis condition formulated
with this extended system. The proof uses IQCs and a standard
dissipation argument. This result is essentially a restatement of
Theorem 7 in [3] adapted to the notation used here.

Theorem 1 ([3]). Let G ∈ RHnv×(nw+nd)
∞ be a stable LTI system

defined by (14) and ∆ : Lnv2e → Lnw2e be a bounded, causal
operator. Further assume Fu(G,∆) is well-posed and

1) ∆ ∈ SoftIQC(Ψ,M)

2) Π := Ψ∼MΨ satisfies Π22 < 0 on C∞0
3) ∃ Y22 = Y T22 satisfying KY P (Aψ, Bψ,2, Cψ, Dψ,2,M)

4) ∃ P = PT satisfyingATP + PA PB1 PB2

BT1 P 0 0
BT2 P 0 −I

+

CTDT1
DT2

M
CTDT1
DT2

T < 0

(18)

5) P and Y22 satisfy the following LMI for some H = HT ,H I 0
I P11 P12

0 PT12 P22 − Y22

 > 0 (19)

Then for any d ∈ L
nd
2 [0,∞) with ‖d‖ ≤ α, the trajectories of

Fu(G,∆) starting from x(0) = 0 satisfy xG(t) ∈ E(H−1, α2) for
all t ≥ 0.

Proof. The full proof is given in [3] and a sketch is provided here
for completeness. Define a storage function V : RnG+nψ → R+

by V (x) = xTPx. Let d ∈ Lnd2 [0,∞) be any input signal. From
well-posedness, the extended system has a solution (xG, w, z).
Multiply Equation 18 on the left and right by [xT , wT , dT ] and
[xT , wT , dT ]T to show that V satisfies the dissipation inequality:

V̇ (t) + z(t)TMz(t) ≤ d(t)T d(t) (20)

The dissipation inequality (20) can be integrated from t = 0 to
t = T with the initial condition x(0) = 0 to yield:

V (x(T )) +

∫ T

0

z(t)TMz(t) dt ≤
∫ T

0

d(t)T d(t) dt (21)

Apply the soft IQC bound in Lemma 2 and ‖d‖2 ≤ α to conclude
that for all T ≥ 0:[

xG(T )
ψ(T )

]T [
P11 P12

PT12 P22 − Y22

] [
xG(T )
ψ(T )

]
≤ α2 (22)

Finally, the Schur complement of Equation 19 yields[
I
0

]
H−1 [I 0

]
<

[
P11 P12

PT12 P22 − Y22

]
(23)

Combine Equations 22 and 23 to conclude that xG(T ) ∈
E(H−1, α2)

Note that the second assumption Π22 < 0 implies the third
assumption. A “tight” bound on the invariant set can be obtained
by minimizing some metric related to the ellipsoid volume, e.g.
trace(H). In this optimization, the soft IQC can be parameterized
by selecting (fixed) (Aψ, Bψ, Cψ, Dψ) while M is constrained to
lie in a set described by LMI constraints. Moreover, conditions 2-4
in Theorem 1 are LMI constraints on Y22, P , H , and M . Mini-
mizing trace(H) subject to these LMI constraints is a semidefinite
program (SDP) in variables Y22, P , H , and the variables used to
parameterize M . Hence it can be efficient solved. Also note that this
theorem can be modified to compute bounds on individual signals
rather than on the state xG as in Corollary 8 of [3]. Other measures
of ellipsoid size, e.g. ellipsoid volume log det(H), also lead to a
convex optimization.

B. Soft IQC Bounds via State Feedback

The soft IQC lower bound in Lemma 2 is obtained by setting
v = 0 in the min/max game (Equation 7). This yields a conservative
bound, in general, because v = 0 need not be the minimizing
input. The soft IQC bound may be improved by selecting some
v = v0 ∈ L2 other than v = 0. The basic intuition for the technical
result in this section is to select some (v0, w0) and perform a change
of variables [ vw ] := [ v0w0 ]+

[
δv
δw

]
in the min/max game. This yields a

min/max game involving inf over δv and sup over δw. Setting δv =
0 and maximizing over δw yields a soft IQC bound corresponding
to some v = v0. If v0 is properly selected then this will improve
upon the bound for (Ψ,M) obtained with v0 = 0.

To derive this new soft IQC bound, consider the inputs [ v0w0 ] =
−Kψ for some state feedback K. The state feedback −Kψ acting
on Ψ yields a new system Ψ̄K with the following state matrices:

(ĀK , B̄K , C̄K , D̄K) := (Aψ −BψK,Bψ, Cψ −DψK,Dψ)
(24)

As before, the inputs to Ψ̄K are partitioned according to the
dimensions of v and w, e.g. B̄K := [B̄K,1, B̄K,2]. The next lemma
provides a soft IQC bound for (Ψ,M) in terms of the related
pair (Ψ̄K ,M) obtained after state feedback. It is important to note
that (Ψ,M) is the actual multiplier for the uncertainty ∆. Here
(Ψ̄K ,M) need not be interpreted as an actual IQC for ∆ but is
simply used to obtain a new bound for (Ψ,M).

Lemma 3. Let Ψ ∈ RHnz×(nv+nw)
∞ , M = MT ∈ Rnz×nz , and

K ∈ R(nv+nw)×nψ be given. Assume Aψ −BψK is Hurwitz and
define Π := Ψ∼MΨ and Π̄K := Ψ̄∼KMΨ̄K .
If Π11 > 0, Π22 < 0, Π̄K,11 > 0, Π̄K,22 < 0 on C∞0 then

• D̄T
K,2MD̄K,2 < 0 and there exists a solution Ȳ22 = Ȳ T22 to

KY P (ĀK , B̄K,2, C̄K , D̄K,2,M).
• DT

ψMDψ is nonsingular and there exists a unique, real,
stabilizing solution X = XT to ARE(Aψ, Bψ, Cψ, Dψ,M).
Moreover X ≤ Ȳ22.

• If ∆ ∈ SoftIQC(Ψ,M) then for all T ≥ 0, v ∈ Lnv2e [0,∞)
and w = ∆(v),∫ T

0

z(t)TMz(t) dt ≥ −ψ(T )T Ȳ22ψ(T ) (25)

Proof. (Ψ̄K ,M) satisfies the conditions of Lemma 2 and hence the
first conclusion follows immediately. In addition, (Ψ,M) satisfies
the conditions of Lemma 1. Hence there exists a unique, real stabi-
lizing solution X = XT to ARE(Aψ, Bψ, Cψ, Dψ,M) such that



∫ T
0
z(t)TMz(t) dt ≥ −ψ(T )TXψ(T ). The proof is completed

by showing X ≤ Ȳ22. First, note that (Ψ̄K ,M) also satisfies the
conditions of Lemma 1. Hence there exists a unique, real stabilizing
solution X̄ = X̄T to ARE(ĀK , B̄K , C̄K , D̄K ,M). X̄ yields the
cost of the min/max game JΨ̄K ,M

(Equation 7) while Ȳ22 yields the
cost of the LQ game J̃Ψ̄K ,M

(Equation 12). As noted previously,
the LQ game is obtained by setting v = 0 in the min/max game
and this can only increase the cost. Hence J̃Ψ̄K ,M

≥ JΨ̄K ,M
, i.e.

Ȳ22 ≥ X̄ . Finally, it follows from Lemma 4 (conclusion 1) in the
appendix that ARE solutions are not changed by state feedback
transformations, i.e. X = X̄ . Hence X = X̄ ≤ Ȳ22.

Theorem 1 can be generalized to incorporate the feedback gain
K.

Theorem 2. Let G ∈ RHnv×(nw+nd)
∞ be a stable LTI system

defined by (14) and ∆ : Lnv2e → Lnw2e be a bounded, causal
operator. Further assume Fu(G,∆) is well-posed and

1) ∆ ∈ SoftIQC(Ψ,M)
2) Π := Ψ∼MΨ satisfies Π11 > 0 and Π22 < 0 on C∞0 .
3) ∃ K ∈ R(nv+nw)×nψ such that Aψ − BψK is Hurwitz and

Π̄K := Ψ̄∼KMΨ̄K satisfies Π̄K,11 > 0 and Π̄K,22 < 0 on
C∞0 .

4) ∃ Ȳ22 = Ȳ T22 satisfying KY P (ĀK , B̄K,2, C̄K , D̄K,2,M).
5) ∃ P = PT satisfying the LMI in Equation 18.
6) P and Ȳ22 satisfy the LMI in Equation 19 for some H = HT .

Then for any d ∈ L
nd
2 [0,∞) with ‖d‖ ≤ α, the trajectories of

Fu(G,∆) starting from x(0) = 0 satisfy xG(t) ∈ E(H−1, α2) for
all t ≥ 0.

Proof. The proof is similar to the one given for Theorem 2. The
only difference is that the soft IQC bound

∫ T
0
z(t)TMz(t) dt ≥

−ψ(T )T Ȳ22ψ(T ) can be used based on Lemma 3.

The third assumption provides additional restrictions on the
multiplier required to apply Lemma 3. The benefit is that this
introduces the additional degree of freedom K. This can be used to
improve the soft IQC lower bound and hence improve the estimate
of the invariant set. Unfortunately K and Ȳ22 enter bilinearly in
the KYP constraint (assumption 4). The next section presents an
approach to efficiently exploit the freedom in selecting K.

C. Iterative Algorithm

This section introduces an iterative algorithm to compute an
invariant set estimate for Fu(G,∆) where G ∈ RHnv×(nw+nd)

∞
and ∆ ∈ SoftIQC(Ψ,M). Assume the soft IQC is parameterized
by selecting (fixed) Ψ while M is described by LMI constraints. A
summary of the proposed approach is given in Algorithm 1. In the
first iteration, K0 = 0 so that Ψ̄K0 = Ψ. For this first iteration, the
minimization of trace(H) in step 3 is the same as the SDP obtained
from the approach in [3] (and restated here as Theorem 1). This
SDP, if feasible, yields the optimal variables (H1, P 1, Ȳ 1

22,M
1)

and optimal cost γ1 := trace(H1).
In each subsequent iteration (i > 1), the soft IQC from the

previous solution, i.e. (Ψ,M i−1), is used to construct a stabilizing
gain Ki−1 and filter Ψ̄Ki−1 . The minimization of trace(H) in
step 3 is again an SDP for the fixed choices Ki−1 and Ψ̄Ki−1 .
Roughly, step 3 updates the actual soft IQC M i while steps 5 and
6 update the feedback Ki used to obtain an improved bound. The
next theorem demonstrates that this iteration yields a monotonically
non-increasing sequence of costs.

Theorem 3. The optimal costs at each iteration of Algorithm 1
satisfy γi+1 ≤ γi.

Algorithm 1 Iterative Invariant Set Estimation

1: Initialize: K0 = 0
2: for i = 1 : Niter do
3: Minimize trace(H) subject to the conditions in Theorem 2

using Ki−1. This yields (Hi, P i, Ȳ i22,M
i) and optimal cost

γi := trace(Hi).
4: if i < Niter then
5: Solve ARE(Aψ, Bψ, Cψ, Dψ,M

i) for Xi.
6: Compute the stabilizing gain Ki = R−1

(
XiB + S

)
where R := DT

ψM
iDψ and S := CTψM

iCψ .
7: end if
8: end for

Proof. Let (Hi, P i, Ȳ i22,M
i) and γi be the optimal variables and

cost from the ith iteration. These variables are feasible for the
conditions in Theorem 2 with Ki−1. This implies that (Ψ,M i)
and Ki−1 satisfy the conditions of Lemma 3. As a result, Xi in
Step 5 exists with stabilizing gain Ki. Moreover, Xi ≤ Ȳ i22.

Define the following point for the next iteration i+ 1:

(Hi+1, P i+1, Ȳ i+1
22 ,M i+1) = (Hi, P i, Xi,M i) (26)

It is shown that this point satisfies assumptions 1-6 in Theo-
rem 2 with Ki and hence is feasible for iteration i + 1. First,
the feasibility of iteration i implies ∆ ∈ SoftIQC(Ψ,M i+1)
(Assumption 1) and P i+1 satisfies the LMI in Equation 18 (As-
sumption 4). In addition, P i+1, Ȳ i+1

22 , and Hi+1 satisfy the
LMI in Equation 19 because Ȳ i+1

22 := Xi ≤ Ȳ i22 (Assumption
6). Next note that Xi and its stabilizing solution Ki are fea-
sible for ARE(ĀKi , B̄Ki,2, C̄Ki , D̄Ki,2,M

i+1) by conclusion
2 of Lemma 4 in the appendix. Thus, by the Schur complement
lemma [2], Xi satisfies KY P (ĀKi , B̄Ki,2, C̄Ki , D̄Ki,2,M

i+1)
with the non-strict inequality ≤ (Assumption 5). Finally, define
Π̄Ki := Ψ̄∼KiM

i+1Ψ̄Ki This satisfies Π̄Ki,22 < 0 because
DT
ψ,2M

i+1Dψ,2 < 0 and, as noted above, Xi is the stabilizing so-
lution for the ARE corresponding to the (2,2) block of Π̄Ki [17]. It
can similarly be shown that Π̄Ki,11 > 0. Thus assumption 3 holds.
In summary, this demonstrates that the variables in Equation 26 are
marginally feasible for all conditions in Theorem 2 using Ki. The
marginal feasibility is because Xi, in general, satisfies the non-
strict KYP constraint. The cost of this marginally feasible point is
trace(Hi+1) = γi. Strictly feasible points can be generated with
cost arbitrarily close to this value2 and hence the optimal cost of
iteration i+ 1 must satisfy γi+1 ≤ γi.

As noted above, the first iteration of Algorithm 1 corresponds
to the approach in [3]. By Theorem 3, the cost can only improve
on subsequent iterations. In particular, if v = 0 fails to be optimal
for the min/max game then the ARE solution provides a strictly
better soft IQC bound than the KYP LMI, i.e. Xi < Ȳ i22. This is
often the case. As a consequence the point in Equation 26 typically
allows for some room to modify Hi+1 in the LMI 19 thus enabling
a strict decrease in the cost. Also note that Algorithm 1 is written
to terminate after a fixed number Niter of iterations. It can be
easily modified to incorporate alternative stopping conditions, e.g.
terminate if γi − γi+1 is less than a specified absolute or relative
tolerance. In fact γi will converge since it is a monotone sequence
bounded below by zero.

2This follows because Xi is feasible for
ARE(ĀKi , B̄Ki,2, C̄Ki , D̄Ki,2,M

i+1). This implies feasibility
of the corresponding strict KYP constraint. Moreover, Xi is minimal in
that it lower bounds any solution to the KYP constraint.



ν 0 1 2 4 8
Iter #1 285.30 15.08 14.10 14.03 14.03
Iter #2 285.30 12.68 12.19 12.19 12.18
Iter #3 285.30 12.51 11.87 11.85 11.83
Iter #4 285.30 12.49 11.85 11.83 11.81
Iter #5 285.30 12.49 11.85 11.82 11.80

Time (sec) 1.73 1.80 1.95 3.37 9.22

TABLE I
BOUNDS ON trace(H) AND TOTAL COMPUTATION TIMES FOR κ = 0.4

ν 0 1 2 4 8
Iter #1 ∞ 32.74 27.13 26.07 25.98
Iter #2 ∞ 20.78 20.12 20.00 19.84
Iter #3 ∞ 20.16 18.50 18.53 18.52
Iter #4 ∞ 20.09 18.48 18.46 18.46
Iter #5 ∞ 20.08 18.48 18.45 18.45

Time (sec) N/A 1.81 2.11 3.39 9.84

TABLE II
BOUNDS ON trace(H) AND TOTAL COMPUTATION TIMES FOR κ = 0.8

IV. NUMERICAL EXAMPLE

Example 1 in [3] consists of the uncertain system Fu(G,∆) with
real parametric uncertainty. Specifically, the state matrices of G are:

AG =

−2 −1 −1
1 0 0.1
0 1 0

 BG =

 1 2
0 −0.1
−0.1 0.2


CG =

[
−1.1 0.5 0.1

]
DG =

[
0 1

]
The uncertainty is ∆(z) = δz where δ ∈ R and |δ| ≤ κ.
The stability margin for Fu(G,∆), computed using robstab
in Matlab, is κSM = 1.073. The proposed algorithm is used to
estimate invariant sets for two values of κ < κSM .

The IQCs for ∆ are specified as Π := Ψ∼MΨ where

Ψν :=

[
κHν 0

0 Hν

]
, M :=

[
M11 M12

MT
12 −M11

]
(27)

Here Hν :=
[
1, 1

s+1
, . . . , 1

(s+1)ν

]T
is a (fixed) vector of stable

basis functions. M11 and M12 are (matrix) variables to be selected
in the optimization. If M12 = −MT

12 and H∼ν M11Hν > 0 on C∞0
then ∆ ∈ SoftIQC(Ψν ,M) [7], [13]. Define Πν := Ψ∼νMΨν . The
constraint H∼ν M11Hν > 0 can be enforced by a KYP LMI [9] and
ensures both Πν,11 > 0 and Πν,22 < 0. The choices for ν and the
pole of Hν can, in general, affect the analysis result [13].

Algorithm 1 was run for Niter = 5 iterations with κ = 0.4 and
κ = 0.8. Tables I and II show the optimal cost at each iteration for
several values of ν. Total computation time for the five iterations
is also shown for each value of ν. The computation was performed
on a laptop with an Intel core i5 processor. The optimal costs
for Iteration #1 agree with the results reported in [3]. Note that
the optimal costs are non-increasing thus confirming Theorem 3.
Moreover, the final cost after five iterations shows improvement in
each case over the results in [3]. The results for ν = 0 and κ = 0.8
were infeasible at the first iteration and are reported as γi =∞.

V. CONCLUSIONS

This paper proposed a method to estimate invariant sets for
uncertain systems. The main technical contribution of the paper is

a new finite-horizon bound for soft IQCs based on a state-feedback
transformation. An iterative algorithm to estimate invariant sets is
proposed using this bound. The soft IQC bounds allows for a wide
class of IQC multipliers to be used for estimating invariant sets.
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performance analysis based on integral quadratic constraints. European
Journal of Control, 31:1–32, 2016.

[14] J.C. Willems. Least squares stationary optimal control and the
algebraic Riccati equation. IEEE TAC, 16:621–634, 1971.

[15] J.C. Willems. Dissipative dynamical systems part i: General theory.
Archive for Rational Mech. and Analysis, 45(5):321–351, 1972.

[16] J.C. Willems. Dissipative dynamical systems part ii: Linear systems
with quadratic supply rates. Archive for Rational Mech. and Analysis,
45(5):352–393, 1972.

[17] K. Zhou, J.C. Doyle, and K. Glover. Robust and Optimal Control.
Prentice-Hall, 1996.

APPENDIX

Lemma 4. Let (A,B,C,D,M) be matrices of appropriate dimen-
sion. Let B = [B1, B2] and D = [D1, D2] be any partitioning.

1) For any matrix K of appropriate dimension, X is a stabilizing
solution of ARE(A,B,C,D,M) if and only if X is also a
stabilizing solution of ARE(A−BK,B,C −DK,D,M).

2) Let X be the stabilizing solution of ARE(A,B,C,D,M)
with stabilizing gain Ks := R−1(XB + S)T where R :=
DTMD and S := CTMD. Then X is the stabilizing solution
of ARE(A−BKs, B2, C −DKs, D2,M).

Proof. (Conclusion 1) Let X be a stabilizing solution to ARE(A−
BK,B,C −DK,D,M) with stabilizing gain K̄s = R−1(XB +
S̄)T where R := DTMD and S̄ = (C − DK)TDM . Hence
(A − BK) − BK̄s is Hurwitz. It can be directly verified that X
is also a solution to ARE(A,B,C,D,M) and the corresponding
gain is Ks = R−1(XB + S)T with S := CTMD. Finally, (A−
BK)−BK̄s can be rewritten as (A−BKs) and hence Ks is also
stabilizing. The reverse direction follows similarly.

(Conclusion 2) Verify by direct substitution using (XB + S)−
KT
s R

T = 0 which implies XB2 + (C −DKs)
TMD2 = 0.


