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LPV Model Order Reduction by Parameter-Varying
Oblique Projection

Julian Theis, Peter Seiler, and Herbert Werner

Abstract—A method to reduce the dynamic order of linear
parameter-varying (LPV) systems in grid representation is de-
veloped in this paper. It consists of an oblique projection and
is novel in its use of a parameter-varying kernel to define the
direction of this projection. Parameter-varying state transforma-
tions in general lead to parameter rate dependence in the model.
The proposed projection avoids this dependence and maintains
a consistent state space basis for the reduced-order system.
This extension of the projection framework lends itself very
naturally to balanced truncation and related approaches that
employ Gramian-based information to quantify the importance
of subspaces. The proposed method is used in this paper to
approximate balancing and truncation for two LPV systems: the
longitudinal dynamics model of an aeroservoelastic unmanned
aerial vehicle and the far wake model of a wind farm.

Index Terms—Linear parameter-varying (LPV) systems, model
order reduction

I. INTRODUCTION

AMETHOD to reduce the number of states of lin-
ear parameter-varying (LPV) systems in grid represen-

tation is developed in this paper. LPV models are particularly
useful for the design and analysis of gain-scheduled controllers
due to the availability of powerful synthesis techniques and
computational tools [1], [2]. Both analysis and synthesis
require the solution of linear matrix inequalities (LMIs). The
required computation for this solution grows rapidly with
increasing state dimension and hence limits applicability to
models with relatively few states. With current tools, models
with an order of about 50 states are tractable. For many
physically motivated models, directly obtaining models with
such a low number of states is not easy. For instance, structural
mechanics models are often obtained from finite element
analysis with a dense grid of nodes and hence these models
have a large number of states. Similarly, unsteady aerodynamic
models often have several thousands of states. The method
proposed in this paper can be used to obtain low-order models
that can be used for LPV analysis and synthesis. It thus helps
to increase the applicability of LPV control techniques to
models that are otherwise out of the scope.

LPV model order reduction was first addressed in [3],
[4] by generalizing the concept of balancing and trunca-
tion [5]. Balancing and truncation consists of a state space
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coordinate transformation followed by removing states that are
considered negligible in the new coordinates. The procedure
requires the solution of LMIs to obtain generalized Gramians.
Hence, this approach suffers from the same computational
limitations as LPV analysis and synthesis problems. In ad-
dition, LPV balancing in general involves parameter-varying
transformations. Parameter-varying transformations acknowl-
edge the parameter-dependence of the dynamic system but
introduce additional rate terms. In order to avoid this rate
dependence, possibly conservative constant transformations
have to be used. Model order reduction by parameter-varying
oblique projection takes a middle ground and allows part
of the transformation to be parameter-varying while another
part is kept constant. It turns out that these two parts have
clear interpretations in terms of test and basis spaces in the
Petrov-Galerkin approximation of dynamic systems. The main
technical contribution is thus a possibility to use a partially
parameter-varying transformation without the introduction of
additional rate dependence. This extension of the projection
framework relates very naturally to balanced truncation and
related approaches that employ Gramian-based information
to quantify the importance of subspaces for model order
reduction. By considering linear time invariant (LTI) Gramians
at fixed parameter values, it becomes possible to approximate
balancing and truncation for LPV systems without the need to
solve LMIs.

Several other approaches have been proposed for LPV
model order reduction that use LTI techniques for frozen-
parameter models and then seek to interpolate the reduced-
order models for time-varying parameters, e. g., [6]–[10].
These approaches in general struggle with maintaining a
consistent state space base basis for the reduced-order sys-
tem. This problem is avoided by using the parameter-varying
oblique projection proposed in this paper. In recent years,
the problem of parametric model reduction has also received
considerable attention, e. g., [11]–[13]. Parametric model re-
duction considers only constant parameter values and the goal
is to approximate a family of parameterized LTI models.
This differs substantially from the LPV model order reduction
problem studied in this paper which considers time-varying
parameter values and whose goal is to approximate an LPV
model. The proposed method nevertheless includes parametric
models as a special case of LPV systems, and can hence also
be applied to this problem class.

The present paper describes parameter-varying projection
as a versatile order reduction method for LPV systems. It
extends the results of [14] and demonstrates the effectiveness
of the approach on two detailed application examples. The
first example is the high-fidelity model of the longitudinal
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dynamics of a small unmanned aeroservoelastic aircraft, where
the number of states is reduced from 48 to 12. The second
example is a model for unsteady aerodynamics in a wind farm,
where a reduction from 20502 to 6 states is achieved.

II. BACKGROUND

LPV systems are dynamic systems whose state space ma-
trices are continuous functions of a time-varying parameter
vector ρ(t) ∈ Rnρ . Based on physical considerations, the
admissible parameter trajectories are confined to a compact
set P ⊂ Rnρ . This infinite dimensional set is commonly
approximated by a finite dimensional subset {ρk}

ng
k=1 ⊂ P ,

called a grid. The state space equations for an LPV system
with state vector x(t) ∈ Rnx , input vector u(t) ∈ Rnu , and
output vector y(t) ∈ Rny are

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t).
(1)

The problem of LPV model order reduction consists of finding
an approximation for the dynamic system (1) as

ż(t) = Ared(ρ(t)) z(t) +Bred(ρ(t))u(t)

y(t) = Cred(ρ(t)) z(t) +Dred(ρ(t))u(t) .
(2)

The reduced state z(t) ∈ Rnz should be of much lower
dimension than x(t) ∈ Rnx , while the input-output behavior
from u to y should be as similar as possible to that of the
original model. Further, stability of the original model should
be preserved in the reduced-order model.

In the remainder of this paper, time dependence is dropped
and parameter dependence is denoted by the subscript ρ, i. e.,
Aρ := A(ρ(t)).

A. Balancing and Truncation

In order to simplify the presentation of the background
material, a fixed parameter ρ = ρk is considered. Thus,
system (1) simplifies to the standard LTI system

ẋ = Ax+B u

y = C x+Du .
(3)

A standard model reduction method for LTI systems is balanc-
ing and truncation [5]. It requires the controllability Gramian
Xc and the observability Gramian Xo that are obtained as
solutions to the Lyapunov equations

AXc +XcA
T +BBT = 0 , (4a)

ATXo +Xo A+ CTC = 0 . (4b)

Given a state x0, the minimum energy required to steer the
system from x = 0 to x = x0 is εc = xT0 X

−1
c x0. Further,

εo = xT0 Xo x0 is the energy of the free response to the
initial condition x0 [5]. The ratio εo/εc thus measures how
much a state is affected by the input and how much it affects
the output. A balancing transformation [ x1

x2
] = T x can be

calculated so that T Xc T
T = (T−1)TXo T

−1 = Σ
1/2
H , where

ΣH is called the matrix of Hankel singular values. It is
diagonal and contains the eigenvalues of the product Xc Xo
ordered by decreasing magnitude along its diagonal. These

values are exactly the ratios εo/εc for each state in the new
coordinates. Partitioning the state vector such that x1 contains
the states with large Hankel singular values and x2 those with
small Hankel singular values, system (3) can be written as

ẋ1 = A11 x1 +A12 x2 +B1 u

ẋ2 = A21 x1 +A22 x2 +B2 u

y = C1 x1 + C2 x2 + Du .

(5)

The states that are both highly controllable and observable are
represented by z := x1. The states x2 contribute little to the
input-output behavior and are removed from the state vector
by truncation, leading to a reduced-order model

ż = A11 z +B1 u

y = C1 z + Du .
(6)

For large-scale systems with several thousands of states,
the Lyapunov equations (4) become intractable. In this case,
low-rank approximations of the Gramians can be used instead.
For LTI systems, the controllability Gramian corresponds
to
∫∞

0
eA tBBT eA

T tdt, or equivalently
∫∞

0
X(t)XT (t)dt,

where X(t) = [eA tB1 · · · eA tBnu ] is the state response
to Dirac impulses applied individually to all inputs and Bi
denotes the ith column of B [5], [15], [16]. These impulse
responses can be obtained by simulating the autonomous
system ẋ = Ax with initial conditions x0 = Bi for a
sufficiently long time period. A finite number of samples
along this state trajectory is collected into a matrix Xsample =
[X(t1) X(t2) . . . X(tN )]. An approximation for the infinite
integral is then

Xc =

∫ ∞
0

X(t)XT(t)dt ≈ Xsample X
T
sample, (7a)

so that the rank of the empirical estimate is limited by
the number of samples. Completely analogous, an empirical
observability Gramian can be obtained as

Xo ≈ Psample P
T
sample , (7b)

where Psample = [P (t1) P (t2) . . . P (tN )] collects samples of
the matrix of state trajectories P (t) = [eA

T tCT1 · · · eA
T tCTnu ],

obtained from simulating the adjoint system ṗ = AT p. The
initial conditions for this simulation are p0 = CTi , where Ci
denotes the ith row of the matrix C. For further details and
generalizations for the approximation of nonlinear systems,
see [16]–[18].

While simultaneous observability and controllability is
a very useful metric for model order reduction, many
engineering problems require the emphasis of a certain
frequency region. Balancing and truncation in its stan-
dard form solves an approximation problem of the form
‖G(s)−Gapprox(s)‖∞ < ε, i. e., there exists an error bound
in the H∞ norm and thus on the worst error over all
frequencies. The frequency-weighted approximation problem,
first introduced in [19], is of the form ‖Ωo(s) (G(s) −
Gapprox(s)) Ωi(s)‖∞ < ε, where Ωo(s) = CΩo(sI −
AΩo)

−1BΩo + DΩo and Ωi(s) = CΩi(sI − AΩi)
−1BΩi + DΩi

are stable, minimum phase weighting filters that emphasize
a frequency range of interest. Weighted Gramians Xc and Xo
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that measure controllability and observability in this frequency
range of interest can be calculated by solving the two aug-
mented Lyapunov equations[

A BCΩi

0 AΩi

] [
Xc ?
? ?

]
+

[
Xc ?
? ?

] [
A BCΩi

0 AΩi

]T
+

[
BDΩi

BΩi

] [
BDΩi

BΩi

]T
= 0,

(8a)

[
A 0

BΩoC AΩo

]T[
Xo ?
? ?

]
+

[
Xo ?
? ?

] [
A 0

BΩoC AΩo

]
+
[
DΩoC CΩi

]T [
DΩoC CΩi

]
= 0.

(8b)

The ? in (8) denote block matrices that correspond to filter
states and are, in general, of no interest for the model order
reduction.

B. Projection Perspective on Model Order Reduction

The truncation that turns (5) into (6) can be expressed as
replacing [ x1

x2
] with [Inz 0nz×(nx−nz)]T x1 and multiplying the

state equation from the left by [Inz 0nz×(nx−nz)]. An equivalent
representation of the balanced reduced-order system (6) is thus

ż =

Ared︷ ︸︸ ︷
WTAV z +

Bred︷ ︸︸ ︷
WTB u

y = C V︸︷︷︸
Cred

z +Du
(9)

with V =T−1[Inz 0nz×(nx−nz)]T , WT=[Inz 0nz×(nx−nz)]T . It
is shown in this section that the reduced-order model (9) and
hence balancing and truncation is a Petrov-Galerkin approxi-
mation of the original system, i. e., an approximation obtained
by oblique projection. Taking this perspective allows the
extension to LPV systems in Section III-A and to consequently
construct an approximation to LPV balancing and truncation
in Section III-B.

An oblique projection is a linear operation defined by a ma-
trix Π = V (WTV )−1WT with V ∈ Rnx×nz , W ∈ Rnx×nz
and rank(WTV ) = nz . Hence, a projection is idempotent,
i. e., Π = Π2. It is completely characterized by its range
space span(Π) = span(V ) and its nullspace ker(Π) =

span
(
ΠT
)⊥

= span(W )
⊥. This fact is easy to prove by re-

placing V and W with their respective thin QR-factorizations.
A vector space is said to be projected by Π along the orthog-
onal complement of the subspace spanned by the columns
of W and onto a subspace spanned by the columns of
V . The projection thus restricts the vector space Rnx to a
lower dimensional subspace span(V ) ⊂ Rnx . Reference [20,
Corollary 2.1] shows that any projection can be parameterized
by V and a symmetric positive definite matrix S ∈ Rnx×nx
as

Π = V (V TS V )−1 V TS︸ ︷︷ ︸
WT

. (10)

Any W constructed in this way is biorthogonal to V , i. e.,
WTV = Inz . Thus, from this point on, biorthogonality of V
and W is assumed without loss of generality.

It helps to apply some geometrical interpretation at this
point. Given V and W with WTV = Inz and a point x ∈ Rnx ,

the projection of x lies in the span of V and can hence be
written as V z with some coefficient vector z ∈ Rnz . The
component of x that is eliminated by the projection is in
the nullspace of Π and hence orthogonal to W . This can
be stated as WT (x− V z) = 0. The projection Πx can thus
be seen as an approximation to x in span(V ) with zero
error within span(W ). The subspace span(V ) is consequently
termed basis space of the approximation and span(W ) is
called test space.

Model order reduction requires the approximation of a
dynamic system given by a differential equation, rather than
an approximation for a single point in the state space. The
goal is thus to find an approximate solution xapprox = V z to
the state equation in (3), i. e.

ẋapprox︸ ︷︷ ︸
V ż

≈ A xapprox︸ ︷︷ ︸
V z

+B u . (11)

From the previous discussion, V z is uniquely determined by
z = WTx for given V , W , and x. Hence, the right hand
side of (11) is known for a given state x and input u. A
solution for the nz-dimensional vector ż, however, requires the
nx equations imposed by (11) to be satisfied. Consequently,
no ż exists, in general, that exactly satisfies (11). The residual
of the approximation is

r := V ż − (AV z +B u) . (12)

If ż is now selected such that the residual (12) is restricted to
be orthogonal to the test space span(W ), i. e.

WT (V ż − (AV z +B u)) = 0 , (13)

the procedure is known as Petrov-Galerkin approximation, see
e. g. [16], [21], [22]. The unique solution to (13) is

ż = WTAV z +WTB u . (14)

The desired approximation is hence given by xapprox = V z,
where z is the solution to (14). Adding the output equation
y = C xapprox + Du to (14) then yields the reduced-order
model (9). This shows, that balancing and truncation is indeed
a Petrov-Galerkin approximation.

Given controllability and observability Gramians, obtained
by any of the three methods described in Section II-A, this
projection can be directly constructed from what is known as
the square root algorithm [23]. Doing so requires the Cholesky
factorizations Xo = Lo L

T
o and Xc = Lc L

T
c , as well as the

singular value decomposition (SVD) of the product

LTc Lo =
[
U1 U2

] [Σ1

Σ2

] [
N1 N2

]T
. (15)

The singular values are ordered by descending magnitude,
such that the diagonal matrix Σ1 contains the largest nz
singular values. The orthogonal matrices [ U1 U2 ] and [N1 N2 ]
contain the corresponding left and right singular vectors.1 The
oblique projection for balancing and truncation is

Πbal = Lc U1 Σ
−1/2
1︸ ︷︷ ︸

V

Σ
−1/2
1 NT

1 LTo︸ ︷︷ ︸
WT

. (16)

1The notation N is chosen here to avoid confusion with the matrix V used
to denote a basis for the range space of a projection.
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The projection is thus onto span(Lc U1) and along
ker
(
NT

1 L
T
o

)
, where the singular values are a mere scaling of

the states, see [16], [23], [24] for details. Another form of this
projection will be used throughout Section III. It is formulated
in the following proposition.

Proposition 1: Let the controllability and observability
Gramians Xo = Lo L

T
o and Xc = Lc L

T
c , and the SVD of

the product LTc Lo = [ U1 U2 ]
[

Σ1

Σ2

]
[N1 N2 ]

T be given. Let
Q denote a basis for span(Lc U1). A projection that achieves
balancing and truncation is

Πbal = Q
(
QTXoQ

)−1
QTXo . (17)

Proof: Let QR denote the thin QR-factorization of Lc U1.
Replacing Q by Lc U1R

−1 and Xo by Lo L
T
o in (17) yields

Πbal = Lc U1

(
UT1 L

T
c Lo L

T
o Lc U1

)−1
UT1 L

T
c Lo L

T
o .

It follows from the given SVD that UT1 L
T
c Lo = Σ1N

T
1 .

Substitution of this expression results in

Πbal = Lc U1(Σ1N
T
1 N1Σ1)−1Σ1N

T
1 L

T
o .

The equivalence to (16) is established by finally using the fact
that (Σ1N

T
1 N1Σ1)−1Σ1 = Σ−1

1 . �

III. LPV MODEL ORDER REDUCTION BY
PARAMETER-VARYING OBLIQUE PROJECTION

Balancing and truncation for an LPV system essentially
requires the same steps as in Section II. Once Gramians are
computed, a projection for balancing and truncation can be
computed in exactly the same way as for LTI systems. Grami-
ans may, however, now themselves depend on the parameter
and are no longer unique. They have to be calculated as
symmetric positive definite solutions from the optimization

min
Xc,ρ,Xo,ρ

∫
P

trace(Xc,ρXo,ρ) dρ s. t. ∀ρ ∈ P

− d

dt
Xc,ρ +AρXc,ρ +Xc,ρA

T
ρ +BρB

T
ρ ≺ 0 , (18a)

d

dt
Xo,ρ +ATρXo,ρ +Xo,ρAρ + CTρ Cρ ≺ 0 . (18b)

This generalization was first introduced in [3], [4]. As a
consequence, the projection (16) is in general also param-
eter dependent, i. e. Πρ = VρW

T
ρ with WT

ρ Vρ = Inx . Thus,
ẋapprox = Vρ ż +

∑nρ
i=1

∂Vρ
∂ρi

ρ̇i z so that the residual for the
Petrov-Galerkin approximation becomes

r := Vρ ż +

nρ∑
i=1

∂Vρ
∂ρi

ρ̇i z − (Aρ Vρ z +Bρ u) . (19)

The reduced-order LPV model obtained by enforcing the
orthogonality constraint WT

ρ r = 0 is thus

ż = WT
ρ

(
AρVρ−

nρ∑
i=1

∂Vρ
∂ρi

ρ̇i z

)
z +WT

ρ Bρ u

y = Cρ Vρ z +Dρ u .

(20)

It depends explicitly on the parameter rate ρ̇ in addition to
the original parameter ρ. This enlarges the parameter space
and is not desirable since the complexity of the model is

increased. A reduced-order LPV model without the additional
rate dependence is obtained only when solutions to (18) are
restricted to parameter independent matrices. In this case, more
conservative solutions are to be expected. Further, even such
parameter independent solutions require extensive computa-
tional effort to be calculated by numerical methods.

There are thus two key issues: the introduction of rate
dependence as a consequence of parameter-varying projections
and the computational limitations associated with determining
suitable basis and test spaces for the projection. The purpose
of Section III-A is to show that it is possible to overcome the
first problem by constructing a parameter-varying projection
that does not introduce rate dependence. The second problem
is addressed in Section III-B by calculating suitable spaces
for approximate balancing of the LPV system from point-
wise approximation constraints in the parameter space that are
numerically well tractable. The proposed method, summarized
in Section III-D, is hence not subject to the computational
limitations of the LMI solution.

A. Parameter-Varying Oblique Projections

The reduced-order system (20) from LPV balancing and
truncation depends on V̇ρ but not on the time derivative of
Wρ. Hence, rate dependence in the reduced-order model can be
avoided by restricting parameter dependence in the projection
to Wρ and keep V constant. Such a projection is formulated
in Proposition 2.

Proposition 2: Let V ∈ Rnx×nz be a given constant matrix
with rank(V ) = nz < nx and let Sρ : Rnρ 7→ Rnx×nx be a
given symmetric positive definite matrix function. Then,

Πρ = V (V TSρ V )−1 V TSρ︸ ︷︷ ︸
WT

. (21)

is a parameter-varying oblique projection and the dynamic
LPV system obtained by Petrov-Galerkin approximation with
constant basis space span(V ) and parameter-varying test space
span(Wρ) does not dependent on the rate of parameter vari-
ation.

Proof: It is readily verified that WT
ρ V = Inz∀ρ and that

hence Πρ = Π2
ρ is an oblique projection. Further, since V is

constant, the projected state space equations (20) simplify to

ż =

Ared,ρ︷ ︸︸ ︷
WT
ρ Aρ V z +

Bred,ρ︷ ︸︸ ︷
WT
ρ Bρ u

y = Cρ V︸ ︷︷ ︸
Cred,ρ

z +Dρ u .
(22)

�
The range of the projection (21) in Proposition 2 is constant
but the direction of the projection varies across the parameter
space. From the perspective of a Petrov-Galerkin approxi-
mation, this means that the orthogonality constraint (13) is
enforced over a varying test space span(Wρ). Since the basis
space span(V ) is constant, state consistency for the reduced-
order LPV system is nevertheless preserved with both x ≈ V z
and ẋ ≈ V ż. Thus, system (22) has exactly the structure of
the desired reduced-order system (2).
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B. Basis and Test Space Construction

Recall from Section II-B and Proposition 1 that balancing
and truncation is a Petrov-Galerkin approximation, where the
basis and test space are determined from the Gramians. For
LPV systems, these Gramians may be parameter varying and
their calculation requires the LMI solutions (18), that become
intractable for many systems even of moderate state dimen-
sion. For a fixed parameter value, the solutions to (18) are
given exactly by the solutions to the Lyapunov equations (4).
This follows from the fact that Y −X ≺ 0 for all X and Y that
satisfy AX −XAT +BBT ≺ 0, AY − Y AT +BBT = 0,
see [25, Proposition 4]. Further, interpolation between grid
points is smooth for a sufficiently dense grid, since Xc,ρ and
Xo,ρ that satisfy (18) are continuous functions of ρ [3]. A
remedy for larger systems is thus to calculate LTI Gramians
on a grid of frozen parameters by any of the three methods of
Section II, i. e., either by (4), (7) or (8). Interpolation is then
used to approximate the parameter-varying Gramians.

Equating the form of a parameter-varying oblique projec-
tion in Proposition 2 with the projection for balancing and
truncation in Proposition 1, it is clear that the matrix Xo is
allowed to be parameter dependent. Hence, the parameter-
dependent approximation for the observability Gramian can
directly be used. Nevertheless, a constant basis Q ∈ Rnx×nz
for the basis space is required to avoid rate dependence in
the reduced-order system. In order to reproduce balancing
and truncation, Q should be a basis for span(Lc,ρ U1,ρ),
where the span of the parameter-varying matrix refers to the
parametrically varying vector space that is spanned by the
matrix Lc,ρk U1,ρk for fixed values ρk. In general, this can only
be achieved by a parameter-varying basis Qρ, obtained, e. g.,
from a thin QR factorization at each grid point. The remaining
critical question is thus in what sense the constant subspace
span(Q) should approximate the parameter-varying subspace
span(Qρ). A practical approach for an optimal approximation
over a grid of parameter values {ρk}

ng
k=1 is given in the

following proposition.
Proposition 3: Let Qρ ∈ Rnx×nz with QTρ Qρ = Inz be

a given parameter dependent basis for the parameter-varying
subspace span(Qρ). Let further

[
Qρ1 · · · Qρg

]T
denote

the collection of function evaluations of Qρ on the grid of
parameter values {ρk}

ng
k=1. Let

[
Ū1 Ū2

] [Σ̄1

Σ̄2

] [
Q Q⊥

]T
=

Q
T
ρ1
...

QTρg

 (23)

be the SVD such that Σ̄1 contains the largest nz singular
values and Σ̄2 the remaining nx − nz singular values. Then,
span(Q) is an optimal approximation for span(Qρ) in the
sense that its orthogonal complement Q⊥ minimizes

min
Q⊥

ng∑
k=1

‖QTρk Q⊥‖
2
F s. t. QT⊥Q⊥ = Inx−nz . (24)

Proof: Since the equality ‖X‖2F + ‖Y ‖2F = ‖[XY ]‖F holds
for all matrices X and Y of compatible dimensions, (24) can

be rewritten as

min
Q⊥

∥∥∥∥∥∥∥
 Q

T
ρ1
...

QTρng

 Q⊥
∥∥∥∥∥∥∥

2

F

s. t. QT⊥Q⊥ = Inx−nz .

The minimizer is found from the SVD (23) and the optimal
cost is ‖Ū2 Σ̄2‖2F . �

Proposition 3 states, that a constant subspace span(Q)
is an optimal approximation for the parameter-varying sub-
space span(Qρ) if its orthogonal complement span(Q⊥) =
span(Q)⊥ approximates the parameter-varying nullspace
ker
(
QTρ
)
. For a single grid point ρk, the matrix QTρk Q⊥ is

rank deficient and the optimal “approximation” that attains the
exact minimum 0 is simply a basis for the nullspace ker

(
QTρk

)
.

Obviously, a constant basis cannot, in general, achieve a zero
norm for multiple grid points at once if span(Qρ) is not
constant. The cost function in (24) thus measures the average
“nullspace violation” over all grid points.

This way of choosing a common basis space is, in fact,
identical to the approach first proposed in the context of
parametric model-order reduction in [13], but Proposition 3
establishes optimality and provides a clear interpretation of
the procedure. There remains however a potential hazard with
following this purely geometric argument of constructing the
basis space: only directionality is considered, regardless of the
importance of a direction for input-output behavior. While the
nz most important directions at each grid point are captured
within the individual bases Qρk , there is no notion of the
relative importance of directions at different grid points. One
way of approaching this problem is to weight individual
directions in the cost function. With a weighting function
Λρ = diag(λ1,ρk , . . . , λnz,ρk) that consists of scalar weights
λi,ρ for the individual basis vectors in Qρk , the objective
in (24) becomes

min
Q⊥

ng∑
k=1

∥∥ΛρQ
T
ρk
Q⊥
∥∥2

F
s. t. QT⊥Q⊥ = In−nz . (25)

A natural choice for Λρ is to take the matrix Σ1,ρ from the
SVD eq:SVD of the Cholesky factors LTc,ρ Lo,ρ and hence to
weight the individual directions by their corresponding Hankel
singular values.

C. Stability Considerations

If the subspaces are calculated from point-wise solutions,
stability guarantees are lost, since the interpolated matrix
functions do not necessarily satisfy the LMIs (18) due to
the rate term. It is however possible to guarantee stability
of the reduced-order model for “slowly” varying parameters
when the Gramians are obtained as solutions to the Lyapunov
equations (4). A result from [20] and the form of the projection
for balancing and truncation given in Proposition 1 are invoked
to show that all poles of the reduced-order system are in
the left half plane for frozen parameters. Multiplying the
Lyapunov equation (4b) for the original system from the left
by QT and from the right by Q results in

QTATXo Q+QTXo AQ+QTCTC Q = 0 . (26)
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Using Ared = (QTXo Q)−1QTXo AQ and Cred = C Q, it can
be shown that (26) is equivalent to

ATred(QTXo Q) + (QTXo Q)Ared + CTredCred = 0. (27)

Since Xo is symmetric positive definite, so is QTXo Q and
consequently Ared has all its eigenvalues in the left half plane.
This property guarantees stability for sufficiently slow param-
eter variation, see [26]. When frequency-weighted Gramians
or impulse responses are used to construct the projection,
even this weaker stability property cannot be guaranteed
anymore. It is however worth noting that an a posteriori
stability test, that might also include rate bounds, can be
performed by solving an LMI feasibility problem of the form
ATred,ρX +XρAred,ρ −

∑nρ
i=1

∂Xρ
∂ρi

ρ̇i ≺ 0, see [27]. Since this
only involves the reduced-order model, the calculation is likely
to be tractable, even if it is not for the full order model.

D. Implementation

The proposed model order reduction method is summa-
rized in this section and its implementation is described. For
convenience, Matlab notation is used, e. g., Q(1 : nx, 1 : nz)
denotes the first nx×nz elements of the matrix Q. A ? again
denotes quantities of no interest. The algorithm requires a grid
of parameter values {ρk}

ng
k=1, and the gridded LPV dynamic

system {Aρk , Bρk , Cρk , Dρk}
ng
k=1.

The first step is to calculate the Cholesky factors {Lc,ρk}
ng
k=1

and {Lo,ρk}
ng
k=1 of the Gramians at each grid point ρk by

either of the three methods described in Section II. While this
is computationally the most challenging part of the reduction,
efficient algorithms are readily available. It should be noted
that the complete Gramians are never required and that thus
Hammarling’s algorithm [28] can be used to directly obtain
the Cholesky factors from the Lyapunov equations (4) or (8).
Similarly, only the matrices of sampled impulse responses
in (7) are required, not the full empirical Gramians. Next, the
basis space is computed:

for k = 1 to ng do
(U,Σ, ?)← svd(LTc Lo)
(Ū, ?, ?) ← svd(Lc U(1 :nx, 1:nz))
if subspace weighting is desired then

Λ← Σ(1:nz, 1:nz)
else

Λ← Inz
end if
Q̄(1 :nx, 1+nz (k−1) :nz k)← Ū(1 :nx, 1:nz) Λ

end for
(Q, ?, ?)← svd(Q̄)
V ← Q(1 :nx, 1:nz)

The choice of nz can be guided by the singular values
obtained from the first SVD at each grid point, e. g., as
trace(Σ2

2) < ε or as trace(Σ2
1)/trace(Σ2

2) < ε, where the
threshold ε reflects a desired accuracy at the grid points.
The third step is to calculate a basis for the test space,
using a numerically stable implementation of the equation
Wρ = Xo,ρ V (V TXo,ρ V )−1:

for k = 1 to ng do
(Q,R)← qr(LTo,ρk V )

Wρk ← Lo,ρk Q (RT )−1

end for
In a last step, the state space matrices of the reduced-order
system are calculated:

for k = 1 to ng do
Ared,ρk ←WT

ρk
Aρk V

Bred,ρk ←WT
ρk
Bρk

Cred,ρk ← Cρk V
Dred,ρk ← Dρk

end for
These matrices then represent the gridded reduced-order LPV
model and can be interpolated.

IV. APPLICATION EXAMPLES

This section demonstrates the applicability and effectiveness
of the proposed model order reduction method by means of
two examples. The first example is a high fidelity longitudinal
dynamics model of an aeroservoelastic unmanned aerial vehi-
cle. This multi-input-multi-output system is of moderate size,
but poses a challenge due to the strong nonlinear dependence
of its dynamic properties on the airspeed. Design of flight
control systems for these types of aircraft requires accurate,
yet low-order models. The second example is the far wake
model of a wind turbine. Such models are relevant to study
the aerodynamic interactions in a wind farm and to develop
control strategies to maximize the overall power output of
several turbines that are located close to each other.

A. Example: Aeroservoelastic Aircraft

A model of the X56 MUTT (Multi Utility Technology
Testbed) aircraft is employed to demonstrate the use of the
proposed method to obtain a control-oriented low-order model.
The X56 is a research platform for control of highly flexible
aircraft and currently in use by NASA [29]. A schematic of the
aircraft is shown in Fig. 1. A high-fidelity model of the longi-
tudinal dynamics is considered in this paper. It combines rigid-
body flight dynamics from first principle modeling, structural
dynamics from FEM modeling and unsteady aerodynamics
from CFD modeling [30]. The rigid body states are described
in the moving body frame and represented in the familiar form
as angle of attack α and pitch rate q. The flexible modal
displacements are represented in terms of assumed mode
shapes and generalized coordinates η. Unsteady aerodynamic

Wing Flap 4
Wing Flap 3

Wing Tip Accelerometer

Center Accelerometer
Pitch Rate Gyro

Wing Flap 4
Wing Flap 3

Wing Tip Accelerometer

Fig. 1. X56A MUTT unmanned aerial vehicle.
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states are represented by w and are related to the rigid and
flexible degrees of freedom of the system. Specifically, every
degree of freedom is coupled to a third order system that
describes the unsteady aerodynamic forces caused by, and
acting on, modal displacement. There are 8 structural modes
(16 states), the 2 rigid body states and 30 aerodynamic states,
which totals to 48 states. As inputs, symmetric deflection of
the two outboard wing flap pairs (δ3 and δ4), highlighted
in Figure 1, are considered. The outputs are a pitch rate
measurement qmeas and acceleration signal at the center body
(az,center), as well as an averaged wing tip acceleration signal
(az,wing) that combines measurements from the four sensors
shown in Fig. 1.

The dynamics of the aircraft depend nonlinearly on the
airspeed V0 and hence the state space model is of the form

ẋ = A(V0)x+B(V0) δ

y = C(V0)x+D(V0) δ ,
(28)

with state vector x =
[
wT | α q | η̇T | ηT

]
T , output vector

y = [qmeas az,center az,wing] T , and input vector δ = [δ3 δ4] T . A
grid representation with 12 uniformly spaced points is used to
cover the domain V0 ∈ [30.6 68]m/s. The aircraft is naturally
stable in this domain but the damping ratio of the lowest-
frequency aeroelastic mode decreases dramatically with higher
airspeeds. Hence, the dynamics change rapidly.

For a control-oriented model, the available bandwidth of
a control system provides an upper frequency limit on the
fidelity requirement. Frequency weighting is thus especially
useful for this type of model. Fifth order butterworth filters
with a cut-off frequency of 100 rad/s are selected for the
present example. The augmented Lyapunov equations (8) are
solved using the Matlab routine lyapchol at each grid point.
The basis space is determined by weighting each direction with
its corresponding singular value as described in Section III-B.
The calculation takes only seconds and hence the order of the
reduced model can be determined by trial and error. A 12th
order model yields satisfactory results.

Figure 2 shows the Bode magnitude plots of the full-order
and the reduced-order model evaluated for frozen parameter
values at the grid points. The reduced-order model agrees very
well with the full-order model up the specified frequency of
100 rad/s. Larger discrepancies are only noticeable for the cen-
ter acceleration output from 20 rad/s onwards but only appear
where the magnitude is low. Figure 3 shows the step response
of both the full-order and the reduced-order model along a
time-varying parameter trajectory. The trajectory covers the
complete parameter space with a high rate of variation. The
reduced-order model nevertheless approximates the response
very well, also for the center acceleration signal. The most
prominent difference is visible in the high frequency transients
right after that step input is applied. The reduced-order model
clearly omits these as a consequence of the frequency weighted
approximation. Figure. 4 shows the pole migration of both
models over the parameter space with linear interpolation in
between grid points. The plot confirms that the reduced-order
model obtained by parameter-varying projection indeed retains
continuous dependence on the parameter. It further shows that
the loci of the lightly damped modes in reduced-order model
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( 48 states) and reduced-order ( 12 states).
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almost exactly coincide with those of the original system. This
is important, e. g., in order to perform flutter analyses on the
reduced-order model.
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B. Large-Scale Example: Far Wakes in a Wind Farm

As a second example, an unsteady aerodynamics problem
known as the actuator disk model [31]–[33] is considered. It
can be used to accurately model the far wake of a wind turbine
by solving the two-dimensional Navier-Stokes equations for
incompressible flows. The streamwise (x) and spanwise (y)
velocity components are denoted u and v and their dynamics
are governed by the partial differential equations

∂u

∂x
+
∂v

∂y
= 0 (29a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ f (29b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(29c)

where ν is the kinematic viscosity and P is the pressure
distribution. The forcing term f depends linearly on the thrust
coefficient CT of the turbine. This coefficient can be changed
on a wind turbine via blade pitch or a change of the tip speed
ratio and is thus a control input.

The particular configuration studied in this paper consists of
two wind turbines, each with rotor diameter d, that are located
5 d apart from each other in a two-dimensional stream of air.
A prescribed inflow and a convective outflow condition are
used, leading to the boundary conditions

u|x=0 = U∞,
∂u

∂t |x=20 d
+ U∞

∂u

∂x |x=20 d
= 0,

v|x=0 = 0,
∂v

∂t |x=20 d
+ U∞

∂v

∂x |x=20 d
= 0.

(29d)

The upstream turbine runs with a constant thrust coefficient,
while the downstream turbine’s thrust coefficient is considered
as a control input. The output is a measurement of the
spanwise velocity component v, located 5 d downstream from
the second turbine, indicating far wakes. The partial differ-
ential equations are solved following standard computational
fluid dynamics methods with a central difference scheme for
spatial discretization. The grid is defined by 201 points in the
streamwise direction and 51 points in the spanwise direction.
The discretization yields an ordinary differential equation
system with 20502 states that dependents parametrically on
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( 20502 states) and reduced-order ( 6 states).
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the freestream velocity U∞, or in nondimensionalized form
on the Reynolds number Re.

Solving Lyapunov equations for a linearization of this large-
scale system is intractable and hence empirical Gramians
are constructed from simulation data as described in Sec-
tion II-A. The matrices of sampled impulse responses are
calculated for constant parameter values on the grid Re =
{10, 20, 30, 40, 50}. A forward Euler scheme and time steps of
ts = 0.01 s are used for time propagation with a time horizon
of tN = 50 s. The resulting trajectories are sampled every 0.5 s
and consequently the empirical Cholesky factors at each grid
point are of size 20502×100. These Cholesky factors are used
exactly as described in Section III-B to construct a parameter-
varying oblique projection, without either additional frequency
or subspace weights. Simulation results for a sequence of step
inputs and two different parameter trajectories are shown in
Fig. 5 and Fig. 6. The responses of the reduced-order model
are in excellent agreement with the full-order model. The
speed of parameter variation appears to have no impact on
the quality of the approximation, confirming that there is no
neglected rate-dependence in the reduction.

While the quality of the reduction should be strictly judged
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Fig. 7. Streamwise velocities u at t = 40 s corresponding to the simulation
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by how well the reduced-order system captures the considered
input-output behavior, it remains insightful to also take a
look at the approximated state vector xapprox = V z. For
the considered problem, the state vector has a clear physical
interpretation, namely velocities in x and y direction at each
of the 10251 nodes in the domain. Figures 7 and 8 depict
the baseflow that corresponds to a constant thrust coefficient
CT = 30 for both turbines and frozen-in-time snapshots
taken from the simulation shown in Fig. 6. As expected, the
reduced-order model is not able to completely resolve the full
state accurately. Still, characteristic features of the stream are
preserved up to the the measurement point. The states of the
reduced-order model can thus still be related to physically
meaningful quantities. Velocities further downstream have
little importance for the considered output and are hence less
accurately resembled by the reduced-order model.

V. CONCLUSION AND EXTENSIONS

A. Conclusion

A model order reduction method for LPV systems is de-
veloped in this paper. The key technical contribution is the
use of a parameter-varying projection that maintains a well-
defined LPV system with consistent states across the parameter
domain. This projection uses a partially parameter dependent
transformation, but in contrast to general parameter-varying
state space transformations does not introduce additional rate
dependence. It thus provides a middle ground between the
potentially conservative use of constant transformations and
the increase in complexity that comes with parameter de-
pendent transformations. It is shown that the projection has
an immediate application to approximate balanced truncation
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Fig. 8. Spanwise velocities v at t = 40 s corresponding to the simulation
shown in Fig. 6 with locations of turbines (|) and velocity measurement (⊕).

and related approaches that employ Gramians to quantify the
importance of subspaces for model order reduction.

Two detailed application examples are given in this paper.
The first example demonstrates the application of the method
to a high-fidelity model of an aeroservoelastic unmanned
aerial vehicle. The second example is concerned with reducing
the model of the unsteady aerodynamics in a wind farm,
described by the two-dimensional Navier-Stokes equations for
incompressible flows.

B. Extensions

The proposed extension of the general projection framework
to parameter-varying projections does not rely on a particular
choice of basis and test spaces. Suitable subspaces for the pro-
jection can thus not only be calculated by the Gramian-based
approach pursued in this paper, but also by entirely different
means. For instance, moment matching with Krylov subspaces
could be applied. Another possible extension is that to unstable
systems. Many systems, particularly in the field of aeroelastic
systems, become unstable for some parameter values. The
aircraft considered in Section IV-A, e. g., becomes unstable
for larger airspeeds. Model-order reduction for unstable LPV
systems remains a challenging open topic and adapting the
method developed in this paper is ongoing work that also
involves finding suitable alternatives for the quantification of
the importance of a subspace.
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