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SUMMARY

A method is presented for synthesizing output estimators and disturbance feedforward controllers for
continuous-time, uncertain, gridded, linear parameter-varying (LPV) systems. Integral quadratic constraints
(IQCs) are used to describe the uncertainty. Since gridded LPV systems do not have a valid frequency-
domain interpretation, the time-domain, dissipation inequality approach is followed. There are two main
contributions. First, a notion of duality is developed for uncertain, gridded LPV systems. Second, convex
synthesis conditions are derived for robust output estimators. Together, these two contributions enable the
convex synthesis of robust disturbance feedforward controllers. The effectiveness of the proposed method is
demonstrated using a numerical example. Copyright c© 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper considers the synthesis of robust output estimators and disturbance feedforward
controllers for a certain class of uncertain systems. Robust estimator and feedforward synthesis
problems have been widely studied in the literature under various assumptions on the plant and
uncertainty. For example, robust estimator synthesis results have been obtained for linear time-
invariant (LTI) [1–10], linear time-varying (LTV) [11], and linear parameter-varying (LPV) [12,13]
plants. Previous work has also considered different classes of uncertainties including structured LTI
[1,2], single full block [11], norm-bounded time-varying [3–5], and polytopic [14–16] uncertainties.
Moreover, robust estimator synthesis results have been obtained for uncertainties described by
static [6, 7] and dynamic [8–10] integral quadratic constraints (IQC). In many of these previous
works, convex formulations have been obtained for the synthesis. This is in contrast to more general
robust feedback synthesis which is a nonconvex problem thus requiring heuristic approaches such as
DK-synthesis [17] or IQC-synthesis [18–20]. The disturbance feedforward problem is structurally
the dual of the output estimation problem [17]. As a result, many of the previous results summarized
above have parallel results for the robust feedforward synthesis [8, 21–23].

This paper complements the existing literature by deriving convex conditions for the synthesis
of output estimators and disturbance feedforward controllers for continuous-time, uncertain LPV
systems. The uncertain system is an interconnection of a nominal gridded LPV system and a block
structured perturbation that is described using dynamic IQCs. IQCs provide a general framework
to characterize the input-output behavior of several different classes of perturbations [24], e.g.
LTI uncertainties, static nonlinearities, time delays, etc. A frequency-domain stability theorem was
formulated in [24] to analyze a feedback interconnection of a LTI plant and any perturbation that is
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characterizable using IQCs. However, gridded LPV systems are time-varying and hence they do not
have a valid frequency response interpretation [25, 26]. Consequently, a theorem was formulated in
the time-domain using dissipativity theory for the input-output analysis of uncertain, gridded LPV
systems [27, 28] by building on the work of [29]. This paper utilizes the main result of [28] for the
convex synthesis of estimators and feedforward controllers for uncertain, gridded LPV systems.

The most closely related works in the literature presented convex solutions for robust LTI
synthesis using dynamic IQCs [9, 23]. In particular, convex synthesis conditions were derived for
the robust output estimation problem [9]. A frequency-domain duality result was also developed to
synthesize feedforward controllers using the (convex) conditions for the estimator synthesis [23].
It was later shown that the estimator and feedforward synthesis problems are special cases of a
feedback structure that has no uncertainties in the control channel of the closed-loop [30]. For
such feedback structures, [12] provided a general synthesis framework for robust, gain-scheduled
controllers. This general synthesis framework is restricted to linear fractional transform (LFT)
based LPV plants, whose state matrices are restricted to depend rationally on the scheduling
parameters [31–33]. Note that frequency-domain arguments are applicable for LFT-based LPV
systems since the nominal plant is LTI. Such frequency-domain arguments are not applicable for
gridded LPV systems because, as noted above, these systems do not have a valid frequency response
interpretation. This paper instead develops a time-domain duality result for feedforward synthesis.

Before presenting the two main contributions, some background on IQCs and LPV systems is
presented in Section 2. This discussion includes previous work on the stability and input-output
analysis of uncertain LTI [29, 34] and LPV [27, 28] systems using dissipativity theory. The first
main contribution is a time-domain notion of duality for uncertain, gridded LPV systems (Section
3). This is needed to exploit the duality between the estimation and feedforward problems [17]. The
second main contribution is a rigorous convex solution for the robust output estimation problem
(Section 4.1) for uncertain, gridded LPV systems. Finally, a convex solution is obtained for the
robust disturbance feedforward problem by combining the two main contributions (Section 4.2). A
numerical example is used to demonstrate feedforward synthesis for a gridded LPV plant that is
affected by a sector-constrained nonlinear function (Section 5).

2. BACKGROUND
2.1. Notation

Most notation used is from [17]. R and C denote the set of real and complex numbers. RL∞ denotes
the set of rational functions with real coefficients that are proper and have no poles on the imaginary
axis. RH∞ is the subset of functions in RL∞ that are analytic in the closed right half of the complex
plane. Rn denotes the set of n× 1 vectors and Rm×n denotes the set of m× n matrices whose
elements are in R. Similar notation is used for the sets C, RL∞, and RH∞. R+ denotes the set of
nonnegative real numbers. For a matrix M ∈ Cm×n, MT denotes the transpose and M∗ denotes
the Hermitian adjoint. ? denotes a symmetric block in matrices. Ln2 [0,∞) is the space of functions

v : [0,∞)→ Rn satisfying ‖v‖ <∞, where ‖v‖ :=
√∫∞

0
v (t)

T
v (t) dt. For v ∈ Ln2 [0,∞), vT is

the truncated function: vT (t) = v (t) for t ≤ T and vT (t) = 0 otherwise. The extended space,
denoted L2e, is the set of functions v such that vT ∈ L2 ∀T ≥ 0. The para-Hermitian conjugate
of H ∈ RLm×n∞ is defined as H∼ (s) := H (−s)T . Finally, Fu (G,∆) denotes the LFT of G and ∆.

2.2. Integral Quadratic Constraints

Figure 1 shows the type of uncertain LPV systems considered in this paper. G is a nominal grid-
based LPV system, described further in Section 2.3. ∆ is a block-structured perturbation [17] whose
input-output behavior is described using IQCs. IQCs were introduced in [24] and are defined using
frequency-domain multipliers Π : jR→ C(nv+nw)×(nv+nw) that are measurable Hermitian-valued
functions. The signals v ∈ Lnv2 [0,∞) and w ∈ Lnw2 [0,∞) satisfy the IQC defined by Π if:∫ ∞

−∞

[
v̂ (jω)
ŵ (jω)

]∗
Π (jω)

[
v̂ (jω)
ŵ (jω)

]
dω ≥ 0, (1)
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∆
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Figure 1. Interconnection of gridded LPV plant G and perturbation ∆.

where v̂ (jω) and ŵ (jω) are the Fourier transforms of v and w, respectively. A bounded, causal
operator ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) satisfies the IQC defined by Π if (1) holds for all v ∈
Lnv2 [0,∞) and w = ∆ (v). This is denoted by ∆ ∈ IQC (Π). As such, a set of operators satisfy the
IQC defined by Π and ∆ is a member of this set. Consider the following special class of multipliers.

Definition 1 ( [35])

Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12

Π∼12 Π22

]
, where Π11 ∈ RLnv×nv∞ and

Π22 ∈ RLnw×nw∞ . Π is said to be a strict positive-negative (PN) multiplier if Π11 (jω) > 0 and
Π22 (jω) < 0 ∀ω ∈ R ∪ {∞}.

Since this paper employs IQCs for the robustness analysis of uncertain grid-based LPV systems,
IQCs also need to be expressed in the time-domain. A multiplier Π ∈ RL(nv+nw)×(nv+nw)

∞ can
be factorized as Π = Ψ∼MΨ, where M = MT ∈ Rnz×nz and Ψ ∈ RHnz×(nv+nw)

∞ [29]. The IQC
given in (1) can be rewritten as: ∫ ∞

0

z(t)TMz(t)dt ≥ 0, (2)

where z := Ψ

[
v
w

]
∈ Rnz is the output of the linear system Ψ driven by the input signals v and w

starting from zero initial conditions [29]. Let Ψ have a state-space realization given by:

[
ẋΨ

z

]
=

[
AΨ BΨv BΨw

CΨ DΨv DΨw

]xΨ

v
w

 , (3)

where xΨ ∈ RnΨ and xΨ (0) = 0. ∆ ∈ IQC (Ψ,M) indicates that the operator ∆ satisfies the time-
domain IQC given by (2). While there are infinite ways to factorize Π, this paper will use the
following special class of factorizations.

Definition 2 ( [36, 37])(
Ψ̂, Jnv,nw

)
is called a Jnv,nw -spectral factor of Π = Π∼ ∈ RL(nv+nw)×(nv+nw)

∞ if Π =

Ψ̂∼Jnv,nwΨ̂, Jnv,nw =

[
Inv 0
0 −Inw

]
, and Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)

∞ .

J-spectral factorizations are special because J is diagonal and Ψ̂ is square, stable, and stably
invertible. J-spectral factorizations exist for all strict PN multipliers (Lemma 4 in [29]).

2.3. Input-Output Analysis of LPV Systems

LPV systems are linear systems whose state-space matrices depend on a time-varying parameter
ρ : R+ → Rnρ . Consider the following state-space realization for the LPV system G (Figure 1):[

ẋG
y

]
=

[
AG (ρ) BG (ρ)
CG (ρ) DG (ρ)

] [
xG
u

]
, (4)
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4 R. VENKATARAMAN AND P. SEILER

where xG ∈ RnG is the state, u =

[
w
d

]
∈ Rnw+nd are the inputs, and y =

[
v
e

]
∈ Rnv+ne are the

outputs. The matrices in (4) have dimensions compatible with these signals and are continuous
functions of ρ. In the remainder of the paper, the functional dependence of the state matrices on ρ is
occasionally suppressed for brevity. This paper assumes that ρ: (i) is a continuously differentiable
function of time, (ii) is restricted to a known compact set P ⊂ Rnρ , and (iii) has infinite bounds on
its rate of variation ρ̇. As per the notation of [28], the set of admissible trajectories is defined as:

T :=
{
ρ : R+ → Rnρ : ρ ∈ C1, ρ (t) ∈ P, and ρ̇ (t) ∈ Rnρ ∀t ≥ 0

}
. (5)

The results stated in this paper are for the case where ρ̇ is unbounded. However, with additional
notation, they can be adapted for the case where ρ̇ is bounded by using parameter-dependent
Lyapunov matrices (e.g. [28]). This paper assumes that G is quadratically stable, as defined next.

Definition 3 ( [25])
G is quadratically stable if ∃P > 0 such that AG (ρ)

T
P + PAG (ρ) < 0 ∀ρ ∈ P .

As discussed in Section 1.2 of [25], quadratic stability is a form of internal state stability. In
particular, if G is quadratically stable and autonomous, xG exponentially decays to zero for any
initial condition xG (0) ∈ RnG and any admissible parameter trajectory ρ ∈ T . This is proved after
noting that xTGPxG is a Lyapunov function. In addition to internal state stability, this paper requires
some notion of bounded-input, bounded-output (BIBO) stability. Hence,

‖G‖ := sup
06=u∈Lnw+nd

2

ρ∈T , xG(0)=0

‖y‖
‖u‖ . (6)

is defined as the induced L2 norm of G. BIBO stability is achieved if ‖G‖ has a finite upper bound.
The following lemma provides sufficient conditions for bounding ‖G‖.
Lemma 1 ( [25])
G is quadratically stable and ‖G‖ < γ for some γ ∈ (0,∞) if ∃P > 0 such that[

ATG (ρ)P + PAG (ρ) ?
BTG (ρ)P −γI

]
+

1

γ

[
CTG (ρ)
DT
G (ρ)

]
(?) < 0 ∀ρ ∈ P. (7)

This lemma essentially generalizes the Bounded Real Lemma for LPV systems and follows from
Theorem 3.3.1 of [25]. By applying the Schur complement lemma on the second term, inequality
(7) can be written as a LMI involving the LPV plant G, a Lyapunov matrix P , and the gain upper
bound γ. In order to find the least upper bound, a semidefinite program can be formulated with γ
as the linear cost function to be minimized subject to the LMI constraints P > 0 and inequality (7).
Henceforth, LMIs of the form (7) will be referred to using the short formLMIBR (G,P, γ) < 0. The
subscriptBR indicates that it is a LMI associated with the Bounded Real Lemma and the arguments
(G,P, γ) indicate that the system, Lyapunov matrix, and gain bound are involved.

On a related note, the plant G can be scaled at the inputs and/or outputs using γ in order to yield
a gain bound of 1. For example, if BG and CG were each scaled by γ−0.5 and DG was scaled by
γ−1, then inequality (7) can be rewritten with a gain bound of 1. Such normalizations will be used
in the later sections of this paper.

2.4. Input-Output Analysis of Uncertain LPV Systems

The previous section considered the input-output analysis of nominal LPV systems. This section
considers the input-output analysis of uncertain LPV systems, wherein the uncertainty is described
using IQCs. The input-output analysis of Fu (G,∆), shown in Figure 1, was considered in [27, 28].
As before, the induced L2 norm from inputs d to outputs e is defined as:

‖Fu (G,∆)‖ := sup
06=d∈Lnd2

ρ∈T , xG(0)=0

‖e‖
‖d‖ . (8)
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Figure 2. Interconnection of the gridded LPV system G, perturbation ∆, and IQC filter Ψ.

Since ∆ contains nonlinearities and uncertainties that are hard to analyze, it is not always possible
to compute ‖Fu (G,∆)‖ exactly. However, since a set of operators satisfy the IQC defined by Π, the
worst-case gain over this set can be used in lieu of ‖Fu (G,∆)‖. The worst-case gain is defined as:

sup
∆∈IQC(Π)

‖Fu (G,∆)‖ . (9)

Next, consider Figure 2. In addition to the interconnection of G and ∆, the IQC factor Ψ is
appended such that it is driven by signals v and w, and produces signal z. The extended LPV
system, formed by the interconnection of G and Ψ, has the following state-space representation:ẋez

e

 =

A (ρ) Bw (ρ) Bd (ρ)
Cz (ρ) Dzw (ρ) Dzd (ρ)
Ce (ρ) Dew (ρ) Ded (ρ)

xew
d

 , (10)

where xe =
[
xTG, x

T
Ψ

]T ∈ RnG+nΨ . Theorem 2 of [28] provided sufficient conditions for bounding
the worst-case gain of Fu (G,∆) and is paraphrased next.

Theorem 1 ( [28])
Let G be a quadratically stable LPV system defined by (4) and ∆ be a bounded, causal operator
such that Fu (G,∆) is well-posed. Assume ∆ ∈ IQC (Π) and consider a factorization Π = Ψ∼MΨ
with Ψ stable. If Π is a strict PN multiplier and ∃P = PT such thatAT (ρ)P + PA (ρ) ? ?

BTw (ρ)P 0 ?
BTd (ρ)P 0 −γI

+
1

γ

 CTe (ρ)
DTew (ρ)
DTed (ρ)

 (?) +

 CTz (ρ)
DTzw (ρ)
DTzd (ρ)

M (?) < 0 ∀ρ ∈ P, (11)

for some γ ∈ (0,∞) then,
(1) limT→∞ xe (T ) = 0 ∀xe (0) ∈ RnG+nΨ , ∀d ∈ Lnd2 , and ∀ρ ∈ T , and
(2) sup∆∈IQC(Π) ‖Fu (G,∆)‖ ≤ γ.

This theorem provides sufficient conditions for Fu (G,∆) to have bounded worst-case gain. By
applying the Schur complement lemma on the second term, inequality (11) can be written as a
LMI involving the LPV plant G, a Lyapunov matrix P , the gain upper bound γ, and the IQC
factorization (Ψ,M). Henceforth, LMIs of the form (11) will be referred to using the short form
LMIWC (G,P, γ,Ψ,M) < 0. The subscript WC indicates that it is a LMI associated with a worst-
case gain problem and the arguments (G,P, γ,Ψ,M) indicate that the system, Lyapunov matrix,
gain bound, and IQC factorization are involved.

Finally, Theorem 1 does not require the matrix P to be positive definite. This is in contrast
to Lemma 1 where P > 0 was required. The IQCs used in Theorem 1 contain hidden energy.
Arguments from game theory can be used to define a new Lyapunov function that includes this
hidden energy, and which is indeed positive definite. Section 3 of [28] provides the full proof.
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6 R. VENKATARAMAN AND P. SEILER

3. DUAL INPUT-OUTPUT ANALYSIS

A convex formulation for the disturbance feedforward problem requires certain duality results.
Thus, this section precisely defines the required notion of input-output duality and proves some
intermediate results that hold for gridded LPV systems. A technical issue is that gridded LPV
systems are time-varying and hence they do not have a valid frequency response interpretation.
Hence the duality results contained in this section make use of time-domain arguments. The reader
who is only interested in the convex synthesis results may skip ahead to Section 4.

3.1. Dual LPV Systems

The concept of duality is well developed for LTI systems, e.g. duality between the concepts of
controllability and observability [17]. For LPV systems, duality is defined as follows.

Definition 4

If G s
=

[
AG (ρ) BG (ρ)
CG (ρ) DG (ρ)

]
is a (primal) LPV system then GT

s
=

[
ATG (ρ) CTG (ρ)
BTG (ρ) DT

G (ρ)

]
is the

corresponding dual system.

Lemma 1 proves that the existence of P > 0 such that LMIBR (G,P, γ) < 0 is sufficient for
‖G‖ < γ. In a similar manner, the existence ofQ > 0 such that LMIBR

(
GT , Q, γ

)
< 0 is sufficient

for
∥∥GT∥∥ < γ. The next lemma relates the two sets of sufficient conditions.

Lemma 2
LMIBR (G,P, γ) < 0 for P > 0 if and only if LMIBR

(
GT , Q, γ

)
< 0 for Q := P−1 > 0.

Proof
It follows from linear algebra that P > 0 if and only ifQ := P−1 > 0. Apply the Schur complement
lemma to show that LMIBR (G,P, γ) < 0 is equivalent toATG (ρ)P + PAG (ρ) ? ?

BTG (ρ)P −γI ?
CG (ρ) DG (ρ) −γI

 < 0 ∀ρ ∈ P. (12)

Next, apply the congruence transformation diag
(
P−1, I, I

)
on the left and right of LMI (12).

Finally, apply the Schur complement lemma to the (2, 2) block of the resulting LMI to show that it
is equivalent to LMIBR

(
GT , Q, γ

)
< 0.

Therefore, Lemma 2 effectively shows that the sufficient conditions for bounding the induced L2

norms of the primal and dual forms of a nominal LPV system are equivalent.

3.2. Dual IQCs

The notion of duality for uncertain LPV systems requires a specific notion of duality for IQCs.
Dual IQCs were previously introduced in [23]. These dual IQCs were defined in the frequency-
domain for the stability analysis and feedforward control of LTI systems [23]. The results in [23] are
briefly summarized in this subsection as this will ultimately lead to a related time-domain definition
for a dual IQC. To begin, consider the uncertain system shown in Figure 1 with the following
assumptions: (i) G is LTI and (ii) ∆ ∈ IQC (Π). The main IQC theorem in [24] roughly states that
the following frequency domain inequality is a sufficient condition for the stability of Fu (G,∆):[

G (jω)
I

]∗
Π (jω)

[
G (jω)
I

]
< 0 ∀ω ∈ R ∪ {∞} . (13)

Inequality (13) is the primal form involving G and Π. It is shown in Section 2.1 of [23] that
inequality (13) is equivalent to[

I
−G (jω)

∗

]∗
Π (jω)

−1

[
I

−G (jω)
∗

]
> 0 ∀ω ∈ R ∪ {∞} . (14)
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Inequality (14) is a dual inequality and this gives rise to dual multipliers Π−1 as defined in [23].
However, the following slightly different, but equivalent, definition is used in this paper in order to
bring (14) into a standard form.

Definition 5
Given the primal IQC multiplier Π ∈ RL(nv+nw)×(nv+nw)

∞ , the dual IQC multiplier is denoted by
D (Π) ∈ RL(nw+nv)×(nw+nv)

∞ and is defined as:

D (Π) :=

[
0 −Inw
Inv 0

]
Π−T

[
0 −Inv
Inw 0

]
. (15)

Using this definition, inequality (14) is equivalent to[
G (jω)

T

I

]∗
D (Π (jω))

[
G (jω)

T

I

]
< 0 ∀ω ∈ R ∪ {∞} . (16)

GT in inequality (16) is the dual of G in the sense of Definition 4 (albeit with no parameter
dependence). Note that the form of inequality (16) is similar to that of (13), except it involves
the dual LTI plant GT and the dual IQC multiplier D (Π).

It is worth noting some subtle points about the dual IQC multiplier. In the standard IQC analysis
problem, once the perturbation ∆ is specified, the multiplier Π is chosen from a library [24] such
that ∆ ∈ IQC (Π). The dual multiplier D (Π) is different because, rather than being chosen from a
library, it is derived from the primal multiplier Π using Definition 5. As with any IQC multiplier, a
set of operators satisfy the IQC defined by D (Π). Let ∆D denote a member of this set. Although ∆D

appears to be an uncertainty, it is actually an artificial construct that simply satisfies the IQC defined
by D (Π). To summarize, the main result in [24] is that the primal frequency domain inequality
(13) is sufficient for the stability of Fu (G,∆). This is equivalent to stating that the dual frequency
domain inequality (16) is sufficient for the stability of Fu

(
GT ,∆D

)
. This result enables certain

problems, e.g. feedforward synthesis, to be convexified by converting from primal to dual form.
The goal of this section is to extend these results for gridded LPV systemsG for which there is no

frequency response interpretation. This extension requires a time-domain definition for dual IQCs.
In particular, dual J-spectral factorizations are considered. Let

(
Ψ̂, J

)
be a J-spectral factorization

of Π. Using Definition 5, the dual IQC multiplier can be expressed as

D (Π) =

[
0 −Inw
Inv 0

]
Ψ̂−T∼J−1Ψ̂−T

[
0 −Inv
Inw 0

]
. (17)

With a few more steps, it follows that

D (Π) = D
(

Ψ̂
)∼

JD
(

Ψ̂
)
, where D

(
Ψ̂
)

:=

[
0 −Inw
Inv 0

]
Ψ̂−T

[
0 −Inv
Inw 0

]
. (18)

Further, Ψ̂, Ψ̂−1 ∈ RH(nv+nw)×(nv+nw)
∞ if and only if D

(
Ψ̂
)
,D
(

Ψ̂
)−1

∈ RH(nw+nv)×(nw+nv)
∞ .

Therefore,
(
D
(

Ψ̂
)
, J
)

is a J-spectral factorization of D (Π).

3.3. Relation Between Nominal and Uncertain Input-Output Analyses

Extending duality to uncertain LPV systems requires not only dual LPV systems and dual IQCs,
but also technical insight into the uncertain input-output analysis problem. To begin, consider the
roles played by Lemmas 1 and 2 in the input-output analysis of nominal LPV plants. The Bounded
Real Lemma, as stated in Lemma 1, provides a sufficient LMI condition to bound the induced L2

norm for a nominal LPV system. Lemma 2 demonstrates an equivalence between the primal and
dual forms of this LMI condition. This section derives a similar set of results for uncertain LPV
systems. Theorem 1 already establishes sufficient conditions to bound the induced L2 norm for an
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8 R. VENKATARAMAN AND P. SEILER

uncertain LPV system. Hence, the missing piece in the puzzle is a lemma for uncertain LPV systems
that demonstrates equivalence between the primal and dual forms, analogous to the result in Lemma
2 for nominal LPV systems. This subsection will cover some intermediate steps leading up to this
result and the next subsection will formally state this dualization lemma for uncertain LPV systems.

First note that the dualization of LMIBR (G,P, γ) < 0 for nominal LPV systems in Lemma 2
is straightforward because the Schur complement lemma can be applied to blocks involving I or
−I . However, a similar procedure cannot be followed for uncertain LPV systems because of the
presence of an additional IQC term in LMIWC (G,P, γ,Ψ,M) < 0. To demonstrate the effect of
the IQC term, consider the J-spectral factor

(
Ψ̂, J

)
of Π. Since Ψ̂ is square, its output can be

partitioned as z =

[
ṽ
w̃

]
, where ṽ and w̃ have the same sizes as v and w, respectively. In addition, the

state-space matrices associated with z (see equation (10)) can be partitioned as:[
Cz (ρ) Dzw (ρ) Dzd (ρ)

]
=

[
Cṽ (ρ) Dṽw (ρ) Dṽd (ρ)
Cw̃ (ρ) Dw̃w (ρ) Dw̃d (ρ)

]
. (19)

Using the above matrix partitions, the full form of LMIWC

(
G,P, γ, Ψ̂, J

)
< 0 is:AT (ρ)P + ? ? ?

BTw (ρ)P 0 ?
BTd (ρ)P 0 −γI

+
1

γ

 CTe (ρ)
DTew (ρ)
DTed (ρ)

 (?) +

 CTṽ (ρ) CTw̃ (ρ)
DTṽw (ρ) DTw̃w (ρ)
DTṽd (ρ) DTw̃d (ρ)

 J (?) < 0 ∀ρ ∈ P. (20)

In this inequality, the third term is the IQC term involving Ψ̂ and J . Since J =

[
I 0
0 −I

]
is sign

indefinite, the Schur complement lemma cannot be applied to the entire IQC term. Rather, it can
only be applied to the positive definite sub-block of the IQC term.

Since the Schur complement lemma cannot be applied to the entire IQC term, an alternative
approach is followed wherein inequality (20) is simplified. First, note that the (2, 2) block of (20)
is γ−1DTew (ρ)Dew (ρ) +DTṽw (ρ)Dṽw (ρ)−DTw̃w (ρ)Dw̃w (ρ) < 0. This can be rearranged to show
that DTw̃w (ρ)Dw̃w (ρ) > 0, i.e. Dw̃w (ρ) is nonsingular for all ρ ∈ P . Next, define the following
parameter-dependent congruence transformation matrix:

T (ρ) :=

 I 0 0
−D−1

w̃w (ρ) Cw̃ (ρ) D−1
w̃w (ρ) −γ−0.5D−1

w̃w (ρ)Dw̃d (ρ)
0 0 γ−0.5I

 . (21)

Multiplying inequality (20) on the left and right by TT (ρ) and T (ρ), respectively, results in:[
ĀT (ρ)P + PĀ (ρ) ?

B̄T (ρ)P −I

]
+

[
C̄T (ρ)
D̄T (ρ)

]
(?) < 0 ∀ρ ∈ P, (22)

where,

Ā (ρ) := A (ρ)− Bw (ρ)D−1
w̃w (ρ) Cw̃ (ρ) , (23)

B̄ (ρ) :=
[
Bw (ρ)D−1

w̃w (ρ) γ−0.5
(
−Bw (ρ)D−1

w̃w (ρ)Dw̃d (ρ) + Bd (ρ)
)]
, (24)

C̄ (ρ) :=

[
Cṽ (ρ)−Dṽw (ρ)D−1

w̃w (ρ) Cw̃ (ρ)
γ−0.5

(
Ce (ρ)−Dew (ρ)D−1

w̃w (ρ) Cw̃ (ρ)
)] , (25)

D̄ (ρ) :=

[
Dṽw (ρ)D−1

w̃w (ρ) γ−0.5
(
−Dṽw (ρ)D−1

w̃w (ρ)Dw̃d (ρ) +Dṽd (ρ)
)

γ−0.5
(
Dew (ρ)D−1

w̃w (ρ)
)

γ−1
(
−Dew (ρ)D−1

w̃w (ρ)Dw̃d (ρ) +Ded (ρ)
) ] . (26)

Note that inequality (22) is similar to LMI (7) in the Bounded Real Lemma, except that it involves
transformed state-space matrices. Consistent with the notation introduced earlier, inequality (22)

can be shortened to LMIBR
(
Ḡ, P, 1

)
< 0, where Ḡ s

=

[
Ā (ρ) B̄ (ρ)
C̄ (ρ) D̄ (ρ)

]
depends on G, γ, and
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CONVEX LPV SYNTHESIS OF ESTIMATORS AND FEEDFORWARDS USING IQCS 9

Ψ̂. From Equations (23) through (26), it can be inferred that the second input and second output
of Ḡ are scaled by γ−0.5 each. This results in a gain bound of 1 in LMIBR

(
Ḡ, P, 1

)
< 0. The

equivalence of LMIWC

(
G,P, γ, Ψ̂, J

)
< 0 and LMIBR

(
Ḡ, P, 1

)
< 0 was previously reported as

Lemma 2 in [20] and is rephrased below.

Lemma 3 ( [20])
Let G be the LPV system defined in (4) and

(
Ψ̂, J

)
be a J-spectral factor of Π. P = PT satisfies

LMIWC

(
G,P, γ, Ψ̂, J

)
< 0 if and only if it satisfies LMIBR

(
Ḡ, P, 1

)
< 0, where the state-space

matrices of Ḡ are defined in Equations (23) through (26).

As per Theorem 1, LMIWC

(
G,P, γ, Ψ̂, J

)
< 0 is a sufficient condition for the worst-case gain

of Fu (G,∆) to be bounded by γ. As per the Bounded Real Lemma, LMIBR
(
Ḡ, P, 1

)
< 0 is a

sufficient condition for
∥∥Ḡ∥∥ to be bounded by 1. Lemma 3 states that the sufficient condition for

bounding the worst-case gain ofFu (G,∆) by γ is equivalent to the sufficient condition for bounding
the induced L2 norm of Ḡ by 1. The next subsection explains the role played by Lemma 3 in duality.

3.4. Technical Results

This subsection brings together all the components discussed thus far, including dual LPV systems,
dual IQCs, and the relation between the nominal and uncertain input-output analysis problems. In
particular, dual uncertain LPV plants are considered along with sufficient conditions for bounding
their worst-case gain. First, however, consider the sufficient condition LMIWC (G,P, γ,Ψ,M) < 0
that was presented in Theorem 1 for bounding the worst-case gain of an uncertain LPV system. Since
LMIWC (G,P, γ,Ψ,M) < 0 can be composed using any stable factorization of Π, it is important
to understand how its feasibility depends on the factorization. To do this, the next lemma relates the
state-space realizations of two stable factorizations of Π.

Lemma 4
Let a frequency-domain IQC multiplier have the following two factorizations,

Π (s) = Π∼ (s) = Ψ∼1 (s)M1Ψ1 (s) = Ψ∼2 (s)M2Ψ2 (s) , (27)

where Ψ1 (s)
s
=

[
A1 B1

C1 D1

]
and Ψ2 (s)

s
=

[
A2 B2

C2 D2

]
are stable, minimal realizations with state

dimension n. Define
[
Qi Si
STi Ri

]
=

[
CTi
DT
i

]
Mi

[
Ci Di

]
for i = 1, 2. Then ∃T1 ∈ Rn×n such that:

(1) A2 = T1A1T
−1
1 ,

(2) B2 = T1B1, and

(3)
[
Q2 S2

ST2 R2

]
=

[
T−T1 0

0 I

]([
Q1 S1

ST1 R1

]
−
[
AT1 X̄ + X̄A1 X̄B1

BT1 X̄ 0

])[
T−1

1 0
0 I

]
, where X̄ =

X̄T is the unique solution to the Lyapunov Equation AT1 X̄ + X̄A1 = Q1 − TT1 Q2T1.

Proof
The proof mainly relies on standard facts regarding Lyapunov equalities. See Appendix A.

The next lemma relates the feasibility of two worst-case gain LMIs using Lemma 4.

Lemma 5
Consider two factorizations (Ψ1,M1) and (Ψ2,M2) of Π such that Ψ1 and Ψ2 are stable and have
minimal state-space realizations. There exists P1 = PT1 satisfying LMIWC (G,P1, γ,Ψ1,M1) < 0
if and only if there exists P2 = PT2 satisfying LMIWC (G,P2, γ,Ψ2,M2) < 0.

Proof
By assumption, the two factorizations of Π are stable and have minimal state-space realizations.
Hence, there exist T1 and X̄ satisfying conclusions (1)-(3) in Lemma 4. Next, define
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10 R. VENKATARAMAN AND P. SEILER

Tβ := diag
(
I, T−1

1 , I, I
)
. To prove necessity, assume that there exists P2 = PT2 satisfying

LMIWC (G,P2, γ,Ψ2,M2) < 0. Then, multiply LMIWC (G,P2, γ,Ψ2,M2) < 0 on the left and
right by T−Tβ and T−1

β , respectively. Finally, use statements (1) and (2) of Lemma 4 to show that P1

satisfies LMIWC (G,P1, γ,Ψ1,M1) < 0, where P1 and P2 are related as:

P1 =

[
InG 0
0 TT1

]
P2

[
InG 0
0 T1

]
−
[
0 0
0 X̄

]
. (28)

To prove sufficiency, reverse the algebraic steps.

Lemma 5 essentially proves that the feasibility of LMIWC (G,P, γ,Ψ,M) < 0 is independent
of the factorization (Ψ,M), as long as Ψ is stable and has a minimal state-space realization.
In other words, the feasibility of LMIWC (G,P, γ,Ψ,M) < 0 only depends on G and Π. Note
that LMIWC (G,P, γ,Ψ,M) < 0 is one of the sufficient conditions presented in Theorem 1 for
bounding the worst-case gain of Fu (G,∆). The main technical lemma is presented next.

Lemma 6
Given G and Π, the following statements hold.

(1) G is quadratically stable if and only if GT is quadratically stable.
(2) Π is a strict PN multiplier if and only if D (Π) is a strict PN multiplier.
(3) Let (Ψ,M) be any stable factorization of Π and (Γ, N) be any stable factorization of

D (Π). Then ∃P = PT satisfying LMIWC (G,P, γ,Ψ,M) < 0 if and only if ∃Q = QT satisfying
LMIWC

(
GT , Q, γ,Γ, N

)
< 0.

Proof
Statement (1) follows from Lemmas 1 and 2. Statement (2) is proved as follows. For
sufficiency, assume that Π is a strict PN multiplier. First, from Definition 1, Π11 (jω) > 0
and Π22 (jω) < 0 ∀ω ∈ R ∪ {∞}. This implies that Π−1 (jω) exists ∀ω ∈ R ∪ {∞} and can be
partitioned as

[
W11(jω) W12(jω)
W∼

12(jω) W22(jw)

]
. In the next few steps, the argument (jω) is dropped for brevity.

From the matrix inversion lemma, it follows that W11 =
(
Π11 −Π12Π−1

22 Π21

)−1
and W22 =(

Π22 −Π21Π−1
11 Π12

)−1
. Note that Π11 > 0 and Π22 < 0 together imply W11 > 0 and W22 < 0.

Next, partition D (Π) as
[

ΠD11 ΠD12

Π∼
D12 ΠD22

]
, where ΠD11 ∈ RLnw×nw∞ and ΠD22 ∈ RLnv×nv∞ . Finally,

using Definition 5, it can be shown that ΠD11 = −WT
22 > 0 and ΠD22 = −WT

11 < 0. Hence, D (Π)
is a strict PN multiplier. For necessity, note that D (D (Π)) = Π and use similar arguments.

Statement (3) is proved by invoking multiple previous lemmas. First, consider the statement:
∃P = PT satisfying LMIWC (G,P, γ,Ψ,M) < 0 for some stable factorization (Ψ,M) of Π. Let(

Ψ̂, J
)

denote a J-spectral factorization of Π. Since Ψ̂ is stable by definition, it is inferred from

Lemma 5 that ∃P̂ = P̂T satisfying LMIWC

(
G, P̂ , γ, Ψ̂, J

)
< 0. Further, from Lemma 3, P̂ = P̂T

satisfies LMIWC

(
G, P̂ , γ, Ψ̂, J

)
< 0 if and only if it satisfies LMIBR

(
Ḡ, P̂ , 1

)
< 0, where Ḡ

depends on G, γ, and Ψ̂ through Equations (23) through (26).
Next, consider the statement: ∃Q = QT satisfying LMIWC

(
GT , Q, γ,Γ, N

)
< 0 for some

stable factorization (Γ, N) of D (Π). Let
(
D
(

Ψ̂
)
, J
)

denote a J-spectral factorization of

D (Π). Since D
(

Ψ̂
)

is stable by definition, it is inferred from Lemma 5 that ∃Q̂ =

Q̂T satisfying LMIWC

(
GT , Q̂, γ,D

(
Ψ̂
)
, J
)
< 0. Further, from Lemma 3, Q̂ = Q̂T satisfies

LMIWC

(
GT , Q̂, γ,D

(
Ψ̂
)
, J
)
< 0 if and only if it satisfies LMIBR

(
G, Q̂, 1

)
< 0, where G

depends on GT , γ, and D
(

Ψ̂
)

through equations that are similar to Equations (23) through (26).
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Figure 3. The output estimation problem.

It can be verified, with a significant amount of algebra, that G = ḠT , i.e. Ḡ and G are dual
systems. Finally, from Lemma 2, P̂ = P̂T satisfies LMIBR

(
Ḡ, P̂ , 1

)
< 0 if and only if Q̂ := P̂−1

satisfies LMIBR

(
G, Q̂, 1

)
< 0.

Lemma 6 can be better understood in the context of two related worst-case gain problems. The
primal problem involves bounding the worst-case gain of Fu (G,∆) over the set of uncertainties
that satisfy the IQC defined by Π. The dual problem involves bounding the worst-case gain of
Fu
(
GT ,∆D

)
over the set of uncertainties that satisfy the IQC defined by D (Π). Both problems

have separate (but similar) sets of sufficient conditions (Theorem 1) for bounding their respective
worst-case gains. Lemma 6 essentially states that the two sets of sufficient conditions are equivalent.
Statement (1) establishes equivalence between the primal and dual nominal LPV systems, in the
sense of quadratic stability. Statement (2) establishes equivalence between the primal and dual IQC
multipliers, in the sense of the strict PN property. Statement (3) establishes equivalence between the
primal and dual worst-case gain LMI conditions.

4. CONVEX SYNTHESIS FOR UNCERTAIN LPV SYSTEMS

4.1. Output Estimation

While the output estimation problem was previously considered in [13], the derivation of the
synthesis conditions provided in this section is more rigorous in three specific ways. First, the state-
space matrices of the estimator are completely eliminated from the LMI conditions given in the
synthesis theorem. Second, a matrix dilation lemma is used to complete the sign indefinite Lyapunov
matrix. Third, an explicit method is provided to reconstruct the state-space matrices of the estimator.

The output estimation problem is formulated using the interconnection shown in Figure 3. H
is a nominal LPV plant with parameters ρ ∈ P , states xH ∈ RnH , disturbance inputs d ∈ Rnd ,
measurable outputs y ∈ Rny , and unmeasurable outputs q ∈ Rnq . The LPV plant H is connected
with an uncertainty ∆ via signals v ∈ Rnv and w ∈ Rnw . This creates an uncertain LPV system
Fu (H,∆) from the input disturbance d to the outputs y and q. The problem is to synthesize a
estimator F that uses the measurements y to generate an estimate of q. Let q̂ denote the estimate
of q and e := q̂ − q denote the estimation error. The synthesis objective is to bound the worst-case
induced L2 norm from d to e over the set of uncertainties that satisfy the IQC defined by Π.

In addition to the LFT of H and ∆, the IQC filter Ψ is appended such that it is driven by signals
v and w, and produces signal z. The interconnection of H and Ψ has the state-space representationẋzy

q

 =

A (ρ) B1 (ρ) B2 (ρ)
C1 (ρ) D11 (ρ) D12 (ρ)
C2 (ρ) D21 (ρ) D22 (ρ)
C3 (ρ) D31 (ρ) D32 (ρ)


xw
d

 , (29)
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12 R. VENKATARAMAN AND P. SEILER

where x =
[
xTH , x

T
Ψ

]T ∈ RnH+nΨ are the combined states of H and Ψ. It is assumed that D22 (ρ) ∈
Rny×nd has full row rank ∀ρ ∈ P . This assumption is used to ensure that all components of the
measurement y are affected by some component of the disturbance d.

The estimator F to be synthesized has the state-space representation:[
ẋF
q̂

]
=

[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

] [
xF
y

]
, (30)

where xF ∈ RnF are the estimator states, y is the input to the estimator, and q̂ is the output from
the estimator. As shown by the large dashed box in Figure 3, the closed-loop formed by the
interconnection of H and F is denoted by G, with states xG =

[
xTH , x

T
F

]T
. In the remainder of

this section, the notation G (H,F ) will be used in some cases to make explicit the dependence of
G on H and F . Theorem 1 provides conditions to bound the worst-case gain of Fu (G (H,F ) ,∆).
The objective is to synthesize F which minimizes this bound.

To formulate the synthesis theorem, consider the extended LPV system formed by the
interconnection of G (H,F ) and Ψ. This extended system has the state-space realization:ẋez

e

 =

A (ρ) Bw (ρ) Bd (ρ)
Cz (ρ) Dzw (ρ) Dzd (ρ)
Ce (ρ) Dew (ρ) Ded (ρ)

xew
d

 , (31)

where xe =
[
xTH , x

T
Ψ, x

T
F

]T ∈ RnH+nΨ+nF are the combined states of H , Ψ, and F . These state-
space matrices are expressed in terms of the matrices appearing in Equations (29) and (30) as:

[A Bw Bd
Cz Dzw Dzd

Ce Dew Ded

]
=

 A 0 B1 B2

0 0 0 0
C1 0 D11 D12

−C3 0 −D31 −D32

+

 0 0
I 0
0 0
0 I

[AF BF

CF DF

] [
0 I 0 0
C2 0 D21 D22

]
,

(32)
where the dependence of the matrices on ρ is suppressed for brevity.

According to Theorem 1, the worst-case gain of Fu (G (H,F ) ,∆) is bounded by γ if there exists
P = PT satisfyingAT (ρ)P + PA (ρ) ? ?

BTw (ρ)P 0 ?
BTd (ρ)P 0 −γI

+
1

γ

 CTe (ρ)
DTew (ρ)
DTed (ρ)

 (?) +

 CTz (ρ)
DTzw (ρ)
DTzd (ρ)

M (?) < 0 ∀ρ ∈ P. (33)

However, inequality (33) is not a LMI because of the presence of bilinear terms involving P and the
state-space matrices of F . For example, the term AT (ρ)P involves the product of AF (ρ) and P ,
both of which are variables to be selected. Since (33) is a bilinear matrix inequality (BMI), it will be
referred to using the short form BMIWC (G (H,F ) , P, γ,Ψ,M) < 0. The subscript WC indicates
that it is a BMI associated with a worst-case gain problem and the arguments (G (H,F ) , P, γ,Ψ,M)
indicate that the plant H , estimator F , Lyapunov matrix P , gain bound γ, and IQC factorization
(Ψ,M) are involved. Although BMIWC (G (H,F ) , P, γ,Ψ,M) < 0 is a sufficient condition for
Fu (G (H,F ) ,∆) to have bounded worst-case gain, it does not admit a convex solution. The
next theorem is adapted from [13] and provides convex LMI conditions that are equivalent to
BMIWC (G (H,F ) , P, γ,Ψ,M) < 0.

Theorem 2
Let H be a quadratically stable LPV system, Π be a strict PN multiplier, and (Ψ,M) be a stable
factorization of Π. Let the interconnection of H and Ψ have the state-space realization given in
(29). Let the columns of N (ρ) form bases for the null space of

[
C2 (ρ) D21 (ρ) D22 (ρ)

]
, where

D22 (ρ) has full row rank ∀ρ ∈ P . Denote N̄ := diag (N (ρ) , I). There exists a quadratically stable
estimator F of order nF and some matrix P = PT satisfying BMIWC (G (H,F ) , P, γ,Ψ,M) < 0
if and only if there exist symmetric matrices X and Z satisfying

X − Z ≥ 0, rank (X − Z) ≤ nF , (34)
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AT (ρ)Z + ZA (ρ) ? ?
BT1 (ρ)Z 0 ?
BT2 (ρ)Z 0 −γI

+

CT1 (ρ)
DT

11 (ρ)
DT

12 (ρ)

M (?) < 0 ∀ρ ∈ P, and (35)

N̄T



AT (ρ)X + ? ? ? ?
BT1 (ρ)X 0 ? ?
BT2 (ρ)X 0 −γI ?
−C3 (ρ) −D31 (ρ) −D32 (ρ) −γI

+


CT1 (ρ)
DT

11 (ρ)
DT

12 (ρ)
0

M (?)

 N̄ < 0 ∀ρ ∈ P. (36)

Further, feasibility of conditions (34), (35), and (36) implies that Fu (G (H,F ) ,∆) satisfies
(1) limT→∞ xe (T ) = 0 ∀xe (0) ∈ RnH+nΨ+nF , ∀d ∈ Lnd2 , ∀∆ ∈ IQC (Π), and ∀ρ ∈ T , and
(2) sup∆∈IQC(Π) ‖Fu (G (H,F ) ,∆)‖ ≤ γ.

Proof
The proof of sufficiency adapts the proof of Lemma 3.1 in [38]. Assume there exists a quadratically
stable estimator F of order nF (where nF is any positive integer) and some matrix P = PT

satisfying BMIWC (G (H,F ) , P, γ,Ψ,M) < 0. Apply the Schur complement lemma to show that
BMIWC (G (H,F ) , P, γ,Ψ,M) < 0 is equivalent to

AT (ρ)P + PA (ρ) ? ? ?
BTw (ρ)P 0 ? ?
BTd (ρ)P 0 −γI ?
Ce (ρ) Dew (ρ) Ded (ρ) −γI

+


CTz (ρ)
DTzw (ρ)
DTzd (ρ)

0

M (?) < 0 ∀ρ ∈ P. (37)

Inequality (37) can be rewritten, using the matrix expressions given in (32), as

L (ρ) +QTΘ (ρ)R (ρ) +RT (ρ) ΘT (ρ)Q < 0 ∀ρ ∈ P, (38)

where Θ (ρ) :=
[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

]
,

L (ρ) :=


[
A (ρ) 0

0 0

]T
P + ? ? ? ?[

BT1 (ρ) 0
]
P 0 ? ?[

BT2 (ρ) 0
]
P 0 −γI ?[

−C3 (ρ) 0
]

−D31 (ρ) −D32 (ρ) −γI

+


CT1 (ρ)

0
DT

11 (ρ)
DT

12 (ρ)
0

M (?) , (39)

Q :=

[[
0 I
0 0

]
P

0
0

0
0

0
I

]
, and R (ρ) :=

[
0 I 0 0 0

C2 (ρ) 0 D21 (ρ) D22 (ρ) 0

]
. (40)

Let the columns of N (ρ) form bases for the null space of
[
C2 (ρ) D21 (ρ) D22 (ρ)

]
. Define the

matrices NQ and NR (ρ) as:

NQ :=


P−1

[
I
0

]
0
0

0
0

0 I 0
0 0 I
0 0 0

 and NR (ρ) :=


N1 (ρ) 0

0 0
N2 (ρ) 0
N3 (ρ) 0

0 I

 , (41)

where N1 (ρ), N2 (ρ), and N3 (ρ) correspond to a block partition of the rows of N (ρ) consistent
with the dimensions of C2 (ρ), D21 (ρ), and D22 (ρ), respectively. The columns of NQ and NR (ρ)
form bases for the null spaces of Q and R (ρ), respectively. From the matrix elimination lemma
(Lemma 3.1 in [38]), there exists a matrix Θ (ρ) of compatible dimensions satisfying inequality
(38) if and only if

NT
QL (ρ)NQ < 0 ∀ρ ∈ P and (42)

NT
R (ρ)L (ρ)NR (ρ) < 0 ∀ρ ∈ P. (43)
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Next, define n := nH + nΨ and partition P as
[
X X2

XT
2 X3

]
, whereX = XT ∈ Rn×n,X3 = XT

3 ∈

RnF×nF , and X2 ∈ Rn×nF . Further, partition P−1 as
[
Y •
• •

]
, where Y = Y T ∈ Rn×n and •

denotes terms that are not relevant here. Using these Lyapunov matrix partitions, inequality (43)
is shown to be equivalent to inequality (36). Further, inequality (42) is shown to be equivalent toY AT (ρ) +A (ρ)Y ? ?

BT1 (ρ) 0 ?
BT2 (ρ) 0 −γI

+

Y CT1 (ρ)
DT

11 (ρ)
DT

12 (ρ)

M (?) < 0 ∀ρ ∈ P. (44)

Setting Z := Y −1 and multiplying inequality (44) on the left and right by diag (Z, I, I) yields (35).
Using the partition for P given above, the (1, 1) block of BMIWC (G (H,F ) , P, γ,Ψ,M) <

0 yields ATF (ρ)X3 +X3AF (ρ) < 0 ∀ρ ∈ P . Since F is assumed to be quadratically stable,
Definition 3 implies that X3 > 0. A variation of the matrix dilation lemma (Lemma 7.9 in [39])
is stated and proved as Lemma 7 in Appendix B. From Lemma 7, it is concluded that X − Z ≥ 0
and rank (X − Z) ≤ nF .

For necessity, assume that there exist symmetric matrices X,Z ∈ Rn×n satisfying conditions
(34), (35), and (36). By a variation of the matrix dilation lemma (Lemma 7 in Appendix

B), there exist X2 ∈ Rn×nF and X3 = XT
3 ∈ RnF×nF such that X3 > 0 and

[
X X2

XT
2 X3

]−1

=[
Z−1 •
• •

]
. The algebraic steps used in the proof of sufficiency are now reversed. Specifically,

from the matrix elimination lemma, X and Z satisfy LMIs (35) and (36) if and only if there
exists a matrix Θ (ρ) of compatible dimensions satisfying inequality (38). Partition Θ (ρ) as

given before, where AF ∈ RnF×nF . Note that F s
=

[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

]
and P :=

[
X X2

XT
2 X3

]
satisfy BMIWC (G (H,F ) , P, γ,Ψ,M) < 0. Using this partition for P , the (1, 1) block of
BMIWC (G (H,F ) , P, γ,Ψ,M) < 0 yields ATF (ρ)X3 +X3AF (ρ) < 0 ∀ρ ∈ P . From Definition
3, X3 > 0 implies that F is quadratically stable.

Finally, since H was already assumed to be quadratically stable, the quadratic stability of F
implies the quadratic stability of G (H,F ). From Theorem 1, if there exists P = PT satisfying
BMIWC (G (H,F ) , P, γ,Ψ,M) < 0, then Fu (G (H,F ) ,∆) satisfies statements (1) and (2).

Note that conditions (34), (35), and (36) are LMIs in the variables X , Z, M , and γ. Hence,
Theorem 2 circumvents the non-convexity of BMIWC (G (H,F ) , P, γ,Ψ,M) < 0 by providing
equivalent LMI conditions. In implementation, a semidefinite program is formulated with γ as the
linear cost function to be minimized while subjected to these LMIs. Further, the parameter space is
discretized into a finite number of grid points and the LMIs are enforced at each grid point. All the
LMIs share a common closed-loop Lyapunov matrix, making this approach significantly different
from a pointwise synthesis. Theorem 2 results in no additional conservatism over the sufficient
conditions of Theorem 1. Moreover, Theorem 2 is different from the existing results because it
allows for grid-based LPV plants whose state matrices are arbitrary functions of the parameters.

The rank constraint on X − Z given in (34) is not convex when nF < n. However, by choosing
nF ≥ n one can ensure that the rank constraint is automatically satisfied. In practice, it suffices to
choose nF = n, yielding an estimator whose order equals the combined order of H and Ψ.

The optimal values of the decision variables X and Z obtained from the semidefinite program are

used to complete P as
[

X Z −X
Z −X X − Z

]
. Finally, the estimator F is reconstructed via an explicit

procedure that only relies on the state-space matrices of H and Ψ, and the optimal values of X and
Z. This entails deriving explicit expressions for NQ and NR (ρ), and then forming a matrix T that
spans the union of the null spaces of Q and R (ρ). Upon observing that T is nonsingular, it is used
in a congruence transformation of inequality (38). The remainder of the reconstruction procedure is
omitted here, since it closely follows the proof of Lemma 3.1 given in Appendix A of [38].
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(a) The disturbance feedforward problem.
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(b) The dual of the feedforward problem.

Figure 4. The dual of the disturbance feedforward problem is the output estimation problem.

4.2. Disturbance Feedforward

The disturbance feedforward problem is formulated using the interconnection shown in Figure 4a.
H is a nominal LPV plant with parameters ρ ∈ P , states xH ∈ RnH , control inputs u ∈ Rnu ,
disturbance inputs d ∈ Rnd , and generalized errors e ∈ Rne . The LPV plant H is connected with an
uncertainty ∆ via signals v ∈ Rnv and w ∈ Rnw . This creates an uncertain LPV system Fu (H,∆)
from the inputs u and d to the output e. The problem is to synthesize a feedforward K that uses
the disturbances d to generate control inputs u. The synthesis objective is to bound the worst-case
induced L2 norm from d to e over the set of uncertainties that satisfy the IQC defined by Π.

In addition to the LFT of H and ∆, the IQC filter Ψ is appended such that it is driven by signals
v and w, and produces signal z. The interconnection of H and Ψ has the state-space representation

ẋz
e

 =

A (ρ) B1 (ρ) B2 (ρ) B3 (ρ)
C1 (ρ) D11 (ρ) D12 (ρ) D13 (ρ)
C2 (ρ) D21 (ρ) D22 (ρ) D23 (ρ)


xwu
d

 , (45)

where x =
[
xTH , x

T
Ψ

]T ∈ RnH+nΨ are the combined states of H and Ψ. It is assumed that D22 (ρ) ∈
Rne×nu has full column rank ∀ρ ∈ P . This assumption is used to ensure that all components of the
control input u affect some component of the generalized error e.

The feedforward K to be synthesized has the state-space representation:[
ẋK
u

]
=

[
AK (ρ) BK (ρ)
CK (ρ) DK (ρ)

] [
xK
d

]
, (46)

where xK ∈ RnK is the state, d is the input, and u is the output of the feedforward controller.
As shown by the large dashed box in Figure 4a, the closed-loop formed by the interconnection
of H and K is denoted by G, with states xG =

[
xTH , x

T
K

]T
. In the remainder of this section, the

notation G (H,K) will be used in some cases to make explicit the dependence of G on H and K.
Theorem 1 provides conditions to bound the worst-case gain of Fu (G (H,K) ,∆). The objective is
to synthesize K which minimizes this bound.

Next consider the extended LPV system formed by the interconnection of G (H,K) and Ψ. This
extended system has the state-space realization:ẋez

e

 =

A (ρ) Bw (ρ) Bd (ρ)
Cz (ρ) Dzw (ρ) Dzd (ρ)
Ce (ρ) Dew (ρ) Ded (ρ)

xew
d

 , (47)
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16 R. VENKATARAMAN AND P. SEILER

where xe =
[
xTH , x

T
Ψ, x

T
K

]T ∈ RnH+nΨ+nK are the combined states of H , Ψ, and K. These state-
space matrices are expressed in terms of the matrices appearing in Equations (45) and (46) as:

[A Bw Bd
Cz Dzw Dzd

Ce Dew Ded

]
=

 A 0 B1 B3

0 0 0 0
C1 0 D11 D13

C2 0 D21 D23

+

 0 B2

I 0
0 D12

0 D22

[AK BK

CK DK

] [
0 I 0 0
0 0 0 I

]
, (48)

where the dependence of the matrices on ρ is suppressed for brevity.
According to Theorem 1, the worst-case gain of Fu (G (H,K) ,∆) is bounded by γ if there exists

P = PT satisfying BMIWC (G (H,K) , P, γ,Ψ,M) < 0. Applying the Schur complement lemma,
BMIWC (G (H,K) , P, γ,Ψ,M) < 0 is equivalent to the inequality

AT (ρ)P + PA (ρ) ? ? ?
BTw (ρ)P 0 ? ?
BTd (ρ)P 0 −γI ?
Ce (ρ) Dew (ρ) Ded (ρ) −γI

+


CTz (ρ)
DTzw (ρ)
DTzd (ρ)

0

M (?) < 0 ∀ρ ∈ P. (49)

As before, inequality (49) is not a LMI because of the presence of bilinear terms involving P and
the state-space matrices of K. For example, the term AT (ρ)P involves the product of AK (ρ) and
P , similar to that appearing in the output estimation problem. However, the disturbance feedforward
problem has the additional complication that Cz (ρ), Dzw (ρ), and Dzd (ρ) depend on the state-space
matrices of the feedforward to be synthesized. Thus, the second term in inequality (49) involves
quadratic products of the state-space matrices of K. As a consequence, it does not seem possible
to convert inequality (49) into equivalent LMI conditions via the matrix elimination lemma. Hence
an alternative approach is followed wherein the dual of the disturbance feedforward problem is
considered. This alternative approach provides convex (LMI) synthesis conditions for K.

Before considering the dual problem, recall the main implication of Lemma 6. Lemma 6
proved that the sufficient conditions for bounding the worst-case gain of Fu (G,∆) over the
uncertainty set IQC (Π) are equivalent to the sufficient conditions for bounding the worst-case gain
of Fu

(
GT ,∆D

)
over the uncertainty set IQC (D (Π)). Now, denote Fu (G (H,K) ,∆) shown in

Figure 4a as the primal uncertain LPV system. The corresponding dual uncertain LPV system is
Fu
(
GT
(
HT ,KT

)
,∆D

)
as shown in Figure 4b. Here,GT is the dual ofG in the sense of Definition

4 and ∆D is an artificial construct that simply satisfies the IQC defined by D (Π). It is verified from
algebra that GT is the interconnection of HT and KT that is shown in Figure 4b. As before, the
notation GT

(
HT ,KT

)
is used sometimes to make explicit the dependence of GT on HT and KT .

HT is the dual of H with state xH ∈ RnH , inputs w ∈ Rnv and d ∈ Rne , and outputs v ∈ Rnw ,
y ∈ Rnu , and q ∈ Rnd . The inputs of HT are partitioned conformably with the outputs of H . For
example, in the preceding discussion, the outputs of H were partitioned as v ∈ Rnv and e ∈ Rne .
Consequently, the inputs of HT are partitioned as w ∈ Rnv and d ∈ Rne . Similarly, the outputs of
HT are partitioned conformably with the inputs of H . KT is the dual of K with state xK ∈ RnK ,
input y ∈ Rnu , and output q̂ ∈ Rnd . On comparing Figure 4b with Figure 3, it is inferred that
KT is effectively an output estimator for HT . The output q̂ of KT is effectively an estimate of
the output q of HT . Because of the way the feedforward problem is formulated in Figure 4a,
note that the estimation error e equals q̂ + q rather than q̂ − q as was the case in Section 4.1.
The next theorem proves that synthesizing an output estimator KT to bound the worst-case gain
of Fu

(
GT
(
HT ,KT

)
,∆D

)
is equivalent to synthesizing a disturbance feedforward to bound the

worst-case gain of Fu (G (H,K) ,∆).

Theorem 3
LetH be a quadratically stable LPV system and Π be a strict PN multiplier. Let (Ψ,M) be any stable
factorization of Π and (Γ, N) be any stable factorization of D (Π). LetG (H,K) andGT

(
HT ,KT

)
denote the closed-loop primal (Figure 4a) and dual (Figure 4b) systems for a given K, respectively.
Then K is a quadratically stable feedforward that satisfies BMIWC (G (H,K) , P, γ,Ψ,M) < 0
for some symmetric matrix P if and only if KT is a quadratically stable estimator that satisfies
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BMIWC

(
GT
(
HT ,KT

)
, Q, γ,Γ, N

)
< 0 for some symmetric matrix Q. Further, the feasibility of

BMIWC (G (H,K) , P, γ,Ψ,M) < 0 implies that Fu (G (H,K) ,∆) satisfies:
(1) limT→∞ xe (T ) = 0 ∀xe (0) ∈ RnH+nΨ+nK , ∀d ∈ Lnd2 , ∀∆ ∈ IQC (Π), and ∀ρ ∈ T , and
(2) sup∆∈IQC(Π) ‖Fu (G (H,K) ,∆)‖ ≤ γ.

Proof
From statement (1) of Lemma 6, H is quadratically stable if and only if HT is quadratically
stable. Similarly, K is quadratically stable if and only if KT is quadratically stable. From
statement (2) of Lemma 6, Π is a strict PN multiplier if and only if D (Π) is a strict
PN multiplier. For sufficiency, assume K is a quadratically stable feedforward that satisfies
BMIWC (G (H,K) , P, γ,Ψ,M) < 0 for some P = PT . It is verified thatG (H,K) is quadratically
stable becauseH andK are both quadratically stable. From statement (1) of Lemma 6, it follows that
G (H,K)

T
= GT

(
HT ,KT

)
is also quadratically stable. From statement (3) of Lemma 6, ∃Q = QT

satisfyingBMIWC

(
GT
(
HT ,KT

)
, Q, γ,Γ, N

)
< 0. For necessity, use similar arguments. Finally,

from Theorem 1, if there exists P = PT satisfying BMIWC (G (H,K) , P, γ,Ψ,M) < 0, then
Fu (G (H,K) ,∆) satisfies statements (1) and (2).

Theorem 3 shows that KT is an output estimator that satisfies the sufficient conditions
for bounding the worst-case gain of Fu

(
GT
(
HT ,KT

)
,∆D

)
by γ if and only if K is a

disturbance feedforward that satisfies the sufficient conditions for bounding the worst-case gain
of Fu (G (H,K) ,∆) by γ. Hence, the disturbance feedforward problem is solved by implementing
its corresponding dual form. In particular, when a feedforward synthesis problem is specified using
H and Π, Theorem 2 is invoked on HT and D (Π) so that the estimator KT is synthesized instead.
Theorem 2 is implemented as a semidefinite program as explained in Section 4.1.

One technical issue is that the solution of the disturbance feedforward problem by the dual
semidefinite program requires an appropriate parametrization of the IQC multiplier. For example, if
∆ is defined by multiplication in the time-domain with a norm-bounded, time-varying real scalar, it

satisfies all IQCs defined by multipliers Π of the form
[
X Y
Y T −X

]
, where X = XT ≥ 0 and Y =

−Y T [24]. In this example, Π is parametrized by the real symmetric matrix X and the real skew-
symmetric matrix Y . In general, Π is parametrized by several variables. While parametrizations aid
in the enlargement of the set of feasible IQC multipliers, only those that preserve the linearity of the
matrix inequalities can be implemented in semidefinite programs. For several perturbations, suitable
parametrizations of Π are available in Section 4.2 of [19].

However, the dual multipliers (Definition 5) involve matrix inversion. As a result, even if the
primal multiplier has a convex parametrization, the dual multiplier may not. Hence, suitable
parametrizations of the dual multiplier should be found independently and on a case-by-case basis.
However, for linear perturbations, if ∆ satisfies the IQCs defined by several primal multipliers Πi,
then ∆D satisfies the IQCs defined by every one of the corresponding dual multipliers D (Πi) [23].
Consequently, affine parametrizations of Πi and D (Πi) can be used for the primal and dual worst-
case gain problems, respectively. More details can be found in Section 2.1 of [23].

5. NUMERICAL EXAMPLE

The following numerical example illustrates convex feedforward synthesis for a grid-based LPV
plant that is affected by a sector-constrained nonlinearity. Figure 5a depicts a spring-mass-damper
system consisting of two springs, two masses, and two dampers. The masses are m1 = 1kg and
m2 = 0.5kg. The spring connecting the wall and mass m1 is linear and has a spring constant k1 =
1N m−1. The spring connecting the two masses is nonlinear, where f : R→ R denotes the nonlinear
function mapping the spring deformation to the spring force. For a spring deformation v ∈ R, the
spring force is f (v) := k2v + ∆ (v). Here, k2 = 1N m−1 denotes the linear spring constant and
∆ : R→ R denotes a sector-constrained nonlinear function. The damping coefficient c1 is certain,
but depends on a time-varying scheduling parameter ρ (t) as c1 = |sin (ρ (t))|. Admissible parameter
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(a) The damper c1 is parameter-varying and the spring
force f is a nonlinear function of deformation.
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(b) The weights penalize the tracking error at low
frequencies and the control effort at high frequencies.

Figure 5. Left: Sping-mass-damper system. Right: Interconnection showing frequency-dependent weights.

trajectories satisfy ρ (t) ∈ P =
[
0, π3

]
and ρ̇ (t) ∈ R ∀t ≥ 0. Since c1 is a transcendental function of

ρ, this problem is not directly solvable by the LFT-LPV approach [12]. Following the grid-based
LPV approach, the parameter space is gridded into three points

{
0, π6 ,

π
3

}
. These three points are

simply chosen for the purpose of demonstration and the grid may be made as dense as needed [25].
The damping coefficient c2 = 2N s m−1 is certain and time-invariant.

A command tracking problem is formulated as follows. Mass m1 is externally forced through
the control input u. The positions of m1 and m2 relative to their respective equilibrium positions
are denoted by xP1 and xP2. The commanded position of mass m2 relative to its equilibrium
position is denoted by d. The objective is to design a feedforward controller K that uses d to
generate u such that xP2 tracks the reference command. The design should ensure that large tracking
errors are avoided at low frequencies and large control inputs are avoided at high frequencies. The
feedforward controller should be scheduled with the parameter ρ (t) and should be robust to the
sector-constrained nonlinearity ∆. In order to describe the equations of motion of the spring-mass-
damper system, consider a LPV system L with the state-space representation

ẋP1

ẋP2

ẋP3

ẋP4

 =


0 0 1 0
0 0 0 1

−(k1+k2)
m1

k2

m1

−(c1+c2)
m1

c2
m1

k2

m2

−k2

m2

c2
m2

−c2
m2


xP1

xP2

xP3

xP4

+


0 0 0
0 0 0
1
m1

1
m1

0
−1
m2

0 0


wu
d

 , (50)

v = xP2 − xP1, and ē = d− xP2. (51)

where xP3 = ẋP1 and xP4 = ẋP2 are the velocities of the two masses and w = ∆ (v).
The output v captures the net deformation of the spring connecting the two masses. As per the

definition of the function f given previously, the resulting spring force is f (v) = k2xP2 − k2xP1 +
w, where w = ∆ (v) is the nonlinear component of the spring force. The output ē captures the error
between the commanded and actual positions of mass m2. The equations of motion for the entire
spring-mass-damper system, including the nonlinearity, is given by Fu (L,∆). Figure 5b shows the
interconnection of L and two weighting functions Wo and Wu. The weight Wo = 0.1

(s+0.1)(s+0.01)

penalizes the tracking error ē at low frequencies. The weighting functionWu = 100(s+0.1)
s+1000 penalizes

the control effort u at high frequencies. The generalized error vector is denoted by e and has two
components: e1 := Woē and e2 := Wuu. As shown in Figure 5b, the interconnection of L, Wo, and
Wu is denoted by H in order to relate back to the notation used Figure 4a.

Since ∆ is a sector-constrained nonlinearity, it satisfies all IQCs defined by multipliers Π of the

form
[
−2αβ α+ β
α+ β −2

]
, where α and β define the slopes of the sector [24]. In this example, the sector

is defined by lines of slope α = −0.9 and β = 1.5. These values of α and β ensure that Π is a strict
PN multiplier. The choice of the sector is important in ensuring the applicability of Theorem 3. For
example, f is a nonlinear function in a rotated sector defined by lines of slope 0.1 and 2.5. However,
the multiplier for this sector is not strict PN and cannot be used in Theorem 3. The dual multiplier
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D (Π) = (α− β)
−2

Π is simply a scaled version of the primal. The J-spectral factor of D (Π) is
used in the analysis and synthesis LMI conditions.

First, a pure analysis problem is considered, wherein K = 0. The upper bound on the worst-
case gain of Fu (G,∆) is made a cost function in a semidefinite program. Theorem 1 is applied to
obtain a worst-case gain bound of 100. Next, the synthesis problem is considered and Theorem 3 is
applied to obtain a worst-case gain bound of 5.48, demonstrating that the command tracking for m2

is significantly better with an optimally designed LPV feedforward controller.

6. CONCLUSIONS

This paper considered the twin problems of synthesizing output estimators and disturbance
feedforward controllers for continuous-time, uncertain, gridded, linear parameter-varying (LPV)
systems. Integral quadratic constraints (IQCs) were used to describe the uncertainty. While convex
conditions are readily obtained for the output estimation problem, it does not seem possible to
directly obtain convex conditions for the disturbance feedforward problem. Hence, notions of
duality were developed for LPV systems and IQCs in the time-domain. These were used to show that
the two synthesis problems are duals of each other. Consequently, a convex synthesis of feedforward
controllers is possible by solving the dual estimation problem. The duality result has no loss in
conservatism. A numerical example illustrated convex feedforward synthesis for a gridded LPV
plant that was affected by a sector-constrained nonlinear function.

APPENDIX A: PROOF OF LEMMA 4

First, note that Π has the following frequency-domain representations for i = 1, 2:

Π (s) = Ψ∼i (s)MiΨi (s) =

[
(sI −Ai)−1

Bi
I

]∼ [
Qi Si
STi Ri

] [
(sI −Ai)−1

Bi
I

]
. (52)

This yields the following two state-space realizations for Π:

Π
s
=

[
Āi B̄i
C̄i D̄i

]
:=

 Ai 0 Bi
−Qi −ATi −Si
STi BTi Ri

 for i = 1, 2. (53)

These two realizations of Π are minimal since the Ai are the state matrices of the (assumed)
minimal realizations for Ψi. Hence Ā1 and Ā2 share the same eigenvalues and hence are similar.
Consequently, A1 and A2 share the same eigenvalues and hence are similar matrices. This proves
the existence of a similarity transformation matrix T1 ∈ Rn×n such that:

A2 = T1A1T
−1
1 . (54)

Moreover, the two minimal realizations of Π are also related by a similarity transformation:

∃T ∈ R2n×2n :

[
TĀ1T

−1 TB̄1

C̄1T
−1 D̄1

]
=

[
Ā2 B̄2

C̄2 D̄2

]
. (55)

Equating the (1, 1) blocks of (55) yields TĀ1 = Ā2T . Using the partition T =
[
T11 T12

T21 T22

]
, this is:[

T11A1 − T12Q1 −T12A
T
1

T21A1 − T22Q1 −T22A
T
1

]
=

[
A2T11 A2T12

−Q2T11 −AT2 T21 −Q2T12 −AT2 T22

]
. (56)

Equating the (1, 2) blocks of (56) yields the relation −T12A
T
1 = A2T12. However, A1 and A2

are also related by Equation (54). These two relations together yield the relation −T−1
1 T12A

T
1 =

A1T
−1
1 T12. This can be rewritten as the Lyapunov Equation A1Z̄ + Z̄AT1 = 0 where Z̄ := T−1

1 T12.
Since A1 is Hurwitz it follows that Z̄ = 0 is the unique solution to this Lyapunov Equation.
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Moreover, Z̄ = 0 implies T12 = 0, i.e. T is block lower triangular. Equating the (1, 1) and (2, 2)
blocks of (56) then implies T11 = T1 and T22 = T−T1 . Finally, denoting X̄ := TT1 T21 yields the

block partitions T =
[

T1 0

T−T
1 X̄ T−T

1

]
and T−1 =

[
T−1

1 0

−X̄T−1
1 TT1

]
.

Equating the (2, 1) blocks of (56) yields the Lyapunov Equation AT1 X̄ + X̄A1 = Q1 − TT1 Q2T1.
The solution X̄ = X̄T to this Lyapunov Equation exists and is unique because A1 is Hurwitz.

Equating the (1, 2) blocks of (55) yields:

B2 = T1B1 and T−T1 X̄B1 = T−T1 S1 − S2. (57)

Equating the (2, 2) blocks of (55) yields D̄1 = D̄2 which further implies R1 = R2. Finally, the
following expressions are obtained for Q2, S2, and R2:

Q2 = T−T1

(
Q1 − X̄A1 −AT1 X̄

)
T−1

1 , S2 = T−T1

(
S1 − X̄B1

)
, andR2 = R1. (58)

Equations (54), (57), and (58) prove statements (1), (2) and (3), respectively.

APPENDIX B: MATRIX DILATION RESULT

Lemma 7
Let X = XT ∈ Rn×n, Y = Y T ∈ Rn×n, and a positive integer nF be given. Then there exist
matrices X2, Y2 ∈ Rn×nF and symmetric matrices X3, Y3 ∈ RnF×nF , satisfying

X3 > 0 and
[
X X2

XT
2 X3

]−1

=

[
Y Y2

Y T2 Y3

]
(59)

if and only if
X − Y −1 ≥ 0 and rank

(
X − Y −1

)
≤ nF . (60)

Proof
For sufficiency, assume that the conditions given in (59) hold. By the matrix inversion lemma,

[
X X2

XT
2 X3

]−1

=

[ (
X −X2X

−1
3 XT

2

)−1 −
(
X −X2X

−1
3 XT

2

)−1
X2X

−1
3

−
(
X3 −XT

2 X
−1X2

)−1
XT

2 X
−1

(
X3 −XT

2 X
−1X2

)−1

]
. (61)

Comparing the expressions in (59) with (61) yields Y =
(
X −X2X

−1
3 XT

2

)−1
. Applying the matrix

inverse to both sides of this relation and rearranging terms yields X − Y −1 = X2X
−1
3 XT

2 . Thus the
assumption X3 > 0 implies X − Y −1 ≥ 0. Further, since X2 ∈ Rn×nF , rank

(
X − Y −1

)
≤ nF .

For necessity, assume that the conditions given in (60) hold. Since rank
(
X − Y −1

)
≤ nF ,

∃X2 ∈ Rn×nF so that X − Y −1 = X2X
T
2 ≥ 0. This relation can be rearranged to obtain Y =(

X −X2X
T
2

)−1
. By the matrix inversion lemma,

[
X X2

XT2 I

]−1

=
[

Y −Y X2

−XT2 Y XT2 Y X2+I

]
. Hence, set

X3 = I , Y2 = −Y X2, and Y3 = I +XT
2 Y X2.
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