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Recovering Robustness in Model-Free Reinforcement Learning

Harish K Venkataraman! and Peter J. Seiler?

Abstract— Reinforcement learning (RL) is used to directly
design a control policy using data collected from the system.
This paper considers the robustness of controllers trained via
model-free RL. The discussion focuses on the standard model-
based linear quadratic Gaussian (LQG) problem as a special
instance of RL. A simple example, originally formulated for
LQG problems, is used to demonstrate that RL with partial
observations can lead to poor robustness margins. It is proposed
to recover robustness by introducing random perturbations at
the system input during the RL training. The perturbation
magnitude can be used to trade off performance for robust-
ness. Two simple examples are presented to demonstrate the
proposed method for enhancing robustness during RL training.

I. INTRODUCTION

There has been rapid and impressive progress in machine
learning in the past decade. One particular approach, rein-
forcement learning (RL) [21], [22], has close connections to
optimal control techniques. RL is a model-free approach to
directly design the control policy using data collected from
the system via simulation or experiments. There have been
several successful applications of RL on a variety of systems
including helicopters [14] and robotics [18], [20], [10], [11].

This paper uses the standard model-based linear quadratic
Gaussian (LQG) problem to explore the robustness of model-
free RL controllers. The LQG problem, reviewed in Sec-
tion is formulated with linear state-space models and
an expected quadratic cost [12], [23]. The optimal controller
is an observer/state-feedback with gains computed from two
Riccati equations. We refer to this as “model-based” because
the optimal controller is constructed explicitly using the state
matrices. RL, reviewed in Section [[I-B| is a closely related
problem formulated with partially observable Markov deci-
sion processes (POMDPs) and expected cumulative rewards
[21], [22]. We refer to this as “model-free” because typical
solution methods directly search for the control policy using
simulation or experimental data

RL with POMDPs is sufficiently general to solve the LQG
problem as a special case, as discussed in Section
This connection is motivated by recent work in [19] which
considers the linear quadratic regulator (LQR) as a special
instance of RL with MDPs. Section builds on [19] by
exploring the robustness properties of model-free RL with

I'The boundaries between “model-based” and “model-free” are not neces-
sarily well-defined. For example, the state matrices used in the LQG problem
are often constructed from data using system identification techniques. We
still call the LQG solution “model-based” as the construction of the optimal
controller directly uses these state matrices. The sample complexity of
such an approach is a subject of current research [4]. Conversely, an RL
policy trained with simulation data implies the existence of a model, i.e.
the simulator itself. We still call this “model-free” as the RL controller is
constructed from data without directly using the model information.

POMDPs. First, Section [[lI-A]reviews a well-known example
by Doyle [5] for which the optimal LQG controller has
poor robustness margins. This is in contrast to LQR state
feedback controllers which have provably good margins [1].
Section [[II-B| uses a simple RL method, random search, to
find (nearly) optimal policies for Doyle’s example. With
sufficient data, the random search policy converges to the
optimal LQG controller. This illustrates that model-free RL
with POMDPs, as a special case of LQG, can also lead to
controllers with poor robustness margins.

Small robustness margins indicate that the feedback sys-
tem may become unstable due to small changes in the plant
gain or parasitic dynamics. This has practical implications
for model-free RL with POMDPs. Small robustness margins
imply that an RL controller trained via simulation might lead
to an unstable feedback system when implemented on the
real plant. Alternatively, consider the scenario where the RL
controller is trained via experimental data on a real physical
device. The same RL controller might cause instability if the
dynamics of the system vary slightly over time. Moreover,
the same RL controller might cause instability if imple-
mented for production on many devices of the same type,
e.g. RL trained on one robot but implemented for production
on many of the same type of robot.

Several methods were proposed by the controls community
to recover robustness in LQG regulators including loop
transfer recovery [8], [9] and robust Hy [17]. These issues
also motivated the development of alternative synthesis and
analysis techniques including H,, optimal control [7], u
analysis [6], [15], and DK synthesis [16]. All these ap-
proaches to address robustness issues can be characterized
as model-based.

A key contribution of this paper is a model-free method
to enhance robustness of RL controllers. This approach,
discussed in Section [III-C| consists of introducing random
perturbations at the system input during the RL training
phase. The specified level of input perturbation provides a
tuning knob to trade-off performance for robustness. It is
shown that this modification to RL training improves the
robustness margins on Doyle’s example (Section and
a simplified model of a flexible body (Section [[V).

II. OPTIMAL CONTROL FORMULATIONS AND SOLUTIONS

A. Linear Quadratic Gaussian (LQG) Control

This section briefly reviews the LQG control problem and
its solution. Additional details on LQG and the more general
Hj, optimal control problem can be found in many textbooks,
e.g. Chapter 6 of [12] and Chapter 14 of [23].



Consider a linear time-invariant, discrete-time system:

Tiy1 = Axy + Buy + Bywy 0
yp = Oy + vy

where x € R"™ is the state, u € R™ is the control input,
and y € R™ is the measurement. The process noise w &€
R™ and sensor noise v € R" are assumed to be white,
zero mean, and Gaussian with variances W := E[w,w] | and
V := Elvw!]. The (infinite-horizon) LQG optimal control
problem is formulated using a quadratic cost:
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@ = 0 and R > 0 are matrices that define penalties on the
state and control input. The control inputs u; are restricted
to depend on past measurements, i.e. u¢ (Yo, - - - ,yt_l) The
infinite-horizon LQG problem is to select these control inputs
to minimize the cost Jrqg.

The infinite-horizon LQG problem formulation includes
additional technical assumptions, e.g. stabilizability of A
and B. These additional assumptions ensure that an optimal
solution exists and is given by the following estimator and
state-feedback:

{lATt+1 = Af%t + But + L (yt - Ci't)

Uy = *Kii't

3)

The matrices K and L are the optimal linear quadratic
regulator (LQR) and (steady-state) Kalman filter gains. To
compute these gains, let DARFE(A, B,Q, R) denote the
following discrete-time Algebraic Riccati Equation involving
the matrix X = X7:

X=ATXA-ATXB(R+BTXB) 'BTXA+Q 4

Let P. and P, denote the stabilizing solutions to
DARE(A,B,Q,R) and DARE(AT,CT B,WBI V),
respectively. The LQR and Kalman filter gains are:

K:=(B"P.B+R)"'BTP.A (5)
L:=AP.CT(cpP.CT +V)! (6)

The optimal controller in Equation [3]exhibits the well-known
separation principle: it consists of the optimal state-feedback
gain coupled with an optimal state estimate. Note that this
is a model-based solution. In other words, the model of the
plant dynamics (as given by A, B, C, etc.) is used to compute
the optimal gains and construct the optimal controller in
Equation |3] This is in contrast to the standard approaches
for reinforcement learning which are data-driven.

2This form assumes a one time-step delay from measurements at time
t — 1 to the use for control at time ¢. This “delayed” form for LQG
accounts for any processing and sensing delays in the feedback path. An
alternative formulation assumes that u; depends on measurements up to
time ¢, i.e. u(yo, . .., yt). This “current” form for LQG allows (immediate)
direct feedthrough in the control. This paper uses the “delayed” form but
the similar results can be obtained for the “current” form.

B. Reinforcement Learning (RL)

This section briefly reviews reinforcement learning (RL).
Some notation is chosen to align more closely with the LQG
problem discussed in the previous section. Additional details
on RL can be found in [21] and [22].

RL is used to design policies (controllers) for an agent
interacting with its environment (system/plant). Most RL
problems are formulated with a Markov Decision Process
(MDP) which obey the Markovian state assumption: the
current state along with future actions completely determine
the future states. It is further assumed that the state is
available for the agent (full state feedback). It will be useful
to instead consider models that include observations with
uncertainty. These are known as Partially Observable Markov
Decision Processes (POMDPs) and are defined by:

e A set of states S,

e A set of actions A,

o A state transition probability, T

e A reward function, r : S x A — R,
e A set of observations O, and

o An observation probability, O.

A POMPD models the interaction of an agent with its
environment. The environment at time ¢ is in a state s; € S.
The agent takes an action a; € A and, as a result, the
environment transitions to a new state s;y; with probabil-
ity T (st41] 8¢, at). This also generates a reward r(s¢, az).
Moreover, the agent receives an observation o, € O with
probability O(o; | s¢, a;). The state transition and observation
probabilities capture random variations due to environmental
disturbances and measurement noise. The objective in (finite-
horizon) RL is to select the actions to maximize the following
expected cumulative reward:

N
Jrr(a) :=F Zr(st,at) @)
t=0

For MDPs the agent is assumed to have access to the full
state at each time, i.e. o, = s;. In this case, the actions can
be computed by policies 7 : S — A that map the state
s¢ to an action a; = w(s;). This represents a deterministic
policy but stochastic stationary policies can also be used.
Standard RL techniques compute the policy using (simulated
or experimental) data. There are a number of methods
to construct policies that maximize the cumulative reward
including value iteration, policy iteration, policy search, etc.
These approaches are model free, i.e. they require no explicit
knowledge of the distribution 7.

In the more general POMDP formulation, the agent only
has access to observations o;. These observations provide
information on the state and action (s;,a;) based on the
probability O. The actions a, are restricted to depend on
past observations, i.e. a;(og,...,0,—1) for t = 0,1,....
Many solution methods exist for RL with POMDPs and, in
some cases, they require the construction of a belief state (or
estimate of the hidden state) from the observations.



C. Solving LOG as a Special Case of RL

The summary of RL in the previous subsection focused on
finite-state POMDPs with a finite-horizon cumulative reward.
This formulation, with a few minor extensions, is sufficiently
general to solve the LQG problem as a special case. This
reformulation is motivated by [19] which solves for an linear
quadratic regulator (LQR) state feedback as a special case
of RL with MDPs.

First, the LQG dynamics can be modeled as a POMDP
with state, action (control input), and observation (measure-
ment) at time ¢t given by x;, us, and y;. This requires
continuous sets for these quantities: S := R"=, A := R™x,
and O := R™v. Thus the transition and observation proba-
bilities 7 and O are given as probability density functions.
Specifically, the LQG plant update (Equation [3) implies that
the transition to state x;y; given (x,u;) is modeled by a
Gaussian distribution with mean Ax; + Bu; and variance
B,WBY. Thus T ~ N (Az; + Buy, B, WBL) [ Similarly,
the LQG measurement y; given (zy,u;) is modeled by
O~ N (Cl‘t, V)

The per timestep RL reward corresponding to the LQG
problem is:

rrQa (T, ug) == — (mf@mt + utTRut) 8)

This is simply the negative of the per timestep LQG cost.
Section described RL with a finite horizon cumulative
reward (Equation [7). A discount factor v € [0,1) can be
introduced to ensure that the cumulative reward remains
bounded as the horizon N — oo. The discount factor is
neglected here to align with the infinite-horizon LQG prob-
lem. Instead, LQG, recast in the RL framework, corresponds
to maximizing the following average reward:

1
= lim —F

JLQG (u) N—oo N

N
> rigal(a, Ut)‘| ©)
t=0

Section summarizes the typical model-based LQG
solution. As noted above, this standard approach requires
specific knowledge of the model dynamics (A, B, C, etc).
This approach should be used if such model data is available
since it provides the optimal controller from simple linear
algebra calculations. Alternatively, the LQG problem can be
formulated, as discussed here, as a special case of RL with
POMDPs. This allows for existing RL techniques to be used
to compute model-free solutions to the LQG problem.

III. ROBUSTNESS OF RL CONTROLLERS

A. LQOG Robustness Issues: Doyle’s Example

This section reviews a well-known example by Doyle [5]
to illustrate the robustness issues that can arise with LQG
control. Consider the discrete-time LQG problem formulated

3Here T is the probability density of x given (z¢,ut). T ~ N (m, T)
denotes that 7 is given by the probability density function for a normal
distribution with mean m and variance 3.

in Section [[I-A] with the following plant, noise, and cost data:

11052 0.1105 0.0053 0.1105
A= { 0 1.1052} B = [0.1052} » Bu = [0.1052}

ct .= H ,Q =103 [1 1] JR:=1,W:=10%V :=1
0 11

This corresponds to a discretization of the continuous-time

plant dynamics given in [5] with zero-order hold and sample

time Ty = 0.1sec. The optimal controller is the estimator

and state feedback in Equation [3| with the gains:

KT — [9.5193} and I — [1.1297]

10.2579 1.0012 (10)

The optimal cost achieved by this LQG controller is Jgg =
1.373 x 10°.

The feedback system of the plant and LQG controller has
classical gain margins of [0.9802,1.0007]. Thus very small
changes in the plant gain will cause instability. The feedback
system also has very small phase margins of £0.070degs.
Thus any parasitic (unmodeled) dynamics will also cause
instability. Finally, the symmetric disk margin mgy [2], [3]
is another useful robustness indicatorﬂ The symmetric disk
margin for this example is my = 1.0007. This is consistent
with the poor classical gain and phase margins.

A key point of Doyle’s example is that LQG regulators
can have arbitrarily small margins. This is in contrast to
LQR state feedback controllers which have provably good
margins [1]. The plant in this example is unstable with
both eigenvalues at z = 1.1052. However, poor robustness
margins can arise even if the plant is stable and minimum
phase, e.g. as in [13]. See Section 8.3 of [1] for additional
details on loss of robustness with observers. Several methods
were proposed to recover robustness in LQG regulators
including loop transfer recovery [8], [9] and robust Hs [17].
These issues also motivated the development of alternative
synthesis and analysis techniques including H., optimal
control [7], p analysis [6], [15], and DK synthesis [16].
All these approaches to address robustness issues can be
characterized as model-based.

B. Solving Doyle’s Example with RL

This section reconsiders Doyle’s example within the RL
framework. The environment (system) is modeled by the
POMDP corresponding to the discretized dynamics from
Doyle’s example. It is assumed that the environment model
is not directly available and the policy (controller) is con-
structed using only input-output data. This corresponds to
the situation where data is collected either from simulations
or from experiments. The reward is defined as in Equation [§]
with the matrices Q and R given in the previous section.

The optimal LQG controller (Equation [3) has an observer
/ state-feedback structure with explicit dependence on the
model data. In the RL framework, the policy should be
parameterized without specific dependence on the model.

“The margin mg > 1 defines a disk in the complex plane with diameter
on the real axis [W%, mg]. The feedback system is stable for all gain and
phase variations wit%in this disk.



The policy for Doyle’s example will be parameterized as
a second-order, output feedback system in companion form:

Zt4+1 = AK(Q)Zt + BK(Q)%

11
U = CK(G)Zt ( )

where

ax0)= ) 4] e =[] ko =[] a2

Each vector § € R* corresponds to a specific policy denoted
by K (). Note, for later comparison, that the the optimal
LQG controller can be written in this companion form (via
a state transformation) as:

}T

Orgc == [—0.1095 —0.0491 —21.02 23.21 (13)

A simple random search (Algorithm [I)), as proposed in
[19], is used to compute a (sub-optimal) policy to maximize
the reward. Define the search hypercube  C R* by

HD,0):={0 R : 0, <0, <0, k=1,....4} (14)

The algorithm searches for policy parameters 6 by randomly
sampling this hypercube with a uniform distribution. The
reward associated with K(6) is then computed. This can
be done by simulating the combined environment/policy
dynamics with many realizations of the process and sensor
noise. The reward Jry (0) is given by the sample expectation
(average) reward over these realizations. If an actual physical
device is available then the average reward can be computed
from data collected over many experimental trials. The
estimated reward Jgr () is compared to the best reward
found thus far. The policy that maximizes the reward after
N.,., roll-outs (samples of ) is returned by the algorithm. As
noted previously, there are many alternative methods to solve
reinforcement learning problems with POMDPs. Random
search is used here because it has a simple implementation
and this allows to focus on the robustness issues.

Algorithm 1 Random Search

1: Given: Number of rollouts N,., and hypercube (6, 6)
2: Initialize: J,p = —00, Oy =0

3: fori=1,...,N,, do

4 Sample 6 € H from random uniform distribution

5: Evaluate reward Jg(6) obtained by K (0)

6 if Jrr > Jopt then

7 Set Jopt := Jrr(0) and G,p; := 0

8 end if

9: end for

0: Return J,,; and 0,,;

—

Random search was applied to Doyle’s example with
N,, = 10° samples and the following sampling hypercube:

~0.2 0
~0.2 |0

8:=| | andd:= | (15)
0 40

The reward can be estimated from many simulations of the
closed-loop environment and policy (step 5 in Algorithm [T)).
This reward estimate will converge to the true expected
reward as the number of simulations tends to infinity. The
true expected reward can be computed exactly from the
solution of a Lyapunov equation as discussed in the ap-
pendix. The reward evaluation step was implemented using
this exact Lyapunov-based calculation. This is an abstraction
of a true RL implementation which estimates the reward
from simulation data. This implementation avoids the need
for running many simulations for each sample 6 and allows
for efficient studies with a large number of roll-outs.
The best policy computed at the end of the search was:

Oopr = [~0.0346  —0.0687 —20.34 22.84]"  (16)

The reward achieved by this sub-optimal policy is Jo,: =
—1.489 x 10°. This is only 8% larger than the cost achieved
by the optimal LQG controller (accounting for the sign
change). The search dimension R* is relatively small and
hence random search finds a nearly optimal controller.

The feedback system of the plant and RL policy has
classical gain, phase, and symmetric disk margins of
[0.9626,1.0059], £0.396 degs, and my = 1.0058. The
model for the environment (plant) dynamics was used to
compute these margins. However, it is possible to estimate
robustness margins only from data. These small margins
again indicate that the feedback system may become unstable
due to small changes in the plant gain or parasitic dynamics.
This has practical implications for model-free RL. Small
robustness margins imply that an RL controller trained via
simulation might lead to an unstable feedback system when
implemented on the real plant. Alternatively, consider the
scenario where the RL controller is trained via experimental
data on a real system. The same RL controller might cause
instability if the dynamics of the system vary slightly over
time. Moreover, the same RL controller might cause insta-
bility if implemented for production on many devices of the
same type (e.g. RL trained on one robot but implemented for
production on many of the same type of robot). In summary,
LQG is a special case of RL and hence it follows that RL
with POMDPs can also have poor robustness margins.

C. Recovering Robustness in RL

As noted above, typical algorithms to improve robustness
are model based. It would be useful to have an easily
implementable, data-driven method to recover robustness.
Two options for enhancing robustness are to: (i) alter the
POMDP dynamics used in the training process or (ii) modify
the reward function. This section focuses on the first option
but concludes with a brief comment on the second option.

Consider the feedback interconnection shown in Figure [T}
This diagram shows a system (environment) in feedback with
a controller (policy). The system is assumed to be modeled
by a POMDP with process noise w and sensor noise v (or
more generally by the state transition 7 and observation
O probabilities). The additional box A will be used to
introduce perturbations to the dynamics (model uncertainty)



during the training phase. Temporarily assume that A = 1,
i.e. no model uncertainty. A standard RL training approach
would evaluate the expected reward for the policy over the
random process and sensor noise. One might conjecture that
robustness would be enhanced by increasing the process
noise w during the training phase. In fact, the robustness
margins become smaller for Doyle’s example as the process
noise variance W — oo. This counterintuitive result em-
phasizes the distinction between process noise (which enters
externally to the feedback system) and model uncertainty
(which appears internally in the feedback system).

w v
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System

Y
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Fig. 1: RL Training With Input Perturbations

The proposed method to enhance robustness is to perform
the training with random input perturbations. If the input
is scalar then the perturbation in Figure [I] is set as A =
1 + & where § is a uniform random variable in [—b, b]f]
The value b > 0 is selected to tune the amount of desired
margin. The expected reward is computed over these input
perturbations as well as the process and sensor noise. Thus
the perturbations should be randomly sampled during each
data collection. Such perturbations can be easily introduced
during model-free RL training. They can be introduced when
training either with simulations or with experimental devices.
If the system has multiple inputs then a similar (independent)
perturbation can be introduced into each input channel. The
perturbation level b; can be specified uniquely for channel ¢
to obtain a desired robustness margin for that channel.

Random search was again applied to Doyle’s example
with these input perturbations at levels b = 0 (No pertur-
bation), 0.1, 0.2, 0.3, 0.4, and 0.5. The search hypercube
and number of rollouts were the same as in the previous
section. Figure [2| shows the disk margin versus the input
perturbation percentage (100 x b)%. The random search was
repeated 100 times for each input perturbation level. Each
blue x corresponds to one of these trials. The mean and
+ one standard deviation of these trial results are shown
as cyan dashed curves. Finally, the disk margin for the
optimal LQG controller mg = 1.0007 is shown as the flat
dashed red line. The disk margin increases with the input
perturbation level b. Figure |3 shows the corresponding LQG
costs (equal to the negative of the expected reward) versus
the perturbation percent. This figure also shows the results

5 Another alternative is to set A as a uniform random variable in [%, m]
where m > 1. This would align with the disk margin definition.

for each of the one hundred trials (blue x), mean and = one
standard deviation over all trials (dashed cyan), and optimal
LQG cost (red dashed at J = 1.373x10%). The cost increases
(decreasing reward) as the input perturbation increases. This
shows the expected robustness versus performance trade-off.
The perturbation level b provides a “knob” to easily make
this trade-off.
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Fig. 3: LQG Cost vs Input Perturbation Percent (100 x b)

To conclude this section, we briefly comment on the option
to enhance robustness, in the RL framework, through proper
modification of the reward function r. Consider the following
per timestep reward for Doyle’s example:

rooa(eu) == — (oaf [T @+ ufw) )

If 0 = 1000 then this corresponds to the reward used
in the previous section to solve Doyle’s example in RL.
This yielded small robustness margins. The margins become
progressively smaller for ¢ — oo as noted in [5]. Thus
increasing the state penalty (or decreasing the control effort
penalty) will further degrade robustness on this example.



Conversely, robustness is enhanced on Doyle’s example by
reducing the reward for good disturbance rejection. Trading
performance vs. robustness via properly modifying the re-
ward function can be difficult or counter-intuitive in more
complex problems. The input perturbation method described
above provides a more direct means to improve robustness.

IV. EXAMPLE: SIMPLIFIED FLEXIBLE SYSTEM

This section considers a simplified flexible aircraft model
drawn from [13], [1]. The model given in [I] is in
continuous-time and represents a system with at low fre-
quency rigid body mode at 1 rad/sec and a lightly damped
flexible mode at 10rad/sec. The model also includes a
coloring filter on the process noise with a bandwidth at 1
rad/sec. This idealized model can represent any system with
a dominant low frequency rigid motion and high frequency
flexible mode, e.g. a robotic system.

The continuous-time model was discretized with a zero-
order hold and sample time 7 = 0.09sec. The corresponding
plant, noise, and cost data for a discrete-time LQG problem
(as formulated in Section is given by:

[0.9139 0 0 0.0823]
A | 0 06288 00776 0
~ | 0 77632 06083 0
0 0 0 0.9139]
[0.0861 0.0017 (1
_|0.3762 1o r |10
Bi=\qq632| Be=| o |9 = |0
0 0.0387 1
4 0 0 0
0000
Q=1y 0 o ol B=LW:=1V:=001
00 0 0

The optimal LQG controller is the estimator and state
feedback in Equation [3] with the following gains:

K=[11154 0 0 0.3976]
LT =[0.0673 0 0 0.2496]

The optimal cost achieved by this LQG controller is Jrgg =
0.0072 and the disk gain margin is my = 1.0091. This small
margin again indicates the poor robustness of the optimal
(model-based) LQG controller for this system.

Standard RL with random search can be used to construct
controllers for this example as discussed in Section [[I-C| The
policy is parameterized as a third-order system (as in Eq.
with state matrices in controllable canonical form:

0 1 0 0 0,
Ag(@):=10 0 1|,Bg(8):= |0|,CL®H):= |05
01 0y 03 1 06

Each vector § € RS corresponds to a specific policy denoted
by K (6). Random search is applied with N,., = 10° roll-outs

and the search hypercube 7(6, §) defined by:

0 —2 0 —01 0 —03]",

0=
f:=[1 0 2 0 03 0]

These bounds were chosen with some trial and error. Most
controllers in this search space are stable and minimum
phase. In practice, some a priori knowledge would be re-
quired to obtain reasonable bounds on the search space.

Random search was repeated for 100 trials with no in-
put perturbations. The optimal controller found by random
search on these trials achieved a cost between 0.0076 and
0.0087. Thus the random search RL converges to nearly op-
timal controllers. Small disk margins were obtained for these
RL controllers with values ranging from 1.012 to 1.396. Note
that the optimal LQG controller is fourth-order and is not
contained within the third-order parametrization used for the
random search RL. These results demonstrate that robustness
issues in RL can still arise even with parameterizations that
do not include the optimal LQG controller. This motivates
the need to recover robustness in the RL training.

The input perturbation method (Section was applied
to this example with perturbation levels b = 0 (No perturba-
tion), 0.1, 0.2, 0.3, 0.4, and 0.5. Figures [4] and [5] show the
disk margins and LQG cost (= —reward) for this example.
The input perturbation method was applied with the same
N,, and hypercube #(6,0) specified above. These figure
shows the results for each of the one hundred trials (blue x),
mean and + one standard deviation over all trials (dashed
cyan), and for the optimal LQG controller (flat red dashed).
Figure [4] shows the improvement in the disk margin robust-
ness with increasing input perturbation level. Conversely,
Figure [5] shows the degradation in performance increasing
input perturbation level. This again demonstrates that the
perturbation level b can be used to trade off robustness and
performance during the RL training.
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Fig. 4: Disk Margin vs Input Perturbation Percent (100 x b)
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V. CONCLUSION

Reinforcement learning (RL) with partially observations
is sufficiently general to solve the standard linear quadratic
Gaussian (LQG). Thus LQG can be used to explore the
robustness of RL controllers. A simple example, due to
Doyle, is used to demonstrate that RL with partial obser-
vations can lead to poor robustness margins. It is proposed
to recover robustness by introducing random perturbations
at the system input during the RL training. Two simple
examples are introduced to demonstrate the effectiveness of
this technique to trade off performance for robustness. Future
work will explore the theoretical basis for the numerical
results observed in this paper.
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APPENDIX

Consider the following discrete-time system:

Tep1 = ATy + Wy (19)
vghere w; 1s white, zero mean, and Gaussian with variance
W = E[ww]]. Assume A is a Schur matrix, i.e. all
eigenvalues have magnitude < 1. There exists a unique

solution X > 0 to the discrete-time Lyapunov equation:

ATXA-X+W=0 (20)
The following steady-state relation holds for any matrix M:

N
1
NE ;ifMi‘t = trace (M X)

lim
N—o00

21

The dynamics of the plant (environment) and controller
(policy) can be combined to model the closed-loop system
as in Equation [T9] Moreover, the closed-loop LQG cost or
RL reward can be expressed as in Equation [21] for some M.
Thus these results can be used to compute the closed-loop
cost / reward from the solution of the Lyapunov equation X.
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