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Abstract

The goal of this paper is to assess the robustness of an uncertain linear time-varying (LTV) system on a finite time horizon.
The uncertain system is modeled as an interconnection of a known LTV system and a perturbation. The input/output behavior
of the perturbation is described by time-domain, integral quadratic constraints (IQCs). Typical notions of robustness, e.g.
nominal stability and gain/phase margins, can be insufficient for finite-horizon analysis. Instead, this paper focuses on robust
induced gains and bounds on the reachable set of states. Sufficient conditions to compute robust performance bounds are
formulated using dissipation inequalities and IQCs. The analysis conditions are provided in two equivalent forms as Riccati
differential equations and differential linear matrix inequalities, and an algorithm is developed leveraging both forms.
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1 Introduction

This paper develops theoretical and computational
methods to analyze the robustness of linear time-varying
(LTV) systems over finite time horizons. Motivating ap-
plications which undergo finite-time trajectories include
robotic systems (Murray et al., 1994) and space launch
vehicles (Marcos and Bennani, 2009). Typical notions of
robustness, e.g. nominal stability and gain/phase mar-
gins, can be insufficient for such systems. For example,
evaluating the stability of the LTV system at “frozen”
time instances can lead to erroneous conclusions, since
there are unstable LTV systems #(t) = A(t)z(t) for
which A(t) is stable at each frozen time ¢ (Khalil, 2001).

The analysis in this paper is performed on an uncertain
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Fig. 1. Interconnection Fy (G, A) of a nominal LTV system
G and perturbation A.

LTV system modeled by an interconnection of a known,
nominal LTV system G and a perturbation A, as in Fig-
ure 1. The perturbation may model nonlinearities and
dynamic or parametric uncertainty. The input-output
properties of A are characterized by integral quadratic
constraints (IQCs) (Megretski and Rantzer, 1997). An
extensive list of IQCs for various classes of perturba-
tions is given in (Megretski and Rantzer, 1997; Veenman
et al., 2016). The main result in Megretski and Rantzer
(1997) is an infinite-horizon, input-output Lo stability
theorem using frequency domain IQCs.

The main contribution of this paper is an algorithm to
compute finite horizon robustness metrics including the
effects of exogenous disturbances. First, nominal finite-
horizon LTV performance is reviewed (Section 2) focus-
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ing on induced L5 and Ls-to-Euclidean gains. Next, con-
ditions are given (Section 3) to bound these performance
metrics for uncertain LTV systems. The analysis uses
dissipation inequalities and IQCs leading to differential
linear matrix inequality (DLMI) conditions. The DLMI
is equivalent to a Riccati Differential Equation (RDE)
by a variation of the strict bounded real lemma (Theo-
rem 1 in Section 2), which generalizes results in (Tadmor,
1990; Ravi et al., 1991; Green and Limebeer, 1995; Chen
and Tu, 2000; Bagar and Bernhard, 2008). Finally, algo-
rithm 1 in Section 4.4 is proposed to compute bounds
on the finite horizon robustness metrics. The approach
is demonstrated with two examples (Section 5).

A second contribution is that the proposed algorithm
combines the complementary benefits of the DLMI and
RDE conditions. Both conditions involve a storage func-
tion matrix P(t) and variables to parameterize the IQC.
The benefit of the DLMI is that it is convex in P and
the IQC variables. The drawback is that it is an infinite
dimensional constraint due to the dependence on ¢ and
P(t). This was “approximately” solved in (Moore, 2015)
as a finite-dimensional convex optimization by enforc-
ing the DLMI on a time grid and parameterizing P(t)
using basis functions. However there are no formal guar-
antees, in general, with these approximations. ' In con-
trast, the RDE directly solves for P(t) given values of
the IQC variables. This avoids approximations due to
time gridding and basis functions for P(t). The RDE also
yields a rigorous performance bound if a solution exists
on [0,T]. The drawback is that the RDE has a rational
(non-convex) dependence on the IQC variables.

Finite-horizon robustness of LTV systems using IQCs is
also considered in (Jonsson, 2002; Petersen et al., 2000).
There are two main distinctions with the results in this
paper. First, these prior works account for initial condi-
tions but neglect exogenous disturbances. Second, they
both propose optimizing directly over the IQC variables
focusing on the RDE condition. This is inefficient if the
IQC is parameterized by many variables, e.g. see Remark
6.2.4 in Petersen et al. (2000). As noted above, our pro-
posed algorithm exploits the complementary benefits of
the RDE and DLMI conditions.

Notation: R™™™ and S™ denote the sets of n-by-m
real matrices and n-by-n real, symmetric matrices. The
finite-horizon £5]0,7T] norm of a signal v : [0,7] — R"

T T 1/2
o = (Jy @ e(@)dt) T ol oy < o0

is ||v

1 Similar approximations are used for analysis of “gridded”
linear parameter varying (LPV) systems. See closely related
work on uncertain LPV systems in Pfifer and Seiler (2016).
These approximations yield rigorous bounds in special cases.
For example, Masubuchi et al. (1998) consider nominal LPV
systems with piecewise linear dependence on the parameters.
The main result is a rigorous bound on the induced L2 gain
using smoothed first-order spline bases functions for P and
a sufficiently dense gridding of the parameter space.

then v € £2[0,T]. RLy is the set of rational functions
with real coefficients that have no poles on the imaginary
axis. RH., C RL., contains functions that are analytic
in the closed right-half of the complex plane.

2 Nominal Performance
2.1 Finite Horizon LTV Systems

Consider an LTV system G defined on [0, T

#(t) = A()a(t) + B(t)d(t) (1)
e(t) = C(t)z(t) + D(t)d(t) (2)

x € R™= is the state, d € R™ is the input, and e € R™e
is the output. The state matrices A : [0,T] — R"=*n"=,
B : [0,T] = Rr=*a (C : [0,T] — R™*" and D :
[0,7] — R™*™ are piecewise-continuous (bounded)
functions of time. It is assumed throughout that T' < oc.
Thus d € £5[0,T] implies z and e are in L]0, T] for any
x(0) (Brockett, 2015).

Many different performance metrics can be defined for
this (nominal) finite-horizon LTV system. This paper
mainly focuses on two specific metrics. First, the finite-
horizon induced Ls-gain of G is

\|€||2,[0,T]

G
120,77y

2,[0,T] ‘= SUP{ ‘ r(0) =0,0#de L2,[O,T]}-

As noted above, d € £5[0,T] implies e € L]0, T]. Thus
the L5 gain is finite for any fixed horizon T < oc.
Next, assume D(T") = 0. Then the finite-horizon Lo-to-
FEuclidean gain of G is

T
G|k, j0,1) := sup {le()”Q ’ z(0) = 0,0 #d € Ly 0,7 }
lldll2,jo,1)

The Lo-to-FEuclidean gain depends on the system out-
put e only at the final time 7. The assumption that
D(T) = 0 ensures this gain is well-defined. The Lo-to-
Euclidean gain can be used to bound the set of states
z(T) reachable by disturbances of a given norm. This
reachable set is formally defined as follows:

Rp = {a(T) | 2(0) =0, [|dll20,ry < B} (3)

If C(T) = I,, and D(T) = 0 then e(T) = «(T). In this
case, if ||G|[g,jo,r) < 7 then [[z(T)l[2 < 7lld]|,j0,r) and
hence Rj is contained in a sphere of radius y3. More
general ellipsoidal bounds on Rg can also be computed.
Select C' := Ez and D := 0 for some given F € S™
with E' > 0. With these choices |G|/ g,0,r) < v implies
the ellipsoidal bound R C {z € R" | 2T Ex < 3242},
Note that the reachable set R g, as defined in Equation 3,
bounds the state only at the final time 7. The state x(t)
at intermediate times ¢ € [0, T can similarly be bounded
using the Lo-to-Euclidean gain ||G| g0,



2.2  Generic Quadratic Cost

The two nominal performance metrics introduced above
are generalized in Section 3 to assess robustness of uncer-
tain systems. A generic quadratic cost function is defined
next to unify these various cases. Let @ : [0,T] — S™=,
R:[0,T] - S™,S:[0,T] - R"%*"d and F' € R"=*"=
be given. (@, S, R) are assumed to be piecewise con-
tinuous (bounded) functions. A quadratic cost function
J : L5]0,T] — R is defined by (Q, S, R, F) as follows:

T e e ER [ [20]7 [ @0 501 [«0]
(d) i=2(T)" Fa(T) + | [50] [stor aio] [ ] @
subject to: Eq. 1 with 2(0) =0 (4)

The finite-horizon induced Lo gain of G can be related
to the quadratic cost J by proper choice of (Q, S, R, F).
Let v > 0 be given and select Q(t) := C(t)TC(t), S(t) :=
Ct)'D(t), R(t) :== D(t)" D(t)—~?I,,,and F := 0. This
yields the cost function J(d) := HeHg’[o’T] - 72||dH§,[0,T]~
Thus J(d) < 0Vd € £5[0,T]if and only if |G|z, 0,71 < -
The finite-horizon Ls-to-Euclidean gain of G can also be
related to J: let v > 0 be given and select Q(t) := 0,
S(t) =0, R(t) := —21,,, and F := CT(T)C(T). This
yields J(d) := |le(T)||3 —’yQHd||§7[O7T], and J(d) <0Vd €
L5]0,T] if and only if |G| g 0,77 < -

2.8 Strict Bounded Real Lemma

The next theorem states an equivalence between a bound
on the quadratic cost J and the existence of a solution to
a Riccati Differential Equation (RDE) or Riccati Differ-
ential Inequality (RDI). The theorem generalizes exist-
ing results for the induced L5 gain of LTV systems (Tad-
mor, 1990; Ravi et al., 1991; Green and Limebeer, 1995;
Chen and Tu, 2000; Basar and Bernhard, 2008). The
corresponding conditions for LTI systems and infinite-
horizon performance are specified in terms of algebraic
Riccati equations and inequalities (Zhou et al., 1996).

Theorem 1 Let (Q, S, R, F) be given with R(t) < 0 for
allt € [0, T). The following statements are equivalent:

(1) Je > 0 such that J(d) < —e||d||§7[07T] Vd € £5]0,T].

(2) There exists a differentiable functionY : [0,T] —
S™ such that Y (T) = F and

Y+ ATY +YA+Q—- (YB+S)RYYB+ 8T =0

This is a Riccati Differential Fquation (RDE).
(3) There exists € > 0 and a differentiable function P :
[0,T] — S™ such that P(T) = F and

P+ ATP+PA+Q
—(PB+S)R"YPB+8)T < —eI

This is a strict Riccati Differential Inequality (RDI).

PROOF. (3 = 1) By Schur complements (Boyd et al.,
1994), the RDI and R(t) < 0 imply 3¢ > 0 such that

P+ ATP+ PA PB
BTP 0

QS

o = —el (5)

Let 2(t) be a solution of the LTV system (Equation 1)
starting from x(0) = 0 and forced by d € £2[0,7T]. Mul-
tiply Equation 5 on the left and right by [z(t)T d(t)T]
and its transpose. This yields the following dissipation
inequality with storage function V(z,t) := 27 P(t)z:

T T
Q S| |z < ¢ [x] [x
d d

ST R| |d
Integrate the dissipation inequality from ¢ =0tot = T=

T

d

V + (6)

V((T),T) = V(2(0),0)
T
+ L8] [ 0] [a0] ae < 2 nai o
Apply the boundary condition P(T") > F' to obtain:
J(d) < V((0),0) = éldlf3 o7y (7)

This bound is valid for any d € £5]0, T]. Hence, applying
x(0) = 0 yields J(d) < —€||dH§,[O7T] vd € L2[0,T].

The proof of (1 = 2), (2= 1), (1 = 3) is given in (Seiler
et al., 2017). Tt is similar to that given in Section 3.7.4
of (Green and Limebeer, 1995) for the special case of
finite-horizon induced L5 gains. O

Nominal performance is most easily assessed using the
RDE. The performance J(d) < —¢|d|3 1, 1 is achieved

if the associated RDE exists on [0,7] when integrated
backward from Y (T') = F. The assumption R(¢) < 0
ensures R(t) is invertible and hence the RDE is well-
defined Vt € [0,T]. Thus the solution of the RDE ex-
ists on [0, T'] unless it grows unbounded. As an example,
J(d) = He||§,[O’T] — ’yQHng’[O}T] for specific choices of
(Q, S, R, F) where R depends on the choice of . For a
fixed v > 0, the performance ||G||2,j0,77 < v is achieved
if the associated RDE exists on [0,7] when integrated
backward from Y (T) = 0. The smallest bound on the
induced L9 gain is found via bisection. The RDI is used
later to assess the robustness of uncertain LTV systems.

3 Robust Performance
3.1 Uncertain LTV Systems

An uncertain, finite-horizon LTV system is given by the
interconnection Fy, (G, A) of a nominal LTV system G
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Fig. 2. Graphical interpretation for time domain IQCs

and a perturbation A as shown in Figure 1. The LTV sys-
tem G is described by the following state-space model:

() + B (t) d(t)

8-

G( A (t) xg(t) —+ BGl(t) w t)d
(t) = Ce1(t) 26 (t) + Dgi(t) w(t) + Dgiz(t) d(t) (8)
(t) = Cga(t) 16 (t) + D21 (t) w(t) + Dgaa(t) d(t)

where ¢ € R™¢ is the state. The inputs are w € R™»
and d € R™ while v € R™ and e € R™ are outputs.
The state matrices are piecewise continuous (bounded)
functions of time with appropriate dimensions, e.g. A¢g :
[0,T] — R™¢*"G_ The perturbation is an operator A :
L3[0,T] — L5[0,T]. Well-posedness of the intercon-
nection Fy, (G, A) is defined as follows.

o

Definition 2 F, (G, A) is well-posed if for all z¢(0) €
R™e and d € L3]0,T] there exists unique solutions
xg € L5°]0,T), v € L5°[0,T], e € L£5[0,T], and w €
L3[0,T] satisfying Equation (8) and w = A(v) with a
causal dependence on d.

The perturbation A can have block-structure as is stan-
dard in robust control modeling (Zhou et al., 1996). It
can include blocks that are hard nonlinearities (e.g. satu-
rations) and infinite dimensional operators (e.g. time de-
lays) in addition to true system uncertainties. The term
“uncertainty” is used for simplicity when referring to A.

3.2 Integral Quadratic Constraints (IQCs)

IQCs (Megretski and Rantzer, 1997) are used to describe
the input /output behavior of A. They can be formulated
in either the frequency or time domain. The time do-
main formulation (Petersen et al., 2000) is more useful
for analysis of uncertain time-varying systems. This for-
mulation is based on the graphical interpretation in Fig-
ure 2. The inputs and outputs of A are filtered through
an LTT system ¥ with zero initial condition z,(0) = 0.
The dynamics of ¥ are given as follows:

Ly (t) = Ay 2y (t) + By1 v(t) + By w(?) )
Z(t) = C¢ Top (t) + le ’U(t) + DTN w(t)

where z, € R™ is the state. A time domain IQC is an
inequality enforced on the output z over a finite horizon.
The formal definition is given next.

Definition 3 Let U € RH™*("+) gnd M : [0,T] —
S™= be given with M piecewise continuous. An operator

A L50[0,T] — L5[0,T] satisfies the time domain I1QC
defined by (¥, M) if the following inequality holds for all
v e Ly, ]andw*A(v).

/T 2T M (t)z(t)dt >0 (10)
0

where z is the output of ¥ driven by inputs (v, w) with
zero initial conditions x.,(0) = 0.

The notation A € Z(¥, M) is used when A satisfies
the corresponding IQC. Time domain IQCs, as defined
above, are specified as finite-horizon constraints on the
outputs of ¥. These are often referred to as hard IQCs.
The definition given here only requires the IQC to hold
over the analysis horizon [0,T]. This is in contrast to
hard IQCs used for infinite horizon analysis which re-
quire the constraint to hold over all finite time horizons.
Two examples of time domain IQCs are provided below.

Example 4 Consider an LTI uncertainty A € RH,
with ||Alloo < 1. Let 111 € RLy, be given with 1111 (jw) =
IT;1 (jw)* > 0 for allw € RU {+oo}. Then the following
frequency domain I1QC holds Vv € L5 and w = A(v)

T vGw) | [maGe) o V(jew)
/_W[WW] { "o —Hnuw)} [W(jw)]deO

=I1(jw)

where V and W are Fourier transforms of v and w. This
1QC corresponds to D-scales used in structured singular
value p analysis (Packard and Doyle, 1993; Zhou et al.,
1996). A factorized representation for I1 yields a valid
time domain IQC. Specifically, let TI = U~ MW where

V=Y ] with ¥ € RHZ™

11

M = [MO“ —1\0411] with M € S™ and M1; = 0 (1)
It is shown in (Balakrishnan, 2002) that (¥, M) is a valid
time domain IQC for A over any finite horizon T < co.

Example 5 Time domain IQCs are often specified with
U as an LTI system and M as a constant matriz. Defi-
nition 3 above allows M to be time-varying. This gener-
alization 1s useful for time-varying real parameters. Let

= §(t) where 6(t) € R and |6(t)| < 1 for allt € 10,T].

Deﬁn o= Ty and M() = [0 0 ] where
: [0,T] — R is piecewise continuous and satisfies

m11( ) > 0. Then A satisfies the time domain IQC de-
fined by (¥, M). Time-varying IQCs can be defined for
other uncertainties (Pfifer and Seiler, 2015).

A library of IQCs is provided in Megretski and Rantzer
(1997) for various types of perturbations. Most IQCs are
for bounded, causal operators with multipliers II speci-
fied in the frequency domain. Under mild assumptions, a



valid time-domain IQC (¥, M) can be constructed from
IT via a J-spectral factorization (Seiler, 2015). This al-
lows the library of known (frequency domain) IQCs to be
used for time-domain, finite-horizon analysis. More gen-
eral IQC parameterizations are not necessarily “hard”
but can be handled as in Fetzer et al. (2017).

3.8 Robust Induced Lo Gain

The robustness of F;, (G, A) is analyzed using the system
shown in Figure 3. This interconnection includes the IQC
filter ¥ but the uncertainty A has been removed. The
precise relation w = A(v) is replaced, for the analysis,
by the constraint on the filter output z. The extended
system of G (Equation 8) and ¥ (Equation 9) is governed
by the following state space model:

=
—~

o~
~

I

A(t) z(t) + B(t) {ZJ&) }
2(t) = C1(t) z(¢) + D1(¢) [Z]((tt))} (12)
e(t) = Ca(t) z(t) + Da(t) [72’((:)) } :

The extended state vector is z := [37] € R"™ where
n = ng + ny. The state-space matrices are given by

(dropping the dependence on time t):

Ag 0
By1Car Ay

Ba1 Bga
By1Dg11 + By2 By1Dgi2

, B:=

C1 = [DyCear Oy, Coi= [Can 0],

D, = [leDGll + Do leDG12]

DQ = |:DG21 DG22_ .

Y

Y
I

with
2T M(8)=(t)dt >0

A

Fig. 3. Extended LTV system of G and filter W.

The actual system to be analyzed is Fy,(G,A) with in-
put d and initial condition z¢(0) = xg,. The analy-
sis is instead performed with the extended LTV system
(Equation 12) and the constraint A € Z(¥, M ). The con-
strained extended system has inputs (d,w) and initial
condition z(0) = [*$°]. The IQC implicitly constrains
the input w. The IQC covers A such that the constrained
extended system without A includes all behaviors of the
original system F, (G, A).

The following differential matrix inequality is used to
assess the robust performance of F,(G,A) 2:

P+ ATP+ PA PB
BTP 0
+()T'™M [cl Dl] < —el.

QS
ST R

(13)

This inequality depends on the extended system, IQC,
and quadratic cost (@, S, R, F). It is compactly denoted
as DLM Iy, (P, M,~?,t) < —el. This notation empha-
sizes that the constraint is a differential linear matrix
inequality (DLMI) in (P, M,~?) for fixed (G,¥) and
(Q, S, R, F). The dependence on (G, ¥) and (Q, S, R, F)
is not explicitly denoted but will be clear from context.

The next theorem formulates a sufficient condition
to bound the (robust) induced Ly gain of F,(G,A).
The proof uses IQCs and a standard dissipation argu-
ment (van der Schaft, 1999; Willems, 1972a,b; Khalil,
2001). For induced L2 gains the quadratic cost matrices
are chosen as F':= 0 and

Q(t) := Ca(t)" Ca(t), S(t) := Ca(t) Da(t)

R(t) := Da(t)" Da(t) — 7* {0"6” ISJ "

Theorem 6 Let G be an LTV system defined by (8)
and A : L£37]0,T) — L5[0,T] be an operator. Assume
F.(G,A) is well-posed and A € Z(V, M). If there exists
e >0, > 0 and a differentiable function P : [0,T] — S™
such that P(T) = F and

DLM gy (P, M,~¥* t) < —el Vt € [0,T], (15)

then || Fu(G, A)ll2,0,m < -

PROOF. Let d € £3]0,T] and z¢(0) = zg,0 be given.
By well-posedness, F,(G,A) has a unique solution
(zG,v,w, e). Define z := [25 ]. Then (z, 2, €) are a solu-
tion of the extended system (12) with inputs (w, d) and
initial condition x(0) = [*{°]. Moreover, z satisfies the

the IQC defined by (¥, M).

Define a storage function by V(z,t) := 2T P(t)x. Left
and right multiply the DLMI (13) by [z7,w”,d”] and
its transpose to show that V satisfies the following dis-
sipation inequality for all ¢ € [0, T7:

T

) S
V+ @ +2TMz < —ed"d. (16)
ST R

[d] (4]

2 The notation (-)7 in (13) corresponds to an omitted factor

required to make the corresponding term symmetric.



Use the choices for#Q7 S, R) in (14) to rewrite the second
term as el'e — v2dT d. Integrate over [0, T to obtain:

T
o(T)"P(T)x(T) — 2§ g Pr1(0)zco + /0 ()M (t)z(t)dt

— (= olld

15,071 T llell30.7 <O
Apply P(T) » F =0 and A € Z(¥, M) to conclude:
lell3, 0,71 < 2&0P11(0)2zc0 + (v = lldl3 o.p- (17)

Finally, if 2¢(0) = 0 then ||F, (G, A)|

2,0 <7 O

3.4  Robust Lo-to-Euclidean Gain

A similar theorem provides a bound on the Ls-to-
Euclidean gain of F, (G, A). This requires the additional
assumptions that Dgo1(T) = 0 and Dg22(T) = 0 so
that Dy(T) = 0. Hence e(T') = Co(T)z(T') and the gain
from d to e(T) is well-defined. To assess the robust
Lo-to-Euclidean gain define (@, S, R, F) as:

0

Qt) =0, S(t) =0, B(t) == —* [ %57 1" | o)

F = CE(T)C(T) = | Cex(MCaxM 0]

With these choices for (Q, S, R, F) the next theorem is a
minor adaptation of Theorem 6 and the proof is omitted.

Theorem 7 Let G be an LTV system defined by (8) with
Dg21(T) =0 and DGQQ(T) = 0. Let A : ,C;Lv [O,T] —
L5[0,T] be a given operator. Assume Fy,(G, A) is well-
posed and A € Z(U, M). If there existse > 0, > 0, and
a differentiable function P : [0,T] — S™ and such that
P(T) = F and

DLM Iy (P, M,y?,t) < —eI Yt € [0,T] (19)

then | Fu(G, A)|| g 0,1 <7-

The condition in Theorem 7 robustly bounds the states
2 (T) reachable by disturbances for any A € Z(¥, M).
Note Co(T) := [CGQ(T) 0} so that e(T) only depends
on z¢(T). The IQC filter ¥ is used only for analysis and
x4 (T) is not considered due to the choice of Co(T"). Also
note that the DLMI condition can be modified to com-

pute robust reachable sets with non-zero initial condi-
tions 2¢(0) # 0, e.g. see Chapter 2 of (Moore, 2015).

3.5 RDE Condition for Robust Performance

Theorems 6 and 7 provide a DLMI (13) to bound the
induced L5 and Lo-to-Euclidean gain of F, (G, A). More

general robust performance conditions can be formu-
lated by proper choice of (@, S, R, F). The numerical
algorithm proposed in Section 4 relies on an equivalence
between the DLMI (13) and a related RDE condition.
This equivalence is demonstrated with a quadratic
cost J that combines the performance specification
(Q,S,R, F) and the IQC (¥, M). Specifically, define J
with the extended dynamics in (12): & = Ax + B[g].
The cost matrices (Q, S, R, F) are chosen as:

QS

F:=F, o7 R} (20)

or | =OTM [cl Dl} +

QS}

and the quadratic cost associated with these choices is:

T
T ([Y]) := 2(T)" Fa(T) +/0 2T ()M (t)z(t)dt

T
[0 | [ew se
+ t
/o [5] [S(t)T R()

The next corollary states the equivalence between the
DLMI and RDE conditions. The DLMI can be rewritten
as an RDI by the Schur complement lemma (Boyd et al.,
1994). Hence the corollary follows from Theorem 1.

{f}(ﬁf} i

d(t)

Corollary 8 Let (Q,S,R,F) be given by (20). The fol-
lowing are equivalent for any e > 0 and v > 0:

(1) There exists a differentiable function P : [0,T] —
S™ such that P(T) = F and DLM I, (P, M,~?,t) <
—el.

(2) R(t) <0 for allt € [0, T). In addition, there exists
a differentiable functionY : [0,T] — S™ such that
Y(T)=F and

Y4+ ATY + YA+ Q- (YB+ SR UYB+S)T =0
4 Computational Approach

This section describes computational details and
presents an algorithm that combines complementary
aspects of the DLMI and RDE conditions.

4.1 1QC Parameterization

There is typically an infinite set of valid IQCs for a given
uncertainty A. Numerical implementations using IQCs
often involve a fixed choice for ¥ and optimization sub-
ject to convex constraints on M (Megretski and Rantzer,
1997; Veenman et al., 2016; Palframan et al., 2017). Two
examples are given below.

Example 9 Consider an LTI uncertainty A € RH,
with |Allee < 1. By Example 4, A satisfies any IQC



(U, M) with O = [Yg 0 ], M == [M _9 ], and
M1 = 0. A typical choice for Wy is:

T
1 1
withp >0  (21)

U= |1, yees
H (s+p) (s+p)

The analysis is performed by selecting (p,v) to obtain
(fized) U and optimizing over M1, = 0. The results de-
pend on the choice of (p,v). Larger values of v represent a
richer class of IQCs and hence yield less conservative re-
sults but with increasing computational cost. Further de-
tails are given in Veenman et al. (2016) including a more
general parameterization for this class of uncertainties.

Example 10 The analysis can incorporate conic com-
binations of multiple IQCs. Let (¥1, M) and (U, Mo)
define valid IQCs for A. Hence fOT 2 M;z; dt > 0 where
z; 18 the output ¥, driven by v and w = A(v). For any
A1, A2 > 0 the two constraints can be combined to yield:

T
/ )\12’{M12’1 + AQZ;MQZQ dt Z 0 (22)
0

Thus a valid time-domain IQC for A is given by
Y= [i;] and M()\) = [Aléwl )\29\/[2] (23)

The analysis optimizes over \ given selected (V;, M;).

4.2 Analysis with the DLMI Condition

Assume the IQC is (¥,M) with ¥ fixed and M
constrained to a feasible set M described by LMIs.
The DLMI (13) has the same form for induced Lo
and Lo-to-Euclidean gains but with different choices
of (Q,S,R,F). In both cases the DLMI is linear in
(P, M,~?) for fixed (G, ¥). The dependence on 72 enters
via R. The smallest bound on the robust gain can be
computed from a convex semidefinite program (SDP):

min 72
subject to: M e M, P(T) = F
DLMIpop(P,M,y?,t) = —el ¥t € [0,T]

There are two main issues. First, the DLMI corresponds
to an infinite number of constraints since it must hold
vt € [0,7T]. This can be approximated by enforcing the
DLMI on a grid tprar := {tk}gil C [0,T7. Second, the
optimization requires a search over the space of functions
P :[0,T] — S™. This is addressed by restricting P to
be a linear combination of differentiable bases functions.
Let h; : [0,T] >R (j=1,...,N;) and H : [0,T] — S"
be given scalar and matrix differentiable basis functions.

The storage function and its derivative are given by:

N

P(t)= > hij(t)X;+ H(t) N, +1 (24)
J;Sl

P(t)=> hj(t)X; + H(t) xn,41 (25)

Here {Xj}év:sl C S™ and zn,+1 € R are optimization
variables. Initial work in (Moore, 2015) used scalar ba-
sis functions generated with a cubic spline and no ma-
trix basis function. The spline is constructed with a
time grid 7, := {Tj}j-\[:sl where 7; < 7j41. Note, the
spline grid 75, and DLMI grid tprasr can be distinct.
The spline consists of N; — 1 cubic functions defined on
[T, Tj+1]- It interpolates the decision variables { X }j-v:sl,
ie. P(r;) = X,;. The cubic functions satisfy bound-
ary conditions to ensure continuity of the spline and its
first /second derivatives at the interval endpoints. The
corresponding bases {h; }évzl are not easy to express in
explicit form but they can be evaluated numerically at
any t € [0,T]. The algorithm proposed below also uses
one matrix basis function H generated by the RDE.

The approximations for the DLMI and P lead to a fi-
nite dimensional SDP in variables {X; };V;‘b TN, +1, M,
and v2. The optimization can be performed with stan-
dard SDP solvers. Enforcing the DLMI only on a finite
grid decreases the optimal cost relative to the original
infinite-dimensional SDP. Conversely, restricting P to
lie in a finite dimensional subspace increases the optimal
cost. The solution accuracy depends on the choice for
the constraint time grid and basis functions. A denser
time grid and additional bases functions will improve the
accuracy but with increased computation time. Unfor-
tunately, the combination of these two approximations,
one optimistic and one pessimistic, does not allow us to
draw a conclusion in either direction.

4.8  Analysis with the RDE Condition

The RDE conditions for robust induced £5 and Ls-to-
Euclidean gains do not require the constraint and basis
function approximations needed for the corresponding
DLMI. Specifically for any (G, ¥, M, ~v?) the RDE can be
integrated within a specified numerical accuracy using
standard ODE solvers. If the RDE exists on [0, 7] when
integrated backward from Y (7') = F then the robust
gain is less than «y. Bisection on 7 can be used to find the
smallest bound on the robust gain. The difficulty with
the RDE condition is that it has a rational dependence
on the IQC matrix M. In most cases it would be inef-
ficient to perform numerical gradient searches over M
to find the smallest bound . A key benefit of the RDE
condition over the DLMI condition is that it provides a
guaranteed upper bound on the robust gain.



4.4 Combined Algorithm

Algorithm 1 combines the DLMI and RDE conditions. It
is initialized with a stopping tolerance tol, a max num-
ber of iterations Njier, a time grid tprasr to enforce the
DLMLI, a time grid 7, for the (scalar) spline basis func-
tions, and a matrix basis function H = 0. Reasonable
choices for the stopping parameters are tol = 5 x 1073
and Njter = 10. A smaller tolerance and/or additional
iterations will typically yield improved answers at the ex-
pense of additional computation. The initial time grids
can be coarse, e.g. set t pr a1 and 7, as 20 and 10 evenly
spaced points in [0, T], respectively. The iteration de-
scribed further below adaptively adds times to the grid
tprmr- It also uses the RDE solution and matrix basis
function H to complement the coarse spline grid 7.

The first step is to solve the finite SDP by enforcing the
DLMI on tpyrpr- This returns, if feasible, 'ygl[),P, MO,
and the storage function decision variables {X ](-1)}?[:51.

The next step is to hold the IQC matrix fixed at A1)
and bisect to find the smallest v such that the RDE

solution exists on [0,7]. This yields 7}(%% B PI(;[)) g and
tgl)j - Here tgl)j g denotes the (dense) grid of time points

returned by the ODE solver associated with PI(;[), o

Two updates are performed before the next iteration.
First, the matrix basis function is set equal to the RDE

solution if 71(211)) g < oo. This choice is optimal for M M
and the use of this matrix basis function significantly re-
duces the conservatism. At the next iteration the cubic
splines are only needed to perturb around Ppp 5. The

second update involves the DLMI time grid. If the DLMI

time grid is too coarse then ’yg% p < ng)j - In this case

the DLMI is evaluated on the (dense) grid of time points
tgj)j - The time points where the DLMI is infeasible (or
some subset) are added to tprasr. The algorithm termi-
nates if the RDE and SDP results are close or the maxi-
mum number of iterations has been reached. Otherwise
the subsequent iterations proceed in the same fashion.
Upon termination, the RDE solution (if feasible at any
iteration) provides a guaranteed upper bound on the
gain. This also guarantees a solution to the DLMI that
holds on all ¢t € [0, T, and not just on the grid tpr .

5 Examples
5.1 Robust Induced Lo Gain

Consider an uncertain system Fy, (G, A) with A € RH
and ||Allee < 1. G is an LTT system defined by:

—0.8 —1.3 —2.1 —2.5 —0.6 1
o 2 —0.9 -84 0.7 o 0 02
Ag = 2 86 —0.5 12.5] Bg = [ 0 0.4 ]
2.1 —0.3 —12.6 —0.6 —1.3 —0.2
. [-14 0 050 ._ [-0.30
Cg = [ 0 —0.1 1 o] D¢ := [ 0 0]

Algorithm 1 Combined DLMI/RDE Approach

1: Given: G and ¥
2: Initialize: tol, Niter, tprar = {tk}rly, Top =
{Tj}é\[:sl, and H = 0.

3: for i =1 : Ny, do

4: Solve SDP: Enforce DLMI on tprayr. Use
spline basis functions defined by 7, and matrix
basis function H.

5: Output: Vé%zm M@ and decision vars. for P.

>

7. Solve RDE: Hold M fixed and bisect to find
smallest y such that the RDE exists on [0, 1.
8: Output: 'yng, PS)DE, and tgng.
9:
10: Updates: ‘

11: If 'yl(ng < oo then H := P1(~21)3E else H := 0.

12: Add time points to tprasr if vgl)JP < ’71(;2715-
13: . . ,

14: If \fygj)jP — 'Y](QDE| < tol - vg}jp then terminate.
15: end for

The infinite-horizon, worst-case induced L, gain is 1.49
as computed with wcgain in Matlab. Figure 4 shows
finite-horizon robust gains (blue solid) computed us-
ing Algorithm 1 for 7' := {1, 2,5, 10, 20, 30, 40, 50, 100}.
The red dashed line denotes the infinite-horizon gain of
1.49. Algorithm 1 is initialized for each horizon T" with
tol = 5 x 1072, Njer = 10, tprasr as 20 evenly spaced
points in [0,T], and 75, as 10 evenly spaced points in
[0,T]. The IQC parameterization in Example 9 is used
with v = 1 and p = 10. It took 420 sec to compute all
nine finite-horizon results on a standard laptop. The it-
eration for T' = 5 sec terminated in 3 steps and all other
iterations terminated in 2 steps. Matlab’s LMILab and
ode45 were used to solve the SDP and integrate the RDE
in Algorithm 1. The ODE options were set to have an ab-
solute and relative error of 1078 and 1072, respectively.
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Fig. 4. Robust Induced £, Gain vs. Time Horizon (blue) and
infinite horizon result (red dashed).

The DLMI is enforced only on the points in ¢t 5z as7. This
gives 20 LMI constraints on the first iteration but ad-



Fig. 5. Two link robot arm (Murray et al., 1994).

ditional constraints as points are added to tprarr. The
number of (scalar) LMI variables is dominated by the
variables X used to describe P(t) in Equation 24. The
extended system (G and ) has n = 6 so that each X
contributes 21 LMI variables. There are Ny = 10 basis
functions specified by 75, so this yields a total of 210 LMI
variables. The actual number of constraints and vari-
ables is slightly higher, e.g. due to the IQC description.

The proposed algorithm computes a gain of 1.22 in 39 sec
for the horizon T" = 20sec. The “approximation” method
in Moore (2015) was also used with 75, given as Ny =
{10, 20, 30} evenly spaced points and the DLMI enforced
on N, = 2N times. This yielded gains {1.31,1.25,1.24}
with computation times {6,69,401} sec. The approxi-
mation improves with increasing N, and N, but with
significant increases in computation. It is also computa-
tionally costly to use the RDE. Simply computing the
gain for a given X7, using the RDE took 12 bisections
for a total computation of 11 sec. These simple results
demonstrate the benefits of combining the DLMI and
RDE conditions.

5.2  Two-link robot arm

This example considers the robustness of a two link robot
arm (Figure 5) as it traverses a finite-time trajectory.
The mass and moment of inertia of the i-th link are
denoted by m; and I;. The robot properties are m; =
3kg, mo = 2kg, l1 = ls = 0.3m, r;1 = ro = 0.15m,
I, = 0.09kg-m?2, and I, = 0.06kg - m?. The equations of
motion (Murray et al., 1994) for the robot are given by:

)

a+ 20 cos(b2) 0 + 5 cos(62)

0 4 Bcos(62) 0
—Bsin(02)0y —Bsin(62)(61 + 6)] [61 " e
55111(02)91 0 0y T2

with

=1 + Iy +myri + ma(I? +r3) = 0.4425 kg - m?
B :=mslirea = 0.09kg - m?
0:=1r+ mgrg =0.105kg - m>.
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Fig. 6. Desired trajectory in Cartesian coordinates (dotted
red line) and robot arm position at four times.

The state and input are n := [0, 0o 6, 92]T and 7 1=
[11 7], where 7; is the torque applied to the base of
link 7. A trajectory 7 was selected for the arm and the
required input torque 7 was computed. Figure 6 shows
the desired trajectory for the tip of arm two (red dashed
line) in Cartesian coordinates from ¢t = 0 to T' = 5 sec.
The arm positions at four different times are also shown.
A plot of trim torque 7 can be found in (Moore, 2015).

The robot should track this trajectory in the presence
of small torque disturbances d. The input torque vector
is T =7 4+ u + d where u is an additional control torque
(specified below) to reject the disturbances. The nonlin-
ear dynamics (26) are linearized around the trajectory
(77, 7) to obtain an LTV system P:

#(t) = A()x(t) + B(t) (u(t) +d(t))  (27)

where z(t) := n(t) — 77(t) is the deviation from the
equilibrium trajectory. The state matrices (A, B) were
computed via numerical linearization at 400 uniformly
spaced points in [0,5]. These matrices are linearly in-
terpolated to obtain the LTV system at any ¢ € [0,7].
(A, B) can be computed at any ¢ via numerical lineariza-
tion but interpolation reduces the computation time.

Next, a time-varying state feedback law wu(t) =
— K (t)x(t) is designed to improve the disturbance rejec-
tion. The feedback gain is constructed via finite horizon,
LQR design with the following cost function:

s sy« [ 1] (3] 1] @

where @ := diag(100, 10,100, 10), R := diag(0.1,0.1),
S =0and F := diag(1,0.1,1,0.1). The optimal feedback
gain is K(t) = R7!B(t)T P(t) where P : [0,T] — S" is
the solution of the RDE corresponding to (Q, S, R, F)
with terminal constraint P(T) = F.
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Fig. 7. Uncertain LTV Model for Two-Arm Robot

The analysis aims to bound the final position of the
robot arm in the presence of the disturbances d and un-
certainty at the joint connecting the two arms. Figure 7
shows a block diagram for the uncertain, linearized robot
arm dynamics. A € RH, is an LTI uncertainty with
|Alle < 1. The factors of 1/0.8 imply that the overall
level of uncertainty at the joint is 0.8. Uncertainty is in-
cluded only at the joint for simplicity and additional un-
certainties can be considered if desired. The error signal
e contains the two linearized joint angles: e := [z, x2]7.

Algorithm 1 was used to compute bounds on the robust
Lo-to-Euclidean gain from d to e over the T' = 5 sec
trajectory. The IQC is parameterized as in Example 9
with v = 1 and p = 10. Algorithm 1 is initialized with
tol = 5 x 1073, Niter = 10, tprarr as 20 evenly spaced
points in [0,T], and 75, as 10 evenly spaced points in
[0,T]. The algorithm terminated after 3 iterations with
a robust gain of vor = 0.0588. It took 55 sec to perform
this computation. For comparison, the open-loop robust
gain (with K = 0) is yor, = 941.5. This computation
terminated in 7 iterations and took 302 sec. As expected,
the feedback significantly reduces the gain.

The results were tested by randomly generating 100 in-
stances of A with 0 to 6 states. Each instance of A was
substituted into Figure 7 to generate a (nominal) LTV
closed-loop. The gain was evaluated via bisection with
the (nominal) RDE for each sample. The largest gain
was 0.0575 achieved with the following uncertainty:

—0.7861s% — 3.383s — 3.631
0.852 4+ 3.414s + 3.631

Ape(s) =

The linearized closed-loop with A, was simulated with
disturbances d such that [|d||3,0,7] < B := 5. Figure 8
shows the linearized simulations superimposed on the
trim trajectory 7. The final outputs e(T") are given by
the white dots. The cyan circle corresponds to ||e(T)||2 <
vorB. As expected the simulated trajectories terminate
in the computed bound (cyan circle). A worst-case dis-
turbance was also constructed for the (nominal) closed-
loop with A.. This construction is based on the two-
point boundary value problem that connects the perfor-
mance to the RDE condition (Lemma 11 in Seiler et al.
(2017)). A numerically reliable construction is given in
(Tannelli et al., 2018). This yields a trajectory that ter-
minates near the boundary of the cyan disk (see zoomed
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Closed-Loop with ||d|| <= 5

0.5
ok
-0.5
1 F
@
©
[
z\‘ 15}
2
25
3
-3.5 » ’ " . ; "
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
H1 (rads)

Fig. 8. Closed-loop trajectories in the (61, 62) space with Ay
and random disturbances ||d||2,[0,77 < 5. The robust bound
on ¢(T) is also shown (cyan circle).

inset) indicating that the computed robustness bounds
are not overly conservative.

6 Conclusions

This paper presented conditions to assess the robustness
of uncertain LTV systems over a finite-horizon. The pro-
posed numerical algorithm combines differential linear
matrix inequalities and Riccati differential equations.
The utility of robust gains was demonstrated with ex-
amples including a two-link robot arm.
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