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This paper presents a system identification procedure for a class of small, rudderless, fixed-

wing unmanned aircraft. The procedure is demonstrated on an aircraft that is equipped with

only two aerodynamic control surfaces (called elevons) and one electric motor. A physics-based,

first-principles approach is used to obtain the initial model parameters. The initial model is

used to design flight tests wherein the longitudinal and the lateral-directional dynamics are

separately excited. The aircraft is rudderless and this introduces a key challenge in the model

identification. Specifically, the lateral-directional model has more free parameters than can be

identified using the elevon excitations alone. This paper resorts to two novel steps to navigate

this roadblock. First, this paper uses black-box methods to identify sensitive modes whose

damping ratios and natural frequencies change significantly compared to their initial values.

Second, grey-box methods are used to update the stability and control derivatives related to

these sensitivemodes, while retaining the remaining derivatives at their respective initial values.

Additional flight tests are conducted to validate the updated model parameters.

I. Introduction

Small unmanned aircraft systems (UAS) are finding increasingly autonomous roles in various civilian and

commercial applications. The development of guidance, navigation, and control algorithms for increased autonomy

requires an accurate understanding of the flight dynamics of the aircraft. Modeling and system identification are

thus important and relevant tasks in this process. In this paper, first principles are used to build a nonlinear, six

degrees-of-freedom model of a small, rudderless, fixed-wing aircraft. Grey-box system identification is then used to

improve the estimates of the model parameters.

Several textbooks discuss the process of modeling the flight dynamics of rigid-body aircraft [1, 2] and provide the

mathematical background underpinning system identification theory [3, 4]. In addition, several textbooks apply system

identification concepts specifically to fixed-wing and rotary-wing aircraft [5]. These include both time-domain and

frequency-domain methods [6, 7]. Some papers have proposed novel identification techniques, including real-time

identification, and efficient flight test input design [8–10]. Other papers focus on system identification for small
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unmanned aircraft, including helicopter [11, 12], fixed-wing [13–16], and multicopter [17] platforms. Software tools

are also available to automate the aircraft system identification process [5, 18].

This paper focuses on the modeling and system identification of small, rudderless, fixed-wing UAS. Such UAS have

become increasingly popular over the last decade for aerial photography and mapping applications. Some examples

include the Agribotix Hornet, Trimble UX5, senseFly eBee, RoboFlight RF1, and Sentera Vireo. The lack of a rudder is

a consequence of the size, weight, and power constraints imposed by their small form factor. All of the above examples

feature only a pair of aerodynamic control surfaces (called elevons) and one electric motor. In contrast to conventional

fixed-wing UAS, the literature on modeling the flight dynamics of rudderless, fixed-wing UAS is sparse. One approach

is to use potential flow-based solvers and wind tunnel tests [19]. Another approach relies on system identification flight

experiments, as explained next.

Identifying the longitudinal dynamics of this class of UAS is relatively straightforward since the short period and

phugoid modes are weakly coupled (as is the case for most rigid, fixed-wing aircraft). Consequently, the aerodynamic

parameters affecting each mode may be identified independent of the other using separate reduced-order models. The

lateral-directional modes, on other hand, are strongly coupled. For most conventional fixed-wing UAS, the aerodynamic

parameters affecting these modes are identified simultaneously using aileron and rudder excitations (e.g., see [14]).

However, for rudderless, fixed-wing UAS, there are too many free aerodynamic parameters in the lateral-directional

model that all of them cannot be identified using the aileron excitations. This problem has received little attention in the

literature. Among the papers that do consider the system identification of small, rudderless, fixed-wing UAS, some only

identify black-box input-output models [20, 21] whereas others also identify the underlying aerodynamic stability and

control derivatives [22].

While this paper shares the same system identification objectives as [22], it follows a novel two-step approach to

identify the stability and control derivatives. In particular, given an initial model of the aircraft dynamics, this paper first

uses black-box models to identify sensitive (poorly modeled) modes whose damping ratios and natural frequencies

change significantly compared to their initial values. This knowledge is then exploited within grey-box models to

selectively update the stability and control derivatives related to these sensitive modes, while retaining the remaining

derivatives at their respective initial values. For example, Section III.C demonstrates that because the initial model

accurately describes the roll subsidence mode, there is no need to update the derivatives that affect it. In contrast, all the

stability and control derivatives are updated through a direct one-step fit of the lateral-directional state-space model in

[22]. This one-step approach over-parameterizes the model. The novel two-step method proposed in this paper focuses

on the identification of the most uncertain lateral-directional stability derivatives. In addition, the methods presented in

[22] require measurements of the roll rate, yaw rate, lateral acceleration, and reconstructed side acceleration. In contrast,

the method proposed in this paper only requires the roll rate measurement to identify the lateral-directional dynamics.

Thus it is widely applicable to low-cost, rudderless, fixed-wing UAS that are often equipped with a minimal sensor set.
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The paper is organized as follows. Section II introduces the rudderless UAS considered in this paper and presents the

model structures used in the system identification. Section III describes the design of the flight experiments and presents

the results of the lateral-directional system identification. Section IV validates the identified models and Section V

presents the conclusions. SI units (m,kg, s) are used for all the signals in the aircraft model. All angular quantities are

expressed in radians.

II. Preliminaries

A. Rudderless Unmanned Aircraft

This paper considers the aircraft shown in Fig. 1 as an example to describe the system identification procedure. This

aircraft was originally built by Sentera, LLC and is currently maintained and operated by the University of Minnesota.

The fully integrated aircraft has a gross mass of 1.28 kg, a wing span of 0.97 m, and a fuselage length of 0.52 m. It is

equipped with a pair of independently actuated elevons and a puller-type electric motor that drives a fixed-pitch propeller.

Sensing is provided via an inertial measurement unit, a global positioning system receiver, a magnetometer, and a

pitot-static system. A flight computer implements the software for sensing, navigation, guidance, control, telemetry, and

data logging [23].

Fig. 1 The Sentera Vireo – the small, rudderless, fixed-wing UAS considered in this paper.

A nonlinear, six degrees-of-freedom model of this aircraft is developed using physics-based first-principles [23].

In particular, the geometric and inertial properties of this aircraft are modeled using computer-aided drawings. The

propulsive forces are modeled using wind tunnel experiments. The aerodynamic characteristics (stability and control

derivatives) are initially estimated using the vortex lattice method (VLM), using the Athena Vortex Lattice (AVL)

software [24]. Additional details on this first-principles modeling can be found in [23]. Since this aircraft is assumed to

be rigid, the pertinent states are the Euler angles (φ, θ,ψ), the angular velocity in the body axes (p,q,r), the airspeed in

the body axes (u, v,w), and the position of the aircraft in a local North-East-Down frame (pN , pE, pD). The nonlinear

equations of motion of rigid, fixed-wing aircraft are documented in textbooks [1, 2] and are thus not repeated here.

The throttle δt is normalized to the interval [0,1]. The left δl and the right δr elevons each have a deflection range of

[−30,+20] °, where positive values correspond to trailing-edge down deflections. As such, each elevon excites both the

3



longitudinal and the lateral-directional dynamics. Therefore, for modeling convenience, these dynamics are decoupled

by expressing the elevons in terms of the traditional elevator δe and the aileron δa via the relations δl = δe − δa and

δr = δe + δa. The virtual inputs δe and δa are assumed to affect only the longitudinal and the lateral-directional

dynamics, respectively. The dynamics of the throttle and the elevon actuators are respectively given by:

Gt (s) =
ωt

s + ωt
and Ga (s) =

ω2
a

s2 + 2ζaωas + ω2
a

, (1)

where the model parameters are experimentally estimated [23] as: ωt = 6.28 rad s−1, ζa = 0.77, and ωa = 62.8 rad s−1.

Since VLM assumes potential flow, the initial model has inaccurate stability and control derivatives. The system

identification focuses on finding more accurate estimates of these derivatives. At a fixed airspeed, the flight dynamics are

assumed to be linear time-invariant (LTI). The flight tests are conducted at a mean airspeed of 19 m s−1. The next two

sections present parametrized transfer function (“black-box”) and state-space (“grey-box”) forms of the LTI dynamics

for system identification. The principles of flight dynamics [1, 2] inform the parametrization of the black-box and the

grey-box LTI models. For example, the grey-box LTI models are parametrized by dimensional stability and control

derivatives (see Table 4.2 and Table 5.1 in [2]). The unknown parameters are generically denoted by Θ.

B. Longitudinal Model

The longitudinal dynamics are affected by the inputs δt and δe. Since a propulsion model is already developed using

experimental data [23], the system identification focuses on the pitch rate response to the elevator input. In particular,

the longitudinal dynamics are composed of the short-period and the phugoid modes, which contribute a total of four

poles. In addition, the pitch rate output is associated with three zeros, including a zero on the imaginary axis [1]. Thus,

the elevator-to-pitch rate response is described by the black-box model [1]:

Glon (s,Θ) =
q (s)
δe (s)

=
kqs

(
s + zθ1

) (
s + zθ2

)(
s2 + 2ζpωps + ω2

p

) (
s2 + 2ζsωss + ω2

s

) , (2)

where the denominator is expressed in terms of the damping ratio ζ and the natural frequency ω of the phugoid and the

short period modes and the numerator is expressed in terms of the gain kq and the zeros zθ1 and zθ2 .

The equivalent grey-box LTI model in the time-domain is given by [2]:

Ûxlon = Alon (Θ) xlon + Blon (Θ) δe, (3)

where the state is xlon = [u,w,q, θ]T and the matrices are:

Alon (Θ) =

[
Xu Xw Xq−w̄ −g cos θ̄
Zu Zw Zq+ū −g sin θ̄
Mu Mw Mq 0

0 0 1 0

]
and Blon (Θ) =

[
Xδe
Zδe
Mδe

0

]
. (4)
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The Alon and Blon matrices are populated with the dimensional stability and control derivatives, the trim variables ū, w̄,

and θ̄, and the acceleration due to gravity g. The output equation, which is not shown, simply picks q from the state xlon.

At an airspeed of 19 m s−1, the initial elevator-to-pitch rate black-box model, with data obtained via VLM and

ground-based experiments, is:

Glon (s) =
q (s)
δe (s)

=
−279.22 s (s + 0.3778)(s + 4.943)

(s2 + 0.267s + 0.4964)(s2 + 13.59s + 292.3)
(5)

and the populated matrices of the corresponding grey-box LTI model are:

Alon =

[
−0.2714 0.4718 −0.2857 −9.804
−0.9315 −6.963 17.1 −0.1417

0.208 −14.39 −6.621 0
0 0 1 0

]
and Blon =

[
−0.8428
−37.13
−279.2

0

]
(6)

Figure 2 shows the Bode diagram of GlonGa, i.e. the response from the elevator command δec to the pitch rate q.

The markers indicate the natural frequencies of longitudinal modes and the actuator. The highlighted portion indicates

the frequency range covered by the input excitation (as explained further below).
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Fig. 2 The Bode diagram of the initial model from the elevator command δec to the pitch rate q.

C. Lateral-Directional Model

The system identification for the lateral-directional dynamics focuses on the roll rate response to aileron input. In

particular, the lateral-directional dynamics are composed of the roll subsidence, the spiral, and the dutch roll modes,

which contribute a total of four poles. In addition, the roll rate output is associated with three zeros, including a zero on

the imaginary axis [1]. Thus, the aileron-to-roll rate response is described by the black-box model [1]:

Glat (s,Θ) =
p (s)
δa (s)

=
kps

(
s2 + 2ζφωφs + ω2

φ

)
(
s + T−1

s

) (
s + T−1

r

) (
s2 + 2ζdωds + ω2

d

) , (7)
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where the denominator is expressed in terms of the damping ratio ζd and the natural frequency ωd of the dutch roll

mode and the time constants of the spiral and the roll subsidence modes. The numerator is expressed in terms of the

gain kp and parameters ζφ and ωφ .

The equivalent grey-box LTI model in the time-domain is given by [2]:

Mlat Ûxlat = Ālat (Θ) xlat + B̄lat (Θ) δa, (8)

where the state is xlat = [v, p,r, φ]T and the matrices are:

Mlat =


1 0 0 0
0 1 −

Ixz
Ixx

0

0 − Ixz
Izz

1 0
0 0 0 1

 , Ālat (Θ) =

[
Yv Yp+w̄ Yr−ū g cos θ̄
Lv Lp Lr 0
Nv Np Nr 0
0 1 tan θ̄ 0

]
, and B̄lat (Θ) =

[
Yδa
Lδa
Nδa

0

]
. (9)

The Mlat matrix is populated with the moments and product of inertia terms. The Ālat and B̄lat matrices are populated

with the dimensional stability and control derivatives, the trim variables ū, w̄, and θ̄, and the acceleration due to gravity

g. The output equation, which is not shown, simply picks p from the state xlat .

At an airspeed of 19 m s−1, the initial aileron-to-roll rate black-box model, with data obtained via VLM and

ground-based experiments, is:

Glat (s) =
p (s)
δa (s)

=
−427.3(s − 0.007428)(s2 + 1.467s + 38.58)

(s + 14.63)(s + 0.004129)(s2 + 0.8025s + 48.77)
(10)

and the populated matrices of the corresponding grey-box LTI model are:

Mlat =

[ 1 0 0 0
0 1 −0.0801 0
0 −0.0471 1 0
0 0 0 1

]
, Ālat =

[
−0.5175 0.3562 −18.83 9.804
−5.984 −14.03 2.424 0
1.855 −1.39 −0.8849 0

0 1 0.01445 0

]
and B̄lat =

[
−0.7391
−427.3
−11.92

0

]
. (11)

The numerators in Equations (7) and (10) are slightly different because the former is obtained analytically whereas

the latter is obtained numerically. In particular, Equation (7) is obtained by analytically linearizing the equations of

motion, which results in a zero that is located exactly on the imaginary axis. On the other hand, errors in the numerical

trim and linearization that is used to obtain Equation (10) cause the zero to be slightly perturbed from the imaginary axis.

Figure 3 shows the Bode diagram of GlatGa, i.e. the response from the aileron command δac to the roll rate p. The

markers indicate the natural frequencies of the lateral-directional modes and the actuator. The spiral mode lies outside

the axis limits. The highlighted portion of the diagram indicates the frequency range covered by the input excitation.

III. System Identification

A. Design of Flight Experiments

The system identification process aims to experimentally estimate the parameters of the black-box and the grey-box

LTI models. The pilot sets up the aircraft to fly at the trim airspeed, at constant altitude, and along a constant course.
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Fig. 3 The Bode diagram of the initial model from the aileron command δac to the roll rate p.

The experiments are conducted open-loop to simplify the analysis. In order to satisfy the assumption of local linearity, it

is important that the airspeed of the aircraft stay more or less constant throughout the experiment. The pilot compensates

for the disturbing effects of wind gusts and turbulence and, thus, functions as a low-bandwidth controller. The system

identification focuses on experimentally characterizing the elevator-to-pitch rate and the aileron-to-roll rate aircraft

responses. The Bode diagrams (Fig. 2 and Fig. 3) guide the design of the experiments. The elevator and the aileron

commands are specified using the chirp function A cos (ωi (t) t), where A and ωi (t) denote the amplitude and the

instantaneous frequency, respectively. The instantaneous frequency is swept linearly over time as ωi (t) = ω1 +
(ω2−ω1)

2Tch t,

where ω1, ω2, and Tch denote the start frequency, the end frequency, and the sweep duration, respectively.

Chirps commands can be designed to cover a wide frequency range and have yielded excellent results in the past

[14, 15]. The spectral content of δec and δac are designed to span the longitudinal and lateral-directional modes,

respectively. However, the frequency range of the chirp is dictated by practical considerations. For instance, 20 s is the

longest duration that the aircraft can fly along a constant course and remain within the airspace available at the test site.

This sets a lower bound on the chirp frequencies. In addition, the median sample rate of the flight computer is 90 Hz(
566 rad s−1) . Thus, the Nyquist frequency of 283 rad s−1 is an upper bound on the chirp frequencies for achieving

alias-free sampling. Table 1 summarizes the natural frequencies of the aircraft dynamic modes, the actuator bandwidth,

and the bounds on the chirp frequency. Given these considerations, the final chirp commands are designed to span the

frequency range [0.63,126] rad s−1. This range is highlighted in the Bode diagrams shown in Fig. 2 and Fig. 3, and

includes the natural frequencies of all longitudinal and lateral-directional modes, as well as the actuator bandwidth.

Since the [0.63,126] rad s−1 frequency range is too wide to be completed within 20 s, it is divided into three smaller

segments (Table 2). In particular, the low, the medium, and the high segments use overlapping frequency ranges
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Table 1 Key flight dynamic modes and limiting frequencies.

Mode/bound Frequency
(
rad s−1) Source

Phugoid mode 0.7 Initial LTI model
Dutch roll mode 7 Initial LTI model

Roll subsidence mode 14.6 Initial LTI model
Short period mode 17 Initial LTI model

Time delay 20 Computed as 0.05 s (Section III.D)
Actuator bandwidth 57 Benchtop experiment [23]
Nyquist frequency 283 One-half of the sample rate
Median sample rate 566 Firmware limitation [23]

and correspond to 30, 20, and 10-fold increases between the start and end frequencies, respectively. Each segment

is assigned a chirp ID, as shown in Table 2. Two flights are conducted for the system identification. The first flight

commands elevator chirps over 20 s and uses the pitch rate response to identify the longitudinal dynamics. The second

flight commands aileron chirps over 15 s and uses the roll rate response to identify the lateral-directional dynamics.

Table 2 The chirp parameters used in the flight experiments.

Range Chirp ID Amplitude Frequency Increase Trials
Low Ch1 2° [0.63,18.9] rad s−1 30-fold 3

Medium Ch2 2° [3.14,62.8] rad s−1 20-fold 3
High Ch3 2° [12.6,126] rad s−1 10-fold 1

Multiple trials are conducted to obtain a large sample size. The amplitude of the chirp command is set equal to 2°

across all the experiments. Prior flight tests helped determine that this amplitude yields a sufficiently high signal-to-noise

ratio (SNR) in the pitch and the roll rate signals, while keeping deviations from the trim point small. Even with the 2°

chirp amplitude, the aircraft deviates from its trim point due to wind gusts and turbulence. The pilot corrects for these

deviations using the RC transmitter. The flight computer superimposes the pilot stick inputs over the chirp commands.

Thus, the system identification considers the input as the total elevator or aileron command.

B. Prediction Error Minimization

This paper identifies the model parameters using the prediction error minimization (PEM) method [3]. Let

y
(
tj
)
∈ Rny and ŷ

(
tj |Θ

)
∈ Rny denote the measured and the model-predicted outputs at the j th sample time. The

prediction error is defined as: e
(
tj |Θ

)
= y

(
tj
)
− ŷ

(
tj |Θ

)
. If the experiment contains a total of N data samples, the

prediction error is computed at each sampling instant tj , thereby resulting in the error sequence {e
(
tj |Θ

)
}N1 . In general,

{e
(
tj |Θ

)
}N1 is filtered through a user-specified, stable, linear filter. The goal is then to minimize the filtered prediction

error sequence {ē
(
tj |Θ

)
}N1 , where the overline distinguishes it from the unfiltered sequence. The size of this sequence
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can, in general, be measured using any vector norm. This paper uses the quadratic norm and results in the cost function:

V (Θ) =
1
N

N∑
j=1

ē
(
tj |Θ

)T ē
(
tj |Θ

)
. (12)

The objective of PEM is to minimize V (Θ) over the set of parameters. The optimal estimate is denoted by Θ̂.

Various model quality metrics exist in the literature to evaluate the quality of the identified model (see Section 16.4 in

[3]). This paper uses the fit percent, which is denoted by η and is defined as:

η = 100 ·

(
1 −



E
(
Θ̂
)



F

Y − Ȳ 1T



F

)
, (13)

where, E
(
Θ̂
)
=

[
ē
(
t1 |Θ̂

)
, . . . , ē

(
tN |Θ̂

) ]
and Y = [y (t1) , . . . , y (tN )] are matrices in Rny×N formed from the filtered

prediction error {ē
(
tj |Θ̂

)
}N1 and output {y

(
tj
)
}N1 sequences, respectively. Moreover, Ȳ is a vector in Rny that is formed

by computing the mean of each row of Y , 1 is a column vector of ones such that the product Ȳ 1T is a matrix in Rny×N ,

and ‖·‖F denotes the Frobenius norm in Equation (13). The value of η varies between −∞ (bad fit) and 100 (perfect fit).

If η = 0, then the model fits the data no better than the sample mean of the output.

The longitudinal model identification uses the elevator-to-pitch rate response of the aircraft to identify the short

period mode. Since it is fairly straightforward, the reader is referred to [23] for its details. The challenge lies in the

lateral-directional model identification, as explained next.

C. Lateral-Directional Model Identification

1. Summary of experiments

Seven experiments are performed by commanding aileron chirps using the parameters shown in Table 2. The

experiments are labeled using the nomenclature SA-ChX-TY, where X denotes the chirp ID number and Y denotes

the trial number. For illustrative purposes, Fig. 4 shows the aileron chirp command and the corresponding roll rate

response observed during the experiment SA-Ch2-T1. In this experiment, the chirp spans the medium frequency range

[3.14,62.8] rad s−1 and thus excites the dutch roll and the roll subsidence modes. This is visible in the plot of the roll

rate, whose magnitude rolls off midway through the chirp. In addition, the low frequency pilot stick inputs, and the

small aileron trim setting, are visible in the plot of the aileron command. The time history plots of the other aileron

chirp experiments appear similar to Fig. 4, and are not shown here for brevity.

The spiral mode lies outside the frequency range of all the chirp commands and is not observed during any of

the experiments. On the other hand, the roll subsidence mode frequency of 14.6 rad s−1 lies within the span of all

the chirp commands and the dutch roll mode frequency of 7 rad s−1 lies within the spans of the Ch1 and Ch2 chirp

commands. Ideally, the identification would only focus on the dutch roll and the roll subsidence modes. However, unlike

the longitudinal case, a clean separation between the lateral-directional modes is difficult to achieve. Reduced order
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Fig. 4 The aileron chirp command and the roll rate response during the experiment SA-Ch2-T1.

models for the lateral-directional modal dynamics are generally insufficiently accurate to be of any real use [1]. Hence,

the black-box model identification necessarily considers all the lateral-directional modes. However, as will be seen

shortly, the grey-box model structure offers some latitude in targeting specific modes during the identification.

The coherency spectrum between p and δac [3] is computed for each of the seven chirp experiments and displayed in

Fig. 5. These spectra guide the selection of the experiments for the system identification by highlighting the frequency

ranges where the coherency is high. Based on the coherencies attained at the natural frequencies of the dutch roll

and the roll subsidence modes, the experiment SA-Ch2-T1 is selected for the system identification. The experiment

SA-Ch3-T1 is not included because the dutch roll mode lies outside its frequency range. The selected experiment is

detrended, by removing the sample mean (see Chapter 14 in [3]).

2. Frequency response function and black-box model

The frequency response function relating p and δac is computed [3]. This function not only characterizes the

dynamics of the aircraft Glat and the actuator Ga, but also captures the time delay τf . The flight data is used to

estimate τf as 0.05 s (see Section III.D for details). Further, since the actuator model is obtained from benchtop

experiments [23], the system identification problem reduces to characterizing Glat . The parameters of the black-box

model (Equation (7)) are estimated using PEM. Since the lateral-directional modes cannot be separated, all the parameters

shown in Equation (7) are estimated from the selected experiment. PEM results in a spiral mode time constant of 2.5 s,

a roll subsidence mode time constant of 0.078 s, and a dutch roll mode damping ratio of 0.12 and natural frequency of

4.8 rad s−1. The corresponding fit percent is 80%.

The modal parameters of the black-box model are different from those of the initial model. In particular, the dutch
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Fig. 5 The coherency spectra obtained for the seven aileron chirp experiments.

roll mode damping ratio increases from 0.06 to 0.12 and the natural frequency decreases from 7 rad s−1 to 4.8 rad s−1.

The time constant of the roll subsidence mode slightly increases from 0.07 s to 0.078 s. The estimated spiral mode time

constant of 2.5 s is two orders of magnitude lower than the initial value of 242 s. Since the spiral mode is not excited

during any of the experiments, this estimate is inaccurate and does not correspond to any physical mode.

Figure 6 plots the Bode diagrams of the frequency response function, the black-box model, and the initial model

from the aileron command δac to the roll rate p. The Bode diagrams capture the dutch roll and roll subsidence modes

and the actuator dynamics. The rapid phase loss that is seen in all of the plots is attributed to the time delay of 0.05 s.

The fit percent of 80% implies that the identified black-box model accurately describes the frequency response function,

and hence the actual lateral-directional aircraft dynamics, in the frequency range [3.14,62.8] rad s−1. However, as seen

in Fig. 6, the initial model poorly describes the frequency response function at all frequencies and is insufficient for the

purpose of control design. While the black-box model correctly describes the lateral-directional dynamics, it cannot be

used to update the initial model parameters. Hence, the next section presents the grey-box parameter estimation.

3. Grey-box model

Equations (8) and (9) describe the grey-box LTI model for the lateral-directional aircraft dynamics. Since this

model is parametrized using the dimensional stability and control derivatives, it relates back to the aerodynamic model.
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Fig. 6 The frequency response function, the black-box model, and the initial model from the aileron command
δac to the roll rate p.

Additionally, the grey-box model structure offers greater latitude in targeting specific modes, via the dimensional stability

and control derivatives, as compared to the black-box model structure. In particular, each lateral-directional mode is

predominantly affected by a subset of the dimensional stability derivatives [1], as shown in Table 3. The derivative Yp ,

which captures the side force produced due to the roll rate, is small for the Vireo and thus does not appear in Table 3.

Table 3 Each lateral-directional mode is predominantly affected by a subset of the stability derivatives.

Mode Stability derivative
Spiral Lv , Lr , Nv , Nr

Dutch roll Yv , Yr , Nv , Nr

Roll subsidence Lp , Np

The goal of the grey-box parameter estimation is to update some of these derivatives, such that the updated model

adequately describes the frequency response function shown in Fig. 6. Table 3 thus acts as a guide to selecting the

parameters to be updated. In this regard, reconsider the results of the black-box parameter estimation. The time constant

of the roll subsidence mode increased only slightly from 0.07 s to 0.078 s. Since this mode is already accurately

described by the initial model, Lp and Np are not updated. On the other hand, the dutch roll mode damping ratio

doubled from 0.06 to 0.12 and the natural frequency decreased from 7 rad s−1 to 4.8 rad s−1. Since these are significant

changes, Yv , Yr , Nv and Nr are updated in the grey-box model.

In addition, although the spiral mode is not excited during any of the experiments, Table 3 indicates that the spiral

and the dutch roll modes share the Nv and Nr derivatives in common. Updating only some of the derivatives of the

spiral mode, and not others, would lead to an over constrained model. Hence, Lv and Lr are also updated. Further,
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although the derivative Yp does not predominantly affect any of the modes, it is updated in order to find the best value

that explains the input-output data. Finally, the control derivative Lδa , which captures the aileron control effectiveness,

is also updated since it directly affects the aileron-to-roll rate response.

The eight parameters to be updated are Θ =
[
Yv,Yp,Yr , Lv, Lr ,Nv,Nr , Lδa

]T and are initialized using VLM. In order

to constrain the optimization, each positive parameter in Θ is lower bounded by one-half of its initial value and upper

bounded by twice its initial value. This bounding strategy is reversed for negative parameters. These bounds effectively

constrain the parameter vector to a hyper-rectangle in R8. The prediction error minimization method is used to estimate

the optimal parameter vector Θ̂ from the experiment SA-Ch2-T1. Table 4 lists the initial and the final values, as well as

the lower and the upper bounds, of the parameters of the grey-box model.

Table 4 The initial and updated parameters of the grey-box lateral-directional model.

Derivative Initial value Lower bound Upper bound Final value
Lδa −467.9 −935.9 −234.0 −331.7
Lp −14.79 not updated −14.79
Lr 2.604 1.302 5.209 3.160
Lv −8.960 −17.92 −4.480 −4.849

Nδa 12.99 not updated 12.99
Np −0.646 not updated −0.646
Nr −1.079 −2.157 −0.5393 −1.510
Nv 1.387 0.6935 2.774 0.7884
Yδa −0.8474 not updated −0.8474
Yp 0.0904 0.0452 0.1807 0.0452
Yr 0.1892 0.0946 0.3784 0.0946
Yv −0.5729 −1.146 −0.2865 −0.7817

Table 4 shows that, among the parameters that are updated, only Yp and Yr reach their respective lower bounds at Θ̂.

In addition, no parameter reaches its upper bound. By considering the change in the absolute value of each parameter, it

is evident that VLM overestimates Lδa , Lv , Nv , Yp , and Yr and underestimates Lr , Nr , and Yv . The final values of these

parameters correspond to a spiral mode time constant of 14 s, a roll subsidence mode time constant of 0.065 s, and a

dutch roll mode damping ratio of 0.16 and natural frequency of 4.8 rad s−1. The grey-box parameter estimation achieves

a fit percent of 70%, which is 10 percentage points lower than that achieved with the black-box model. This drop in

accuracy is expected because the grey-box model structure imposes a greater number of constraints, via the parameters

that are not updated, as compared to the black-box model structure.

The modal parameters of the grey-box model are similar to those of the black-box model. Although the derivatives

associated with the roll subsidence mode are not updated, its time constant still changes slightly. This shows that, in

general, each mode is affected by all the derivatives, and that Table 3 only provides an approximate separation. Further,
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the dutch roll mode parameters are very similar between the grey-box and the black-box models. The grey-box spiral

mode time constant of 14 s is an order of magnitude lower than the initial value of 242 s. This estimate still cannot be

trusted since the spiral mode is not excited during any of the experiments. However, a large uncertainty in the spiral

mode time constant is usually not an issue, since the mode is stabilized even by low bandwidth controllers.

Figure 7 plots the Bode diagrams of the frequency response function, the grey-box model, and the initial model

from the aileron command δac to the roll rate p. The most important observation is that the grey-box model accurately

describes the frequency response function, and hence the actual lateral-directional aircraft dynamics, in the frequency

range [3.14,62.8] rad s−1. Further, the dutch roll mode and the actuator bandwidth are visible in the Bode diagrams.
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Fig. 7 The frequency response function, the grey-box model, and the initial model from the aileron command
δac to the roll rate p.

Figure 7 indicates that the grey-box model is sufficient for the purpose of control design. Hence, the final parameter

values, shown in Table 4, are used to update the nonlinear aircraft model. After these updates, the nonlinear aircraft

model is again linearized at an airspeed of 19 m s−1. The Bode diagram of this so-called corrected model is also plotted

in Fig. 7. As seen in the figure, there is no distinguishable difference between the corrected model and the grey-box

model. This implies that the identified parameters are properly integrated into the nonlinear aircraft model.

D. Time-Delay Estimation

The time delay τf is estimated by fitting black-box models with different, but known, fixed delays to the experimental

data and observing the resulting fit percent. A simple one-dimensional grid search then yields the time delay, via the

corresponding model, that results in the largest fit percent. However, the fit percent is an effective metric only if it

strongly depends on the time delay. Practically, this boils down to ensuring that the estimation includes the experiment(s)

with the highest frequency content. This is because, for any given signal, the phase loss produced by the time delay
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is directly proportional to the frequency of the signal. For the experiments that are described in Section III.A, this is

simply achieved by including the high frequency chirp commands (see Table 2). In addition, the effect of the time delay

is more pronounced on the highest frequency mode of the system. Since the short period mode is the highest frequency

mode of the Vireo, the time delay is estimated using the elevator chirp experiments.

The median sample time during the elevator chirp experiments is Ts = 0.011s. Nine different time delays

τf = {kTs}
9
k=1 are selected to construct the one-dimensional grid. For each value of τf in this grid, a black-box model is

identified from δec to q. The identification is conducted for the experiments SE-Ch1-T1, SE-Ch1-T2, SE-Ch2-T3, and

SE-Ch3-T1. Figure 8 shows the resulting fit percents obtained with each black-box model as a function of the time delay.

It is evident from the figure that the fit percents corresponding to τf = 4Ts and τf = 5Ts are significantly larger than

those obtained using the other time delays. However, since τf is the time delay associated with a continuous-time linear

model, it is not restricted to be an integer multiple of Ts . If the black-box identification is repeated for τf = 4.5Ts , the

resulting fit percents are very close to those obtained using τf = 4Ts . Thus, in order to be conservative, the final time

delay is selected as τf = 0.05 s.
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Fig. 8 The time delay is estimated by fitting black-box models with different predetermined delays.

On a related note, if the procedure described above is repeated using the aileron chirp experiments, the resulting fit

percents are largely invariant to the time delay. In particular, for each of the SA-ChX-TY experiments, the fit percent

varies by less than 4 percentage points across the grid τf = {kTs}
6
k=1 and decreases for larger values of τf . This is

because the dutch roll mode, with a natural frequency of 4.8 rad s−1, is relatively unaffected by the different amounts of

the time delay. Finally, since τf is estimated directly from the experimental data, it encompasses delays in the actuators,

the flight computer, and the sensors. For simplicity, all of this time delay is grouped at the input to the actuator.
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IV. Model Validation
Finally, the identified models are validated using experiments that are not selected during the model identification.

A. Longitudinal Model Validation

Time-domain simulations of the final model are compared against the pitch rate responses recorded during the

experiments SE-Ch1-T3, SE-Ch2-T1, and SE-Ch3-T1. This selection includes one trial each from the low, the medium,

and the high frequency ranges. None of these experiments, except for SE-Ch3-T1, are selected during the identification.

Figure 9 shows the results of the validation over three subplots. The elevator chirp commands span the low (top subplot),

the medium (middle subplot), and the high (bottom subplot) frequency ranges. In each subplot, the legend indicates the

corresponding fit percent achieved by the final model. The plots indicate that the fit percents progressively decrease

from the low to the high frequency ranges. In addition, the fit percent achieved with the experiment SE-Ch1-T3 is

approximately 5 percentage points lower than the fit percent achieved during the black-box model identification.
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Fig. 9 Validation of the longitudinal aircraft model.
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Although the fit percents achieved with the validation data set are only between 30% and 40%, it is more useful to

evaluate the performance of the model over the frequency range of interest. In this regard, note that the simulations

agree well with the experiments when the elevator chirp frequency is around the natural frequency of the short period

mode, i.e. 17 rad s−1. This occurs in the top subplot over the interval [740,748] s, in the middle subplot over the interval

[807,810] s, and in the bottom subplot over the interval [958,960] s. On the other hand, the performance of the model is

poor at very low frequencies (e.g. in the top subplot over the interval [728,736] s) because the phugoid mode and other

low frequency dynamics are not characterized from the experiments. Similarly, the performance of the model is poor at

very high frequencies (e.g. in the bottom subplot over the interval [966,978] s) because the model does not account for

the exogenous disturbances that affect the experiment, such as atmospheric turbulence and sensor noise. Overall, the

performance of the model is adequate around the natural frequency of the short period mode.

B. Lateral-Directional Model Validation

Time-domain simulations of the final model are compared against the roll rate responses recorded during the

experiments SA-Ch1-T1, SA-Ch2-T2, SA-Ch3-T1. This selection includes one trial each from the low, the medium, and

the high frequency ranges. None of these experiments are selected during the identification. Figure 10 shows the results

of the validation over three subplots. The aileron chirp commands span the low (top subplot), the medium (middle

subplot), and the high (bottom subplot) frequency ranges. In each subplot, the legend indicates the corresponding fit

percent achieved by the final model. The plots indicate that the fit percents progressively decrease from the low to the

high frequency ranges. Compared to the longitudinal model, the fit percents achieved with the lateral-directional model

are higher for the low and the medium frequency range chirp commands.

As before, it is more useful to evaluate the performance of the model over the frequency range of interest. In this

regard, note that the simulations agree well with the experiments when the aileron chirp frequency is around the natural

frequency of the dutch roll mode, i.e. 4.8 rad s−1. This occurs in the top subplot over the interval [625,632] s and in the

middle subplot over the interval [812,818] s. The dutch roll mode is not excited in the bottom subplot. The simulations

also agree well with the experiments at low frequencies, especially when compared with the longitudinal model. On the

other hand, the performance of the model is poor at very high frequencies (e.g. in the bottom subplot over the interval

[918,922] s) because the model does not account for the exogenous disturbances that affect the experiment, such as

atmospheric turbulence and sensor noise. Overall, the performance of the model is adequate around the frequency of

the dutch roll mode. The validated models are used to design, implement, and test feedback controllers. Additional

details about the control design and the flight test results under closed-loop control can be found in [23].

17



Roll rate
(
rad s−1

)

624 626 628 630 632 634 636
−2

−1

0

1

2

Time (s)

[0.63, 18.9] rad s−1 SA-Ch1-T1

Final model: 62.02%

812 814 816 818 820 822 824 826
−2

−1

0

1

2

Time (s)

[3.14, 62.8] rad s−1 SA-Ch2-T2

Final model: 43.53%

908 910 912 914 916 918 920
−2

−1

0

1

2

Time (s)

[12.6, 126] rad s−1 SA-Ch3-T1

Final model: 30.23%

Fig. 10 Validation of the lateral-directional aircraft model.

V. Conclusions
This paper considers the system identification of a small, rudderless, fixed-wing unmanned aircraft. The flight

dynamics of the aircraft is first modeled using physics-based first principles. In particular, the vortex lattice method

(VLM) is used to estimate the aerodynamic stability and control derivatives. Flight tests are conducted to update the

model parameters. The experiments reveal that the longitudinal dynamics predicted by VLM are sufficiently accurate in

the frequency range desired for control design. On the other hand, the lateral-directional dynamics predicted by VLM

differ from the experimental observations. Thus the lateral-directional stability and control derivatives are updated using

the flight data. Additional flight tests reveal that the updated model parameters accurately capture the flight dynamics in

the frequency range of interest for control design.
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