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Uninhabited Aerial Systems (UAS)

Flight Research (UMN UAV Lab)
http://www.uav.aem.umn.edu/
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Design Challenges for Low-Cost UAS
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Recent Policy Changes

H.R. 658

One Nundred Twelfth Congress
of the
Wnited States of America

AT THE SECOND SESSION

Begun and held at the City of Washington on Tuesday.
the third day of Jonuary. two thousand and heelve

SEC. 332, INTEGRATION OF CIVIL UNMANNED AIRCRAFT SYSTEMS
INTO NATIONAL AIRSPACE SYSTEM.

Increased rel Iabl I Ity (a) REQUIRED PLANNING FOR INTEGRATION.—

H (1) COMPREHENSIVE PLAN.—Not later than 270 days after
needed to Integ rate the date of enactment of this Act, the Secretary of Transpor-
UAS . t th tation, in consultation with representatives of the aviation

INTO e industry, Federal agencies that employ unmanned aircraft sys-

- - tems technology in the national airspace system, and the
natlonal aII‘SpaCe unmanned aircraft systems industry, shall develop a com-
prehensive plan to safely accelerate the integration of civil
unmanned aircraft systems into the national airspace system.
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e Existing design techniques in commercial aviation
Analytical redundancy is rarely used
Certification issues

e Tools for Systems Design and Certification
Motivation for model-based fault detection and isolation (FDI)
Extended fault trees
Stochastic false alarm and missed detection analysis

* Conclusions and future work



M UNIVERSITY OF MINNESOTA AEROSPACE ENGINEERING AND MECHANICS

* Existing design techniques in commercial aviation
Analytical redundancy is rarely used
Certification issues

e Tools for Systems Design and Certification
Motivation for model-based fault detection and isolation (FDI)
Extended fault trees
Stochastic false alarm and missed detection analysis

* Conclusions and future work



Commercial Fly-by-Wire

Boeing 787-8 Dreamliner

e 210-250 seats

* Length=56.7m, Wingspan=60.0m

* Range < 15200km, Speed< M0.89

* First Composite Airliner
 Honeywell Flight Control Electronics

Boeing 777-200

* 301-440 seats

* Length=63.7m, Wingspan=60.9m

e Range <17370km, Speed< M0.89

e Boeing’s 15t Fly-by-Wire Aircraft

e Ref: V.C. Yeh, “Triple-triple redundant
777 primary flight computer,” 1996.
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777 Primary Flight Control Surfaces [Yeh, 96]
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e Advantages of fly-by-wire:

Increased performance (e.g. reduced drag with smaller rudder), increased

functionality (e.g. “soft” envelope protection), reduced weight, lower
recurring costs, and possibility of sidesticks.

Issues: Strict reliability requirements
<107 catastrophic failures/hr
No single point of failure



Classical Feedback Diagram

Pilot —! Primary
Inputs Flight [ Actuators

—>|Computer

Sensors [¢

Reliable implementation of this classical
feedback loop adds many layers of complexity.
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Triplex Control System Architecture
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777 Triple-Triple Architecture [Yeh, 96]
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777 Triple-Triple Architecture [Yeh, 96]
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Redundancy Management

* Main Design Requirements:
< 107 catastrophic failures per hour
No single point of failure
Must protect against random and common-mode failures

e Basic Design Techniques
Hardware redundancy to protect against random failures
Dissimilar hardware / software to protect against common-mode failures
Voting: To choose between redundant sensor/actuator signals
Encryption: To prevent data corruption by failed components
Monitoring: Software/Hardware monitoring testing to detect latent faults
Operating Modes: Degraded modes to deal with failures
Equalization to handle unstable / marginally unstable control laws
Model-based design and implementation for software

14
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Analytical Redundancy

Small UASs cannot support the weight
' associated with physical redundancy.

Approach: Use model-based or data-
driven techniques to detect faults.

Process Noise Sensor Noise
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— l y(k)
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Fault Detector

Parity-equation architecture (Wilsky)
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Analytical Redundancy

" Small UASs cannot support the weight
associated with physical redundancy.

Approach: Use model-based or data-
driven techniques to detect faults.
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Analytical Redundancy

Small UASs cannot support the weight
associated with physical redundancy.

Approach: Use model-based or data-
driven techniques to detect faults.

Process Noise Sensor Noise

Research Objectives: e "1")
® .
- Hardware, models, data ., G, "
(Freeman, Balas)
» Advanced filter design i _—— ;
- : - Yo S rky .| Threshold | )
* Tools for systems desigh, —— G | Logicm [

analysis and certification

Fault Detector

Parity-equation architecture (Wilsky)
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Tools for Systems Design and Certification

failure modes
and effects

analysis for all
components
(detection of

possible component
failures and |
their consequences
for the system)

hazard analysis

Diagram Reference: R. Isermann.

Fault-Diagnosis Systems: An
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1 L
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Y ¥
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T dangerous
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; . supervisory and
mam\le;anL.e safety methods
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Fault Tolerance. Springer-Verlag, 2006.

extraction of
safety crtical
failures from
FMEA

extraction of
safety eritical
failures with
logic causahities

design
and

testing

phase

1

operation
phase
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Tools for Systems Design and Certification
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Fault Tree Analysis

N failure of effect on
yStet a system systems
function
AND
sub- comp. 1 comp. 2
systems fail fail Y
OR AND
_ basic
basic comp. 3 comp. 4 comp. 5 comp. 6 failures
compon. fail fail fail fail (causes) 1n
components
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Fault Tree Analysis

¢ failure of effect on
system a system systems
function
AND
sub- comp. 1 comp. 2
systems fail fail Y
OR AND
) basic
basic comp. 3 comp. 4 comp. 5 comp. 6 failures
compon. fail fail fail fail (causes) in
components

Probability of hardware component
failure can be estimated from field data.
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Fault Tree Analysis

" failure of effect on
system a system systems
function
AND
sub- comp. 1 comp. 2
systems fail fail Y
OR AND
basic
basic comp. 3 comp. 4 comp. 5 comp. 6 failures
compon. fail fail fail fail (causes) in
components

Probability of hardware component
failure can be estimated from field data.

Model-based fault detection introduces new failure
models (false alarms, missed detections, etc.)

24



Extended Fault Tree Analysis

References
_ 1. Aslund, Biteus, Frisk, Krysander,
new system failure and Nielsen. Safety analysis of
/\ autonomous systems by extended
22 . fault tree analysis. IJACSP, 2007.
| /AN ] 2. Hu and Seiler, A Probabilistic
alarm deactivated alarm activated Method for Certification of
A | I.-ff)\r\| Analytically Redundant Systems,
‘and N ™
J:LTL nd — . SysTol Conference, 2013.
N re ™,
. original and and
no system failure | [ packup fail f’A\\ ' e
L — /'_|'H. P
N 77N ‘e, | . FA | | not
AN and 1 \Cz_J not S,
PN 5 e
e “‘\l For\ |’/ MD /l {Ceg N
UL j_“rﬂl_ ~— —
olo |
- Incorporate failure modes due to false

alarms and missed detections (per hour)
(Enumerate time-correlated failures and apply total
law of probability)
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Example: Dual-Redundant Architecture

s(k) ) Primary my (k)
Sensor l \
1 dw m(k)
Fault Detection )
Logic (FDI)
Back-up
Sensor m, (k) °
Switch

Objective: Compute reliability of system assuming
sensors have a mean-time between failure of 1000HTrs.

26
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. s(k) Primary my (K) _
Failure Modes S || %
Fault Detection d(k) n%(k)'
Logic (FDI)
Back-up &
Sensor m, (k)
Primary Missed Switch
Missed Fails Detection
Detection, M | T T | ,
N » Time
0 T, T,+N, N
False Backup System
Alarm Fails Failure
False | T T T |
Alarm, Fy » Time
0 Ts T, T+N, N
Primary Failure Backup System
Proper Fails Detected Fails Failure
Detection, D | T T T T | .
N | » Time
0 T, Ts¢ T, T+N, N
Failure  Primary Backup  System
Detected  Fails Fails Failure
Epfjrly FaIIEse | T T T | » Time
arm, by 0 Ts T, T, T+N, N .



System Failure Rate

e Notation: g Sensor failure per hour
Pr False alarm per hour
Pp Detection per failure

e Approximate system failure probability:

Psn ~ (1 — Pp) + Ppg* + Prg(1 — )

28



System Failure Rate

e Notation: g Sensor failure per hour
Pr False alarm per hour
Pp Detection per failure

e Approximate system failure probability:

Psn =~|G(1 — Pp)|H Pp@® H|Prq(1 — q)

Lo

Primary sensor fails Failure detected + False alarm +
+ missed detection Backup sensor fails Backup sensor fails

29



System Failure Rate

e Notation: q Sensor failure per hour

Eat

Pr False alarm per hour | Question: How can
h we compute these
Pp  Detection per failure | probabilities?

e Approximate system failure probability:

qu_,n.,r ~ {j(l — PD) -+H PD(jZ -+ Ppt’}(l — {f)l

Lo

Primary sensor fails Failure detected + False alarm +
+ missed detection Backup sensor fails Backup sensor fails

30
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False Alarm Analysis

Process Noise Sensor Noise

I (f) What is the conditional
— (k) - .
" G, —0 probability of an alarm given
o=t oo that no fault has occurred?
i R A (k) __,‘: r(k) | Threshold i d(k)
: ' G 'VResiduaI ' Logic (T) _E_’
Abstraction: Discrete- A [f
time uncertain linear
system driven by noise.
y My M T | Threshold d;;
| Logic (T)

31
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Problem Formulation

(Healthy) Dynamics for residual A
Trri1 = Axp + Bny |j T

T = ka + an yn M T Threshold dk
- ] d Logic (T)
Simple Thresholding
P 0 if |ry| <T
k- 1 else

Objective:
Assume n, is a stationary Gaussian process and assume
known dynamic model for residuals.

Compute the probability P, that /r,/ > T for some kin {1,...,N}.

32
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Problem Formulation

(Healthy) Dynamics for residual A
Trri1 = Axp + Bny |j T

= .r _D $
Tk CTk T . M M Ve | Threshold dk
| Logic (T)
Simple Thresholding
References
g 0 if |ry| <T 1. Glaz and Johnson. Probability inequalities for
'k 1 else multivariate distributions with dependence
structures. JASA, 1984
2. Hu and Seiler, Probability Bounds for False Alarm
Analysis of Fault Detection Systems, Allerton, 2013.
Theorem:
There exist bounds v, (k=1,...,N) such that
1. w2 Py

2. v, are monotonically non-increasing in k
3. v requires evaluation of k-dim. Gaussian integrals

33



Results: Effects of Correlation

False Alarm Probabilities and Bounds for N=360,000

_Neglectlng correlations " Py 1— 1@ 1— LY
is accurate for small a
> 0 6.807 | 3.600 x 107° 3.600 x 1079 3.600 x 107°
0.7 9.531 | 3.587x107°% 3587 x107°% 3.598 x 10~°
0.8 11.34 | 3.524 x 107°% 3.524 x 107% 3.526 x 10~°
0.9 1562 | 3.167 x 107%  3.173x 107%  3.200 x 10~©
.butnotfor o5 4995 | 9641 x 107 1.177x 10-°  1.360 x 10~
a hear 1. - - .
» 0999 1522 | 1.395 x 10~  3.401 x 10°7  4.446 x 107"

For each (a,T), P, = 10"
which gives NP,=3.6 x 10

Residual Generation

Decision Logic

0O if|r|<T
T =an +n, + f, dk_{ ‘k‘

B 1 else
34
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Worst-case False Alarm Probability

Reference A
Hu and Seiler, Worst-Case False Alarm Analysis of
Aerospace Fault Detection Systems, Submitted to

ACC, 2014.

Fii M r -
k k . Threshold d,{-

Logic (T)

Issue:
Model depends on unknown (uncertain) parameters, A € A.

Objective:
Compute the worst-case false alarm probability

P}:r = IaXaAcA PN (&)

Main Result:
Robust H, analysis results can be used to compute worst-
case residual variance. This yields bounds on P,*.
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Conclusions

 Commercial aircraft achieve high levels of reliability.

Analytical redundancy is rarely used (Certification Issues)

Model-based fault detection methods are an alternative that
enables size, weight, power, and cost to be reduced.

e Tools for Systems Design and Certification

Extended fault trees
Stochastic false alarm and missed detection analysis

Methods to validate analysis using flight test data (Hu and
Seiler, 2014 AIAA)
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Dual-Redundant Architecture

s(k)

Primary m (k)
Sensor l
| d(k)
Fault Detection
Logic (FDI)
Back-up °
Sensor m, (k)
Switch

N
—

Objective: Efficiently compute the probability Ps ,, that
the system generates “bad” data for N, consecutive
steps in an N-step window.
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s(k) Primary

Assumptions =

m, (k)

l

Fault Detection
Logic (FDI)

d(k)

my (k)

Switch

/>

1. Knowledge of probabilistic performance

Sensor failures: P[ T=k | where T, := failure time of sensor i

FDI False Alarm: P[ T<N [ T,=N+1 ]
FDI Missed Detection: P[ Te2k+N, [ T,=k ]

Neglect intermittent failures
Neglect intermittent switching logic

Sensor failures and FDI logic decision are independent

Sensors have no common failure modes.

40
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. s(k) Prima my (K) _
Failure Modes Senor || \
Fault Detection d(k) n%(k)'
Logic (FDI)
Back-up &
Sensor m, (k)
Primary Missed Switch
Missed Fails Detection
Detection, M | T T | ,
N » Time
0 T, T,+N, N
False Backup System
Alarm Fails Failure
False | T T T |
Alarm, Fy » Time
0 Ts T, T+N, N
Primary Failure Backup System
Proper Fails Detected Fails Failure
Detection, D | T T T T | .
N | » Time
0 T, Ts¢ T, T+N, N
Failure  Primary Backup  System
Detected  Fails Fails Failure
Epfjrly FaIIEse | T T T | » Time
arm, by 0 Ts T, T, T+N, N .
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System Failure Probability R — N
Fault Detection| 9 () L(]‘),

Logic (FDI)

* Apply basic probability theory: e CON i

Pgn = Ei};lp riTs > k+ Ny | Th = k|Pr|[T; = k|

+ PT[T(, < N Tl = N + 1]PF[T1 = N + lPT TQ < :\T

+ 30 Pr[Ts < k+ Ny | Ty = k| Pr[Ty = k| Pr[T> < N

42
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s(k) Primary

m, (k)

System Failure Probability o

l

Fault Detection
Logic (FDI)

d(k)

* Apply basic probability theory: =

my (k)

Switch

(k)

Psn = SN Pr(Ts > k+ Ny | Ty = k|Pr[T) = ]

+ 30 Pr[Ts <k+ Ny | Th = k]P r[Ty = k| Pr|

 Knowledge of probabilistic performance

Sensor failures: P[ T=k | where T, := failure time of sensor i

43
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System Failure Probability O S 1" \)
Fault Detection| 9(K) ﬂ
Logic (FDI)
* Apply basic probability theory: S|

Psn = SN Pr(Ts > k+ Ny | Ty = k|Pr[T) = ]

+Pr[Ts <N [Ty =N+ 1|Pr[Ty = N+ 1|Pr[T5 < N|

+ S0, Pr(Ts < k+ Ny | 1 = k|Pr[Ty = k| Pr[T> < N]

 Knowledge of probabilistic performance
Sensor failures: P[ T=k | where T, := failure time of sensor i

FDI False Alarm: P[ T<N | T,=N+1 ]
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s(k)

System Failure Probability

* Apply basic probability theory:

Primary my (k)
Sensor l
Fault Detection | 9(K)
Logic (FDI)
Back-up
Sensor m, (k)

Switch

(k)

Py = SN \[Pr(Ts > k+ Ny | Th = K[Pr(Ty = ]

+Pr(Ts < N | Ty = N+ 1|Pr[Ty = N + 1]Pr[T:

+ Ei:"r:llP-r[fg <k+ Ny | T\ = k:]P-r[T‘l = k| Pr(T

 Knowledge of probabilistic performance

Sensor failures: P[ T=k | where T, := failure time of sensor i

FDI False Alarm: P[ T<N | T,=N+1 ]
FDI Missed Detection: P[ Te2k+N, | T,=k ]
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Example T i

d(k)

. 1i(k)
Fault Detection
Logic (FDI)

Back-up
Sensor m, (k)

Py
2 4

Switch

e Sensor Failures: Geometric distribution with parameter g

At
q::l—-eMTBF

e Residual-based threshold logic
m, (k)

q Fault r(k
y(k) Detection &) M Threshold, T a(k)
q Filter
Residual Decision Logic
r(k+1)=n(k)+ £ (k) i) = 0 if|r(k)|<T
1 else

‘ T—f IS an additive fault
n is IID Gaussian noise, variance=6
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* Per-frame false alarm probability can be easily computed

T
For each k, r(k)is N(0.6%) : P, =Pr[d(k)=1|No Fault|=1- [ p(r)dr
-T

) | P =1—erf(%/?)

* Approximate per-hour false o5 Peal0)=0.0019 for o = 025

alarm probability

1.5+

P[T,<NIT,=N+1]=1-(1-P.)" = NP, z

Per-frame detection probability P, 0.5
can be similarly computed.

5 1‘0 1‘5 20 25 30
Time Window, N 47



System Failure Rate

e Notation: G:= Ng Sensor failure per hour
Pp = NPy False alarm per hour
Pp:=1—(1- Pp)™o Detection per failure

e Approximate system failure probability:

Psn ~ (1 — Pp) + Ppg* + Prg(1 — )

48



System Failure Rate

e Notation: g:= Ngq Sensor failure per hour

Pp = NPy False alarm per hour
Pp:=1—(1- Pp)™o Detection per failure

e Approximate system failure probability:

Psn =~|G(1 — Pp)|H Pp@® H|Prq(1 — q)

Lo

Primary sensor fails Failure detected + False alarm +
+ missed detection Backup sensor fails Backup sensor fails

49



System Failure Rate
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Sensor mean time between failure = 1000hr
and N=360000 ( = 1 hour at 100Hz rate)
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Correlated Residuals

 Example analysis assumed IID fault detection logic.

* Many fault-detection algorithms use dynamical models
and filters that introduce correlations in the residuals.

* Question: How can we compute the FDI performance
metrics when the residuals are correlated in time?

FDI False Alarm: P[ T<N [ T,=N+1 ]
FDI Missed Detection: P[ Te2k+N, [ T,=k ]
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False Alarm Analysis with Correlated Residuals

* Problem: Analyze the per-hour false alarm probability for a simple
first-order fault detection system:

Residual Generation (O<a<1) Decision Logic
h,=ar, +n, +f, 0 if‘rk‘ST
1 else

L "
f is an additive fault
n is IID Gaussian noise, variance=1
Residuals are correlated in time due to filtering

* The N-step false alarm probability P is the conditional probability
that d,=1 for some 1<k<N given the absence of a fault.

T

T
P, =1- I J.pR(rl,...,rN)drl---drN

-T -T

There are N=360000 samples per hour for a 100Hz system
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False Alarm Analysis

e Residuals satisfy the Markov property:
en =an +n + f; ‘ p(rk+1ri""’rk):p(rkﬂ‘rk)
‘ pR(’i""a”k):p(”k"’k—l)"'p(’”z"’l)'p1(”1)

* P, can be expressed as an N-step iteration of 1-
dimensional integrals:

fN(rN) =1
Tua(yo) = _“_TT fN(rN)p(rN‘rN—l)drN

T T

P, =1- j---ij(n,...,rN)dn---drN —>
-T

-T

L= £ psr)dr,

Po=1-[ f(m)p,()dn

This has the appearance of a power iteration ANx N
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False Alarm Probability

* Theorem: Let A, be the maximum eigenvalue and y,
the corresponding eigenfunction of

Ay )=y () p(y I x)dy

Then P, ~cA'" where c=(Ly,)

 Proof

This is a generalization of the matrix power iteration

The convergence proof relies on the Krein-Rutman theorem
which is a generalization of the Perron-Frobenius theorem.

For a=0.999 and N=360000, the approximation error is 10-1>%

Ref: B. Hu and P. Seiler. False Alarm Analysis of Fault Detection Systems with
Correlated Residuals, Submitted to IEEE TAC, 2012.
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