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• James Blyth, 1887: 1st electric wind turbine in Marykirk, Scotland. 

(Not Shown)

• Turbine Shown,  ~1890: Enough power  “to light ten 25-volt bulbs.” 

[Ref: Hardy, 2010]
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• Charles Brush, 1888: 1st

automatic electric wind 

turbine in Cleveland, OH. 

(17m diam, 12kW) 
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• Clipper Liberty, 2012:   

Modern utility scale 

turbine in Rosemount, 

MN. (96m diam, 2.5MW)

• Cp,Liberty/Cp,Brush=6.5 
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Outline

• Individual Turbine Control

• Modeling and Control of a Wind Farm
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1. Maximize captured power

2. Minimize structural loads

3. Reduce operational downtime

Performance Objectives

pCAvP  
3
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1 ρ=

Power in Wind Power Coefficient: Function of turbine 

design, wind conditions, and control
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Turbine Components

Figure from the US DOE
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Newton’s second law for rotational systems
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Simple Rigid Body Model
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Aerodynamic torque depends on

rotor speed (ω), wind speed (ν), and

blade pitch angles (β).

Control inputs are the

generator torque (τg)

and blade pitch (β) 

Rotational inertia

of blades, rotor and

drivetrain
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Power Coefficient, Cp

• Cp :=          

• β= Collective blade pitch

• λ= Tip speed ratio

• Aerodynamic torque

v
Rω=

),( λβp

wind

captured
C
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Figure from:

K. Johnson, L. Pao, M. Balas, and L. Fingersh,

Control of Variable Speed Wind Turbines,

IEEE Control Systems Magazine, June 2006

Cp for NREL CART 600kW, 21.7m turbine
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Wind Turbine Control

• Control strategies depend on the wind conditions

• Supervisory control and mode logic

• Yaw control

• Power capture at low wind speeds

• Rated power + load reduction at high wind speeds

• Good Survey References
• K. Johnson, L. Pao, M. Balas, and L. Fingersh, Control of Variable Speed Wind 

Turbines, IEEE Control Systems Magazine, June 2006.

• T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook, Chapter 8: 

The Controller, 2001.

• J. Laks, L. Pao, and A. Wright, Control of Wind Turbines: Past, Present and Future, 

American Control Conference, 2009.
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Simplified Turbine Operating States
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Wind 

Sense

Ramp Up 

Speed

Ramp Up 

Power

RUN



AEROSPACE ENGINEERING AND MECHANICS

13

Typical Operating (“Run”) Modes
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Region 2: Standard Controller

Convergence to optimal power capture (λ converges to 

λmax) in steady wind.  [Ref:  Johnson, et al, Control System Mag., 2006]
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Region 3: Blade Pitch Control
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Source: http://www.windurance.com/pitch.html
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Ref: Laks, et. al., ACC, 2009
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Active Power Control

• Operate turbine to follow power commands

• Uses: First Response (Frequency Control), Secondary response 

(automatic generation control), Ancillary Services.

• Ref. 1: Aho, Buckspan, Pao, Fleming, AIAA, 2013,  

• Ref. 2: Jeong, Johnson, Fleming, Wind Energy, 2013.
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Transmission System Operator
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Gain-Scheduled Active Power Control

• Ref: Wang and Seiler, AIAA 2014.
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Active Power Control: Low Wind Speeds
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FAST Simulations with wind = 8m/s, 5% turbulence

Time (sec)
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Active Power Control: High Wind Speeds
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FAST Simulations with wind = 13m/s, 5% turbulence

Time (sec)
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Outline

• Individual Turbine Control

• Modeling and Control of a Wind Farm

• Conclusions
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Wind Farm Control

• Wind Farm Control

• Maximize Power

• Mitigate Loads

• Enable operation similar to conventional power plants

• Understand aerodynamic interactions in a wind farm

21

Horns Rev 1 (Photographer: Christian Steiness)
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Turbine Model: Actuator Disk + Park Model
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Turbine

x

Turbine Efficiency: Velocity Deficit (Jensen, 83):
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Derivation of Park Model

Wake Expansion Coefficient

x
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Coordinated Control: Two Turbines
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Johnson & Thomas, ACC, 2009
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N-turbine Linear Array

• Objective: Determine (quasi-steady) control inputs to 

maximize power produced by an array of turbines
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Ref: Bitar and Seiler, ACC, 2013
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Power Maximization: Near Field

•
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Bellman Equation: Solve backwards iteration for value function 

(power produced by turbines i,…,N with inlet velocity v)

Boundary Condition:
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(BC:                  )

Power Maximization: Near Field

•
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Optimal Induction Factors: Obtained via backwards iteration

For For uniformly spaced 

infinite arrays
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Issue: Limited Fidelity of Park Model
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Key Questions

1. What is the impact of the control law on the trailing wake?

2. What is appropriate level of model fidelity required for coordinated 

wind turbine control?

3. Can we take advantage of wake interactions to better integrate wind 

into the energy system?
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SAFL Large Eddy Simulation

• Approach: Use high fidelity simulations

• Flow: 3-D incompressible Navier-Stokes equations

• Turbine: Fixed speed or tip speed ratio

• Opportunity: Integrate Clipper dynamics/control law

• Joint work with Yang, Annoni, and Sotiropoulos
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Axial Induction Control

• De-rate 1st turbine → Maximize Power in Turbine Array
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Ptot = 0.3834 Ptot = 0.3888 Ptot = 0.3726
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LES With Clipper Controller
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Preliminary results

•Clipper Region 2 Torque Control

•Yang, Annoni, Seiler, Sotiropoulos, 2014.
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Wind Tunnel and Field Tests

• Approach: Use LIDAR measurements of wake

• Clipper Turbine: Measurements made at 1.5D, 2D, 2.5D, and 3D

• Opportunity: Integrate Clipper dynamics/control law

• Joint work with Howard, Annoni, and Guala

32
LIDAR at UMore Park Clipper Turbine
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Wind Tunnel and Field Tests

• Approach: Wind tunnel tests using a 3 turbine array
• Experiments with turbine spacing by fixing 1st and 3rd turbine

• De-rating first turbine

• Opportunity: Understand wake interactions and potential 

gains from coordinated turbine control
• Joint work with Howard, Annoni, and Guala
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Wind Farm in Wind Tunnel Photo Credits: Kevin Howard
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Conclusions

• Control systems increase power capture and reduce 
structural loads on utility-scale wind turbines.

• Performance and reliability trade-offs are becoming 
more difficult with trends to larger / off-shore turbines.

• Potential to coordinate all turbines in a wind farm in 
order to increase power and reduce overall loads

• Requires a better understanding of trailing wakes and how 
these are affected by the control algorithms.
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