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Aeroservoelastic Systems

Objective: Enable lighter, more
efficient aircraft by active control of
aeroelastic modes.

http://www.uav.aem.umn.edu/

AFLR/Lockheed/NASA: BFF and X56 MUTT
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Supercavitating Vehicles

Objective: Increase vehicle \ a?@e
e

speed by traveling within , v
the cavitation bubble. Q v . {

Ref: D. Escobar, G. Balas, and R. Arndt, " Planing Avoidance Control for Supercavitating Vehicles,” ACC, 2014.
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Wind Turbines

Objective: Increase power capture,

decrease structural loads, and enable wind
to provide ancillary services.
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Clipper Turbine at Minnesota Eolos Facility
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Wind Turbines

Objective: Increase power capture,
decrease structural loads, and enable wind
to provide ancillary services.
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Clipper Turbine at Minnesota Eolos Facility Wind Speed (m/s)

http://www.eolos.umn.edu/
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Outline
Goal: Synthesize and analyze controllers for these systems.
@ Linear Parameter Varying (LPV) Systems
@ Uncertainty Modeling with 1QCs
© Robustness Analysis for LPV Systems

@ Connection between Time and Frequency Domain

@ Summary
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Goal: Synthesize and analyze controllers for these systems.

@ Linear Parameter Varying (LPV) Systems
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Parameterized Trim Points

These applications can be described by nonlinear models:

where p is a vector of measurable, exogenous signals.

Assume there are trim points (Z(p), u(p), y(p)) parameterized by p:

0
y(p) = Wz (p), ulp), p)



UNIVERSITY OF MINNESOTA . - .
M Aerospace Engineering and Mechanics

. Driven to Discover

Linearization

Let (x(t),u(t),y(t), p(t)) denote a solution to the nonlinear system
and define perturbed quantities:

5u(8) := u(t) — a(p(t))
5,(1) = y(t) — (1))

1) A(p)oy + B(p)dy, +Af(6x,5u, p) — '(p)
8y = C(p)ds + D(p)du + Ap(0y, 6u, p)

where A(p) := 2L(z(p), u(p), p), etc.
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LPV Systems

This yields a linear parameter-varying (LPV) model:
5:6 = A(p)éz + B(p)du + Af(0z, 0u, p) — z(p)
by = C(p)dz + D(p)du + Ap(dz, 6u, p)
Comments:

e LPV theory a extension of classical gain-scheduling used in
industry, e.g. flight controls.

e Large body of literature in 90's: Shamma, Rugh, Athans,
Leith, Leithead, Packard, Scherer, Wu, Gahinet, Apkarian, and
many others.

e —Z(p) can be retained as a measurable disturbance.
e Higher order terms Ay and Ay, can be treated as memoryless,
nonlinear uncertainties.

10
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Grid-based LPV Systems

#(t) = A(p(t))z(t) + B(p(t))d(t)
e(t) = Clp()z(t) + D(p(t))d(t)

Parameter vector p lies within a set of admissible trajectories

A:={p:Rt 5 R™ : p(t)eP, p(t) e PVt>0}

Grid based LPV systems LFT based LPV systems
pl
S e M
e G d
<« «——

(Pfifer, Seiler, ACC, 2014) (Scherer, Kose, TAC, 2012)
11
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Outline

Goal: Synthesize and analyze controllers for these systems.

@ Uncertainty Modeling with 1QCs

12
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Integral Quadratic Constraints (IQCs)

> z
v

v:ALU

Let ¥ be a stable, LTI system and M a constant matrix.
Def.: A satisfies IQC defined by ¥ and M if

T
/ 2() T M z(t)dt > 0
0
for all v € L3]0,00), w = A(v), and T > 0.

(Megretski, Rantzer, TAC, 1997)

13
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Example: Memoryless Nonlinearity

w = A(v,t) is a memoryless nonlinearity
in the sector [« 3].

— A }— l}

2(Bu(t) —w(t))(w(t) — av(t)) >0Vt

14
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Example: Memoryless Nonlinearity

w = A(v,t) is a memoryless nonlinearity
in the sector [« 3].

— A }— l}

2(Bu(t) —w(t))(w(t) — av(t)) >0Vt

Loy |
—A— 'y v®)]* [-2a8 o+ 8] [o(t)
e [w(t)] [a—l—ﬂ 2 ] [w(t)] =2 0t

Pointwise quadratic constraint

14
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Example: Norm Bounded Uncertainty

A is a causal, SISO operator with ||A|| < 1.

[Jw]| < [|v]]

15
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Example: Norm Bounded Uncertainty

A is a causal, SISO operator with ||A|| < 1.

[Jw]| < [|v]]

v A U

RO 5] o] azo

for all v € L2[0,00) and w = A(v).

Infinite time horizon constraint

15
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Example: Norm Bounded Uncertainty

A is a causal, SISO operator with ||A]| < 1.

Jw]| < [|v]]

/oT [SJ((?)]T [(1) _OJ [Z((ttﬂ dt > 0
for all v € L]0, 00), w = A(v), and "> 0

Causality implies finite-time constraint.

16
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Example: Norm Bounded Uncertainty

A causal with [|A]| <1

Vv € Ly[0,00) and w = A(v).

17
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Example: Norm Bounded Uncertainty

A causal with ||A]| <1

J__: Vv € Lo[0,00) and w = A(v).
v ], A w

17
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Example: Norm Bounded Uncertainty

A causal with ||A]| <1

\

T
/ 2T Mz(t)dt >0
0

v w Vv € Ls[0,00) and w = A(v).
A
\

A satisfies IQC defined by

Y
N

Y

1 0
\I/—IgandM—[O _1]

17
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Example: Norm Bounded LTI Uncertainty

(o4
Y
>
lg—¢

Y
N

Aerospace Engineering and Mechanics

Ais LTl and ||A]| <1

Y

For any stable system D, A satisfies
IQC defined by

D 0 1 0
\IJ—[O D}andM—[O —l]

Equivalent to D-scales in
p-analysis

18
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IQCs in the Time Domain

v:ALU

Let ¥ be a stable, LTI system and M a constant matrix.
Def.: A satisfies IQC defined by ¥ and M if

T
/ 2() T M z(t)dt > 0
0
for all v € L3]0,00), w = A(v), and T > 0.

(Megretski, Rantzer, TAC, 1997)

19
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Outline

Goal: Synthesize and analyze controllers for these systems.

© Robustness Analysis for LPV Systems

20
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Nominal Performance of LPV
Systems

Induced Lo gain:

e
Gl= s
d#0,d€ Lo, peA,z(0)=0 ” H

Bounded Real Lemma like
condition to compute upper
bound

(Wu, Packard, ACC 1995)

Aerospace Engineering and Mechanics

Background

21
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Background

Nominal Performance of LPV Integral Quadratic Constraints

Systems
y e general framework for robustness

Induced Lo gain: analysis

e originally in the frequency domain

G, = sup M e known LTI system under
d#0,d€ L2,pe A,z(0)=0 Il perturbations
A
Bounded Real Lemma like v w
condition to compute upper
bound e G d
<« le——

(Wu, Packard, ACC 1995)
(Megretski, Rantzer, TAC, 1997)

21
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Worst-case Gain

e Goal: Assess stability and performance
for the interconnection of known LPV
system G, and “perturbation” A.

22
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Worst-case Gain

e Goal: Assess stability and performance
for the interconnection of known LPV

A system G, and “perturbation” A.
v w e Approach: Use IQCs to specify a
finite time horizon constraint on the
e G, d input/output behavior of A.
<« «——

22



UNIVERSITY OF MINNESOTA . - .
M Aerospace Engineering and Mechanics

. Driven to Discover

Worst-case Gain

e Goal: Assess stability and performance
for the interconnection of known LPV

A system G, and “perturbation” A.
v w e Approach: Use IQCs to specify a
finite time horizon constraint on the
e G, d input/output behavior of A.
<« «——

e Metric: Worst case gain

sup sup llell
A€IQC(W, M) d£0,de La,peA,z(0)=0 |||

22
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Worst-case Gain Analysis with 1QCs

Approach: Replace "precise” behavior
of A with IQC on 1/0 signals.

23
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Worst-case Gain Analysis with 1QCs

Approach: Replace "precise” behavior
of A with IQC on 1/0 signals.

e Append system ¥ to A.

w
d
D le——

23
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Worst-case Gain Analysis with 1QCs

Approach: Replace "precise” behavior
of A with IQC on 1/0 signals.

e Append system ¥ to A.

————— | e Treat w as external signal subject
to IQC.

Y
>

23
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Worst-case Gain Analysis with 1QCs

Approach: Replace "precise” behavior
of A with IQC on 1/0 signals.

e Append system ¥ to A.

el e Treat w as external signal subject
v w e Denote extended dynamics by
€ Gp d :L’:F(x,w,d,p)
D le—— 5
[6] = H(x?w?d7p)

23
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Dissipation Inequality Condition

Theorem: Assume:

N Py @ Interconnection is well-posed.
g v — -
® A satisfies IQC(U, M)
Pt ©® 3V >0 and v > 0 such that
> A
ol T e VV-F(z,w,d,p) + 2T Mz
<dfd—~2eTe
€ Gp d
for all x € R, w € R™, d € R"d,

Then gain from d to e is < 7.

24
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Proof Sketch

Let d € L[0,00) be any input signal and z(0) = 0:

VV - F(z,w,d) + 2T Mz < dd—~v"2eTe

25
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Proof Sketch

Let d € L[0,00) be any input signal and z(0) = 0:
VV - F(z,w,d) + 2T Mz < dd—~v"2eTe

{} Integrate fromt =0tot =T

V(@(T)) — V(2(0)) + /O (0T Ma(t)dt < /O AT d(t)dt — 2 /O e(®) e(t)dt

25
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Proof Sketch

Let d € L[0,00) be any input signal and z(0) = 0:
VV - F(z,w,d) + 2T Mz < dd—~v"2eTe

{} Integrate fromt =0tot =T
V(@(T)) — V(2(0)) + /O (0T Ma(t)dt < /O AT d(t)dt — 2 /O e(t) e(t)dt
{} IQC constraint, V' nonnegative
T T
/ e(t)Te(t)dt < ~* / d(t)Td(t)dt
0 0

Hence |le]| <~ |d]]

25
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Linear Matrix Inequality Condition

Extended System Dynamics:

> N _)Z
&= A(p)x + Bi(p)w + Ba(p)d
oA z = Ci(p)z + Dui(p)w + Di2(p)d
o T S e = Ca(p)z + Da(p)w + Daz(p)d,
e G, d What is the “best” bound on the
worst-case gain?

26
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Linear Matrix Inequality Condition

Theorem

The gain of F,(G,,A) is < if there exists a matrix P € R"=*"=
and a scalar A > 0 such that P > 0 and Vp € P

PA(p)+ A(p)" P PBi(p) PB2(p) Ci(p)"
Bi(p)TP 0 0 | +X|Du(T| M[Ci(p) Dii(p) Diz(p)]
Ba(p)T P 0 ~1 Di2(p)”

Ca(p)”
+— | D21(0)T | [C2(p) D21(p) D22(p)] <0
Daa(p)”

27
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Linear Matrix Inequality Condition

Theorem

The gain of F,(G,,A) is < if there exists a matrix P € R"=*"=
and a scalar A > 0 such that P > 0 and Vp € P

PA(p) + A(p)TP  PBi(p) PBa(p) Ci(p)”
Bi(p)TP 0 0 | +X|Du(T| M[Ci(p) Dii(p) Diz(p)]
Ba(p)TP 0 -1 Dz (p)”
Ca(p)”
+— | D21(0)T | [C2(p) D21(p) D22(p)] <0
Daa(p)”
Proof:

o Left/right multiplying by [z7,w”,d"] and [T, w™,d"]"
o V(z) := 2T Pz satisfies dissipation inequality

VI Mz<dld—~"2Te

27
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Numerical Issues

Parameter dependent LMIs depending on decision variable P(p)

Approximations on the test conditions:

e grid over parameter space
e basis function for P(p)

e rational functions for ¥

LPVTools toolbox developed to support LPV objects, analysis and
synthesis.

28
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(Simple) Numerical Example

R el

Plant:
e First order LPV system G,

1 1
t=———x+——u 7(p) =+/133.6 —16.8p

T(p) T(p)

y=K(p)z K(p)=+/48p-86  pe[2,7]

More complex example: Hjartarson, Seiler, Balas, “LPV Analysis of a Gain

Scheduled Control for an Aeroelastic Aircraft”, ACC, 2014.
29
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(Simple) Numerical Example

e A
; =]
C, S SNE

Time delay:

—ST [—> Gp —‘

e 0.5 seconds

e 2nd order Pade approximation

29
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(Simple) Numerical Example

e ’—y A
d c, | 1_. sl G,

Controller:

e Gain-scheduled Pl controller C,
e Gains are chosen such that at each frozen value p

e Closed loop damping = 0.7
e Closed loop frequency = 0.25

29
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(Simple) Numerical Example

e A
c, Sl ¢

Uncertainty:

—ST [—> Gp —‘

e Causal, norm-bounded operator A
o A<D

29
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Numerical Example

[ I
10 | | == P affine .}JI'
_ .
P .
= ‘o*’
T
CIb)D 6 [ * * N
Q L
o *"
By e
R e 1
5 e
z'F' |
| | | |
0 0.1 0.2 0.3 0.4 0.5

norm bound on uncertainty b [-]

Rate-bounded analysis for |p| < 0.1.

30
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Numerical Example

I
10 |- s P affine °
=9¢= P quadratic o*
- K @
= 8 :
c
'©
ad
) 6 |
(%]
3
o 1
2
2 |

| | | |
0 0.1 0.2 0.3 0.4 0.5

norm bound on uncertainty b [-]

Rate-bounded analysis for |p| < 0.1.

30
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Outline

Goal: Synthesize and analyze controllers for these systems.

@ Connection between Time and Frequency Domain

31
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IQCs in the Frequency Domain

—> A

Let IT : jR — C™*™ be Hermitian-valued.

Def.: A satisfies IQC defined by II if
= 969) 1" 11 [ 76)

/oo ooy | ) [362) d 2 0

for all v € L2[0,00) and w = A(v).

(Megretski, Rantzer, TAC, 1997)

32
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Frequency Domain Stability Condition

Thm: Assume:

@ Interconnection of G and 7A is

’ - ¢ 2 well-posed V7 € [0, 1]
® A € 1QC(ID) Vr € [0, 1],
w v f © 3 e>0such that
A

[G(}w)]* T1(jw) [G(;m] < —elVw

Then interconnection is stable.

33
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Connection between Time and Frequency Domain

1. Time Domain IQC (TD IQC) defined by (¥, M):
T
/ ST M) dt >0 VT > 0
0

where z = U [[].

2. Frequency Domain IQC (FD IQC) defined by II:
[e.e]
0G9) 1" 11700y [ 269)
/_oo ig2) ] MG [ 550 | dez 0

A non-unique factorization II = W~ MV connects the
approaches but there are two issues.

34
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“Soft” Infinite Horizon Constraint

o0

Freq. Dom. IQC: /

—00

35
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“Soft” Infinite Horizon Constraint

o0

Freq. Dom. IQC: /

—00

[g(j.w))rﬂ(jw) [ﬁ(jw)} dw >0

(Jw w(jw)

@ Factorization II = U~ MV

~

/ ] ey arete) [0 ) 4w = |G 2 0

—00

35



A8

UNIVERSITY OF MINNESOTA

o Aerospace Engineering and Mechanics

“Soft” Infinite Horizon Constraint

o0

Freq. Dom. IQC: /

—00

[g(j.w))rﬂ(jw) [ﬁ(jw)} dw >0

(Jw b(jw)

@ Factorization II = U~ MV

~

| [aa] wtwrmwte) [0 do = [~ £ Guprze) > 0

@ Parseval’s Theorem
"Soft” 1QC: / () Mz (t)dt > 0
0

Issue # 1: DI stability test requires “hard” finite-horizon IQC
35
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Sign-Indefinite Quadratic Storage

Factorize II = W~ MW and define ¥ [?] = {%‘i}

36



UNIVERSITY OF MINNESOTA . . -
M, o Aerospace Engineering and Mechanics

Sign-Indefinite Quadratic Storage

Factorize II = W~ MW and define W [?] = {%‘i}

ATp 4+ PA PB] [CT

* .
(*) KYP LMI: | o 0 T

]M[C D] <0

36
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Sign-Indefinite Quadratic Storage

Factorize II = W~ MW and define W [?] = {%‘i}

ATp 4+ PA PB] [CT

* .
(*) KYP LMI: [ BTp ; T

]M[C D] <0

KYP Lemma: 3¢ > 0 such that ~ Lemma: V = 27 Py satisfies

. * . . T
[G(_?W)] M(jw) [G(iw)} < el \vA%4 F(x,Qw,Td) —i—zT Mz
<~*d*d—e’e

iff 3 P = P satisfying the KYP for some finite vy > 0 iff 3 P > 0
LMI (*). satisfying the KYP LMI (*).

36
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Sign-Indefinite Quadratic Storage

Factorize II = W~ MW and define W [?] = {%‘i}

ATp 4+ PA PB] [CT

* .
(*) KYP LMI: [ BTp ; T

]M[C D] <0

KYP Lemma: 3¢ > 0 such that ~ Lemma: V = 27 Py satisfies

. * . . T

[G(_?W)] M(jw) [G(iw)} < el VV-F(z,w,d)+ 2" M=z
<y2dTd —eTe

iff 3 7 = P satisfying the KYP for some finite v > 0 iff 3 P > 0

LMI (*). satisfying the KYP LMI (*).

Issue # 2: DI stability test requires P > 0

36
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Equivalence of Approaches (seiler, 2014)

Def.: Il = ¥~ MV is a J-Spectral factorization if M =[] 9]
and ¥, ¥~ are stable.

37
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Equivalence of Approaches (seiler, 2014)

Def.: Il = ¥~ MV is a J-Spectral factorization if M =[] 9]
and ¥, ¥~ are stable.

Thm.: If [ = Y~ MW is a J-spectral factorization then:

@ If A €lQC(IT) then A € IQC(¥, M)
(FD 1QC < Finite Horizon Time-Domain 1QC)

® All solutions of KYP LMI satisfy P > 0.

Proof: 1. follows from Megretski (Arxiv, 2010)
2. use results in Willems (TAC, 1972) and Engwerda (2005). W

37
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Equivalence of Approaches (seiler, 2014)

Def.: Il = ¥~ MV is a J-Spectral factorization if M =[] 9]
and ¥, ¥~ are stable.

Thm.: If [ = Y~ MW is a J-spectral factorization then:
@ If A €lQC(IT) then A € IQC(¥, M)
(FD 1QC < Finite Horizon Time-Domain 1QC)
® All solutions of KYP LMI satisfy P > 0.

Proof: 1. follows from Megretski (Arxiv, 2010)
2. use results in Willems (TAC, 1972) and Engwerda (2005). W

Thm.: Partition IT = [gi gg; } IT has a J-spectral factorization if

Hn(jw) > 0 and HQQ(jw) <0VweRU {—|—OO}
Proof: Use equalizing vectors thm. of Meinsma (SCL, 1995) H.

37
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Outline

Goal: Synthesize and analyze controllers for these systems.

© Summary
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Summary

Conclusions:
e Developed conditions to assess the stability and performance
of uncertain (gridded) LPV systems.
e Provided connection between time and frequency domain 1QC
conditions.

Future Work:
@ Robust synthesis for grid-based LPV models (Shu, Pfifer,
Seiler, submitted to CDC 2014)
@® Lower bounds for (Nominal) LPV analysis: Can we efficiently
construct "bad” allowable parameter trajectories? (Peni,
Seiler, submitted to CDC 2014)

© Demonstrate utility of analysis tools to compute classical
margins for gain-scheduled and/or LPV controllers.

39
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Brief Summary of LPV Lower Bound Algorithm

There are many exact results and computational algorithms for
LTV and periodic systems (Colaneri, Varga, Cantoni/Sandberg,
many others)

The basic idea for computing a lower bound on ||G,| is to search
over periodic parameter trajectories and apply known results for
periodic systems.

G G
HGPH = sup sup M Z sup sup M
pEA uF£0,uely [l pEA, U0 UELs [

where A, C A denotes the set of admissible periodic trajectories.

Ref: T. Peni and P. Seiler, Computation of lower bounds for the induced Lo
norm of LPV systems, submitted to the 2015 CDC.
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Numerical example

Simple, 1-parameter LPV system:

> S}A > () 1
u(t)— : y(t)
1

> 5(t) > s+1

A
A

with =1 <§(t) <1,and —m<é(t) <7

The upper bound was computed by searching for a polynomial
storage function.
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Upper and Lower Bounds

0.8 T T T T T T T T T

0.6

0.5

0.4

L2 norm bounds

0.3

0.2

044

0 0.2 0.4 0.6 14 1.6 18 2

0.8 1 12
Different rate bounds (pmax)

Question: Can this approach be extended to compute lower

bounds for uncertain LPV systems?
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Example: Norm Bounded Uncertainty

v(t) fort<T

and w = A(?)
0 fort >T

Truncated signal 9(t) = {

v w
—> A
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Example: Norm Bounded Uncertainty

v(t) fort<T

and w = A(?)
0 fort >T

Truncated signal 9(t) = {

v w
—> A

w(t) =w(t) for t <T
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Example: Norm Bounded Uncertainty

t) fort<T
Truncated signal 9(t) = ot) fort < and w = A(?)
0 fort > T
v—» A —lﬂ
. s
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Example: Norm Bounded Uncertainty

v(t) fort<T

and w = A(?)
0 fort >T

Truncated signal 9(t) = {
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Example: Norm Bounded Uncertainty

t) fort<T
Truncated signal 9(t) = {S( ) for . - T and w = A(?)
ort >

o< [T] b ][] o
T~ -
Truncation of v: S/o [1%((?)] B _01} [;((?)} dt

45



Aerospace Engineering and Mechanics

M UNIVERSITY OF MINNESOTA
5 Driven to Discover

Example: Norm Bounded Uncertainty

t) fort<T
Truncated signal 9(t) = {S( ) for . - T and w = A(?)
ort >

o< [ ] 1 )
T~ -
<[, Lao) Lo 5 o]
Causality of A: < /OT [Z}((tt))]T B _OJ [Z((?)} dt
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t) fort<T
Truncated signal 9(t) = {S( ) for . - T and w = A(?)
ort >

Finite time horizon constraint

45



	Linear Parameter Varying (LPV) Systems
	Uncertainty Modeling with IQCs
	Robustness Analysis for LPV Systems
	Connection between Time and Frequency Domain
	Summary

