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Clipper Liberty, 2012: 
Modern utility-scale turbine. 

•Rosemount, MN.  

•Diameter: 96m  

•Power: 2.5MW 

•Eolos Consortium: 
http://www.eolos.umn.edu/ 

•Saint Anthony Falls Lab: 
http://www.safl.umn.edu/  

 

http://www.eolos.umn.edu/
http://www.eolos.umn.edu/
http://www.safl.umn.edu/
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Key Issues: 
1.Structural Design 
2.Available Wind 

Resources  
3.Improved Efficiency 
4.Installation & 

Maintenance Costs 
5.Grid Integration 
6.Turbine/Turbine 

Interactions 



AEROSPACE ENGINEERING AND MECHANICS 

Trends in Wind Energy 

4 

1. Structural Design 
• Larger turbines 
• New materials for tower 

/ blades 
• Aeroacoustics 
• Passive Films 
• Transportation 

 

 
      
 
 
Refs:  Cotrell, Stehly,  
     Tangler, Moriarty  
  

Image: "Turbine Blade Convoy Passing 
through Edenfield" by Paul Anderson 
(From geograph.org.uk.) 
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Image: "Alpha Ventus Windmills" by 
SteKrueBe (From Wikipedia “Offshore 
Wind Power”) 

2. Available Wind 
Resources 

• Off-shore 
• Vertical axis 
• Airborne (Kites) 
• Inter-annual variability 
• Environmental impacts 

 
     
 
 
 
Refs: Rotea, Dabiri,        
     Goldstein, Archer 
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3. Improved Efficiency 
• Advanced controls 
• New sensors (Lidar) 
• Novel actuators 

(microflaps) 

 
 
 
 
 
 
 
Refs: Schlipf, Johnson, Pao,  
      Balas, Fingersh, Wang,   
      Harris, Hand, Houtzager 

Image: Lidar by Dr. Rainer Reuter, University of 
Oldenburg http://las.physik.uni-oldenburg.de/ 

http://las.physik.uni-oldenburg.de/
http://las.physik.uni-oldenburg.de/
http://las.physik.uni-oldenburg.de/
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Image: Damaged gear teeth, by Dan Janisch 
(Mesabi Range Wind Technology Program). 

4. Installation & 
Maintenance Costs 

• Health Monitoring & 
Prognostics 

• Fault Detection & 
Isolation 

• Fault Tolerant Control 

 
 
 
 
Refs: FDI/FTC Competitions, 
     Ozdemir, Lim, Seiler, Rezaei,  
     Johnson, Odgaard  



AEROSPACE ENGINEERING AND MECHANICS 

Trends in Wind Energy 

8 

Image: “Hamilton Beach Pylon" by 
Ibagli (From Wikipedia “Overhead 
Power Line”) 

5. Grid Integration 
• Active Power Control 
• Emulated Inertia 
• Ancillary Services 

 
 
 
 
 
 
Refs: Aho, Pao, Johnson, 

Fleming, Wright, Wang, 
Buckspan, Jeong 
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Image: Horns Rev 1, by Christian Steiness 

6. Turbine/Turbine 
Interactions 

• Maximize power 
• Reduce structural loads 
• High Fidelity Simulations 

 
 
 
      
 
Refs: Johnson, Fleming,  
     Gebraad, Seiler, Annoni,  
     Howard, Guala, Yang,  
     Sotiropoulos  
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Video: Hong, et al., Nature Comm., 2014 
Saint Anthony Falls Laboratory 

6. Turbine/Turbine 
Interactions 

• Maximize power 
• Reduce structural loads 
• High Fidelity Simulations 

 
 
 
      
 
Refs: Johnson, Fleming,  
     Gebraad, Seiler, Annoni,  
     Howard, Guala, Yang,  
     Sotiropoulos  
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Outline 

• Goal: Construct control-oriented models for wind farms  

• Models need to be low-order but of sufficient fidelity. 

• Use models to design coordinated wind farm controllers 

 

 

• Individual turbine control 

• Coordinated wind farm control 

• Wind farm modeling 

• Experimental (black-box) models 

• First-principles, reduced order models 

• Conclusions 
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Rotor  

Speed, w 

Electrical 
Power, P 

Modern Utility-Scale Wind Turbines 
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w 

Wind, v(t) 

Generator 

torque, tg 

Blade  

pitch, b 

Ref: Johnson, Pao, Balas, Fingersh, IEEE CSM, 2006 

Wind  

Speed, v 

Objectives for Individual Turbine Control: 
1. Maximize power at low wind speeds. 
2. Reduce loads at high wind speeds. 

b 

tg 



AEROSPACE ENGINEERING AND MECHANICS 

Actuator Line Turbine Model 

15 

Turbine 

v v1 

Streamwise, x 

x 

Induction Factor 

    a:=1 - v1/v 

b, tg P(v,b,tg) 

Actuator Line Results:  

Yang, et. al.  The virtual 

wind simulator (VWiS) 
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Actuator Disk Turbine Model 
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Turbine 

v v1 

Streamwise, x 

x 

a 
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Turbine 

v v1 

Streamwise, x 

x 

a 
Betz Limit: 

Cpmax=16/27 

at a = 1/3 
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Turbine 

v v1 

Streamwise, x 

x 

a P(a,v) 

v2(x) = v (1-f(x) a) 
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Ref: Johnson & Thomas (2009 ACC) 

Parameters: 
• Rotor Diam=100m 
• v=10m/s 
• Park and Betz model used 

v 

a1 P1 
Optimal: a1 = 1/3 
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Parameters: 
• Rotor Diam=100m 
• v=10m/s 
• k=0.1 
• x=4D 

Coordinated Control: Two Turbines 
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Ref: Johnson & Thomas (2009 ACC) 

v 

a1 P1 

x 

a2=1/3 P2 
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Parameters: 
• D=100m 
• v=10m/s 
• k=0.1 
• x=4D 

Coordinated Control: Two Turbines 
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Ref: Johnson & Thomas (2009 ACC) 

v 

Ptot=P1+P2 

x 

Optimal: a1 = 0.25,  3.5% ↑ Power a1 a2=1/3 
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Need for Improved Wake Modeling 

• Issue: High fidelity simulations show no increased power. 

• ~-10% compared to the +3.5% gain with the Park model 
• Ref: Annoni, Gebraad, Scholbrock, Fleming, van Wingerden, “Analysis of axial-induction-based wind 

plant control using engineering and high-order wind plant models.” Submitted 2014 
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Simulator for Wind Farm Applications (SOWFA) Churchfield and Lee 

http://wind.nrel.gov/designcodes/simulators/SOWFA 
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Need for Improved Wake Modeling 

• Summary: Park model neglects important spatio-
temporal dynamics that are relevant for control. 
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Wind Farm Modeling 

1. Experimental (black-box) models 
2. First-principles, reduced order models 
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Differences in Modeling Approaches 

• Experimental 

• Data driven  

• Site specific 

• Apply to : Existing wind farms 

 

 

• First-principles 

• General approach 

• Gain insight for farms  

    that are not yet built 

• Apply to: Design of new farms 

26 
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Wind Farm Modeling 

1. Experimental (black-box) models 
Ref: “An experimental investigation on the effect of individual 
turbine control on wind farm dynamics”, by Annoni, Howard, 
Seiler, and Guala, In preparation. 
 

2. First-principles, reduced order models 
27 
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•  Scale       1:750 
•  4.5 m/s 
•  10% turbulence intensity 
 

Model Turbines 
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0.128 m 96 m 

Photo credits: Kevin Howard 
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Photo credits: Kevin Howard 
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• Understand the input/output dynamics 

 

 

 

 

 

 

 

 
 

• Square waves with varying frequencies: 0.02Hz to 10Hz 

 

Output voltage          Power 

Voltage Measurements 
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Input voltage          generator torque 

Rated 

Derated 
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Dynamic Response 
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Upstream 

Turbine 

Dynamics 

Wind 

Farm 

Model 

Time 

Delay 

Downstream 

Turbine 

Dynamics 
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Wind Farm Modeling 

1. Experimental (black-box) models 
 

2. First-principles, reduced order models 
Ref: “A low-order model for wind farm control,” by Annoni 
and Seiler, Submitted to the 2015 ACC. 

35 
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Figure by: Kevin Howard 
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• Technique to compress data in flow v(x,y,t) 
• Holmes et. al, “Turbulence, Coherent Structures, Dynamical Systems and Symmetry.” 1996 

• K. Willcox and J. Peraire, “Balanced model reduction via the proper orthogonal 
decomposition,” 2002 

 

 

 

 

 

 

 

 

Proper Orthogonal Decomposition (POD) 
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Snapshot 

• Construct most energetic modes 
in flow {vk} 
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• Construct most energetic modes 
in flow {vk} 

• Approximate flow by projection 
onto energetic modes 

  v≈ Sk ck vk 
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• Construct most energetic modes 
in flow {vk} 

• Approximate flow by projection 
onto energetic modes 

  v≈ Sk ck vk 

• Obtain low-order ODE model of 
PDE by Galerkin projection 
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Balanced Truncation 

• Model reduction technique for state-space systems 

• Controllability Gramian gives input energy to reach a state. 

• Observability Gramian gives output energy from a state.  

• Balancing state transformation to yield equal 
observability/controllability properties. 

• Truncate less observable/controllable states. 

41 

Refs: Moore, Pernebo 

& Silverman, Enns 
u y 
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Balanced Truncation 

• Model reduction technique for state-space systems 

• Issue: Gramians obtained via a Lyapunov equation. 

• Computational cost is O(n3) where n is the state dim. 

42 

Refs: Moore, Pernebo 

& Silverman, Enns 
u y 
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Balanced POD 

• Combination of POD and balanced truncation 

• Scalable numerical implementation 

• Goal: Obtain model for wind farm feedback control 
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Rowley et. al. “Model Reduction for fluids, using Balanced Proper Orthogonal Decomposition” 2004 
Willcox et. al., “Balanced model reduction via the proper orthogonal decomposition,” 2002. 
Lall et. al., “A subspace approach to balanced truncation for model reduction of nonlinear control systems,” 2002. 
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Balanced POD 

• Example: Actuator Disk 

• Actuator Disk: 80,000 states 

• Represented with 5 modes 

• Fewer BPOD modes needed to obtain low-order model 
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Reduced Order Models 
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Conclusions 

• Goal: Construct control-oriented models for wind farms  

• Models need to be low-order but of sufficient fidelity. 

• Use models to design coordinated wind farm controllers 

• Approaches: 

• Experimental (black-box) models 

• First-principles, reduced order models via BPOD 

• Next Steps: 

• Extend BPOD method from actuator disk to higher fidelity models 

• Use models for simple control designs  

• Test controllers in simulation and wind tunnel. 
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