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Aeroelasticity

Efficient aircraft design

o lightweight structures

o high aspect ratios
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Source: www.flightglobal.com



UNIVERSITY OF MINNESOTA
: Driven to Discover

Aerospace Engineering and Mechanics

Why Flexible Wings?

Breguet Range Equation

Lift
Range =V x Isp X : X In (M)
~—~ Drag Mianding

propulsion efficiency
glide number structural mass
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Why Flexible Wings?

Breguet Range Equation

Lift
Range =V x Isp X : X In (M)
~—~ Drag MManding

propulsion efficiency
glide number structural mass

Induced Drag for elliptic (optimal)
lift distribution:

o2
Induced Drag = Llfz
0

~~ Maximize wing aspect ratio A
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Why Flexible Wings?

Breguet Range Equation

Lift Miakeoff
Range =V x Isp X X In [ —=<
~—~ Drag MMlanding

propulsion efficiency

glide number structural mass

Induced Drag for elliptic (optimal) Main contributions to total mass:

lift distribution:
Llft2 Mtakeoff = Mestructure + Mpayload + Miuel
Induced Drag = T A Mlanding = Mstructure T Mpayload

~~ Maximize wing aspect ratio A ~» Minimize structural mass Mstructure
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Why Flexible Wings?

Breguet Range Equation

Lift Miakeoff
Range =V x Isp X X In [ —==2
~—~ Drag Mianding

propulsion efficiency

glide number structural mass

Induced Drag for elliptic (optimal) Main contributions to total mass:

lift distribution:
Llft2 Mtakeoff = Mestructure + Mpayload + Miuel

Induced Drag = A
0

Mianding = Mstructure + Mpayload

~~ Maximize wing aspect ratio A ~» Minimize structural mass Mstructure

Light weight, high aspect ratio, flexible wings
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Classical Approach

Rigid Body
Modes

[Q

0 Freq uency’
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Classical Approach

Rigid Body Aeroelastic
Modes Modes

[Q

0 Freq uency’
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Classical Approach

N

IN

Frequency
Separation

Rigid Body
Modes

Aeroelastic
Modes
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0 Frequency’
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Classical Approach

Controller Bandwidth

N

IN

Frequency
Separation

Rigid Body
Modes

Aeroelastic
Modes

[Q

0 Frequency’

Flight Dynamics,
Classical Flight Control
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Classical Approach

Controller Bandwidth
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Rigid Body : : Aeroelastic
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0 Frequency

Flight Dynamics, Flutter Analysis

Classical Flight Control
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Flutter

NASA Dryden Flight Research
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Flexible Aircraft Challenges

Rigid Body Aeroelastic
Modes Modes

(§

0 Freq uency,
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Rigid Body Aeroelastic
Modes Modes

(§

0 Freq uency,




UNIVERSITY OF MINNESOTA . . .
o Dilven to Discovar Aerospace Engineering and Mechanics

Flexible Aircraft Challenges

Rigid Body Aeroelastic
Modes Modes

(§

0 Freq uency,

Coupling between Rigid Body and Aeroelastic Modes,
Body Freedom Flutter
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Flexible Aircraft Challenges

Integrated Control Design

Rigid Body Aeroelastic
Modes Modes

(§

0 Freq uency,

Coupling between Rigid Body and Aeroelastic Modes,
Body Freedom Flutter
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Body Freedom Flutter

Lockheed Martin BFF
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Aeroservoelastic Model

Flight Dynamics

Inertial
Forces

Aerodynamic
Forces

Rigid Body Dynamics

o Classical 6 degree of freedom equations of motion

e Steady aerodynamics
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Aeroservoelastic Model

Aeroelasticity

Inertial
Forces

Elastic
Forces

Aerodynamic
Forces

Flexible Aircraft

e Rigid body dynamics (6 DoF)
e Structural dynamics (typically 6-8 modes)

e Unsteady aerodynamics (typically 2 lag states per mode)
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Aeroservoelastic Model

Aeroservoelasticity

Inertial
Forces

Control

. Forces
Elastic

Forces

Aerodynamic
Forces

High dimensional, strongly coupled models

e Rigid body dynamics (from flight dynamics)
e Structural dynamics (from finite element method)

e Unsteady aerodynamics (from potential theory)
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mini-MUTT Aircraft at UMN

Key Features:

e |ow-cost, modular flight
research infrastructure

e Design based on the Lockheed
Martin BFF vehicle

o Parallels X-56 Flight test
program at NASA

o Fabricated completely in-house

e Detachable wings of various
flexibility

UMN mini-MUTT
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Flight Test of Rigid Wing mini-MUTT

Driven to Discover
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Current Status of the Flexible Wing

Next Steps:

e Finish building flexible wings

e Flight test campaign this summer
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Limitation of Classical Approaches

Classical approaches are not suitable for control of flexible aircraft

Parameter Dependent Dynamics Model Uncertainty
3 Aerodynamics:
= 200 R0

e Simple potential theory based model

e Rational approximation of unsteady effects

T 70 »
2
~ & E Structural Dynamics:
e E C 60 § e Simple beam model
a . . . .
; £ e Estimates of mass and inertia properties
—100 50 <
x
* —200
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Aeroservoelastic Models

Nonlinear equation of motion:
o(t) = fa(t),u(t), p(t))
y(t) = h(z(t), u(t), p(t)),

where p is a vector of measurable, exogenous signals,
in this case airspeed.

Parameterized Trim Points: Assume there are trim
points (Z(p), u(p), y(p)) parameterized by p:

BFF Vehicle = f(z(p), ulp), p)
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BFF Vehicle

Aerospace Engineering and Mechanics

Aeroservoelastic Models

Nonlinear equation of motion:
&) = fa(t),u(t), p(t))
y(t) = h(z(t), u(t), p(t)),

where p is a vector of measurable, exogenous signals,
in this case airspeed.

Time-Varying Linearization: Linearize around

(@(p(1)), alp(t), 5(p(t)); p())

0z = A(p)da + B(p)du + Ay (0, 0u, p) — Z(p)
8y = C(p)ds + D(p)bu + An (32, 6u, p)

where A(p) := %(i(p),ﬁ(p),p), etc.
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LPV Systems

#(t) = A(p(t)z(t) + B(p(t))u(t)
y(t) = C(p(t)x(t) + D(p(t))u(t)

Parameter vector p lies within a set of admissible trajectories

A:={p: Rt 5 R™ : p(t) € P, p(t) € PVt >0}

Comments:

e LPV theory is an extension of classical gain-scheduling used in industry,
e.g. flight controls.

e Large body of literature in 90s: Shamma, Packard, Gahinet, Scherer, and
many others.

e LPVTools: Toolbox developed by Balas, Packard, Seiler, and Hjartarson.

20
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LPV Systems

#(t) = A(p(t)z(t) + B(p(t))u(t)
y(t) = C(p(t)x(t) + D(p(t))u(t)

Parameter vector p lies within a set of admissible trajectories

A:={p: Rt 5 R™ : p(t) € P, p(t) € PVt >0}

LFT based LPV systems

Grid based LPV systems pl
Yy u
«— G, [e—— y G u
-« l——

21
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Integral Quadratic Constraints (IQCs)

IQCs provide a general framework for analysis of a known LTI system G under
perturbations A (Megretski & Rantzer, '97 TAC).

A

Goal: Extend framework to cases where known system is LPV, e.g. robustness
margins for flexible aircraft.

23
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Example: Passive System

w = A(v,t) is a passive system
(pointwise in time).

Y

20(t)Tw(t) >0Vt

w=A(v,t)

24
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Example: Passive System

w = A(v,t) is a passive system
(pointwise in time).

w=A(v,t)

Pointwise quadratic constraint

24
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Analysis: Circle Criterion

Theorem: Assume:

A @ Interconnection is well-posed.

® A is (pointwise) passive.
® 3V > 0 such that

S B S G 7 I PR 7 REEE

Then gain from d to e is < 1.

25
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Analysis: Circle Criterion

Theorem: Assume:

A @ Interconnection is well-posed.
® A is (pointwise) passive.
v
® 3V > 0 such that
T
e G d o |v@ ] [0 T [u(t) Tg_ T
PPE— «— V+ |:w(t):| |:I O:| {w(t) <d d-—cee

Then gain from d to e is < 1.

Proof: Let d € L[0,00) be any input signal and z(0) = 0. Integrate:

V(@(T)) + /0 ’ [Z((?)r B é} B((tt))] dt < /O " a) @)t — e(t)  e(t)dt

Left side is > 0 by V' > 0 and passivity.

25
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Analysis: Circle Criterion

Theorem: Assume:

A @ Interconnection is well-posed.

® A is (pointwise) passive.

v
® 31V >0 such that
T
e G d . ’U(t) 0 I U(t) T _ T
PE—— «—— V-l-[w(t)} L O} {w(t) <d d—ee
Then gain from d to e is < 1.
Comments:

1. The proof relied on V' > 0 and the passivity constraint. More general
integral quadratic constraints (IQCs) can be incorporated, e.g. Zames-Falb.

2. Eq (1) is a matrix inequality when G is LTl and V' is quadratic. Convex
optimization can be used to efficiently search over combinations of IQCs.

26
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General 1QCs (Megretski/Rantzer, '97 TAC)

Time Domain:
Let ¥ be a stable, LTI system and M a
constant matrix.
A satisfies IQC defined by ¥ and M if

/T 2()" Mz(t)dt > 0

0

Vv € L2[0,00), w = A(v), and T > 0.

> z
) >

Y
>

27
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General 1QCs (Megretski/Rantzer, '97 TAC)

Time Domain: Frequency Domain:
Let U be a stable, LTI system and M a  Let IT: jR — C™*™ be Hermitian-valued.
constant matrix. A satisfies IQC defined by IT if

A satisfies IQC defined by ¥ and M if - .
. [ ) me [ 262w 2 0
/ 2()" Mz(t)dt > 0 o>

70 Vv € L2[0,00) and w = A(v).
Vv € L2[0,00), w = A(v), and T > 0.

> z
] >

Y
>

27
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General 1QCs (Megretski/Rantzer, '97 TAC)

Time Domain: Frequency Domain:
Let U be a stable, LTI system and M a  Let IT: jR — C™*™ be Hermitian-valued.
constant matrix. A satisfies IQC defined by IT if

A satisfies IQC defined by ¥ and M if - .
. [ ) me [ 262w 2 0
/ 2()" Mz(t)dt > 0 o>

0 Vv € L2[0,00) and w = A(v).
Vv € L2[0,00), w = A(v), and T > 0.

> z
] >

A

Y

A non-unique factorization II = UV~ MW connects the two definitions.

27
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IQC Analysis (Megretski/Rantzer, '97 TAC)

Summary:

@ Analysis involves frequency domain conditions
on G and IQC multiplier(s) II.

® Proof uses a homotopy method.

©® Any stable factorization I = Y~ MV and
KYP lemma leads to an LMI.

_____ O LMI condition can be written as:

z
v >

A4

_____

V4+2"Mz<d"d—eTe

| e ¢ Neither V' > 0 nor fOT 2()"Mz(t)dt >0
holds, in general.

Question:
Is there an equivalent dissipation inequality proof?
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Equivalence of Approaches (Seiler, '15 TAC)

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,
'97 TAC) are equivalent to the time-domain dissipation inequality conditions.

29
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Equivalence of Approaches (Seiler, 15 TAC)

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,

'97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Def.: Il = U~ MU is a J-Spectral factorization if M = [ °/] and ¥, 0"
are stable.
Thm.: If Il = U~ MV is a J-spectral factorization then:
©® A satisfies the freq. domain IQC (II) iff it satisfies the time domain 1QC
(¥, M).
® All solutions of KYP LMI satisfy P > 0.
Proof: Uses LQ dynamic games, (Willems. '72 TAC) and (Engwerda, '05).

29
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Equivalence of Approaches (Seiler, 15 TAC)

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,
'97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Def.: Il = U~ MU is a J-Spectral factorization if M = [ °/] and ¥, 0"
are stable.
Thm.: If Il = U~ MV is a J-spectral factorization then:
©® A satisfies the freq. domain IQC (II) iff it satisfies the time domain 1QC
(¥, M).
® All solutions of KYP LMI satisfy P > 0.
Proof: Uses LQ dynamic games, (Willems. '72 TAC) and (Engwerda, '05).

Thm.: Partition IT = [H“ 1131 ] IT has a J-spectral factorization if
IIzy TIz2

Hu(jw) > 0 and HQQ(jw) <0VweRU {+OO}
Proof: Use equalizing vectors thm. of Meinsma (SCL, 1995) W.

29
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Utility of Time-Domain Approach

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,
'97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Consequences:
The time-domain dissipation inequality conditions can be extended for:
©® LPV robustness analysis (Pfifer & Seiler, '14 1JRNC); (Pfifer & Seiler, in
prep.)
® LPV robust synthesis for general case (Wang, Pfifer, & Seiler, submitted
to Aut) and robust filter/feedforward synthesis (Venkataraman & Seiler, in
prep.)
® Optimization analysis with p-hard IQCs (Lessard, Recht, & Packard)
O Nonlinear analysis using SOS techniques
Item 1 has been implemented in LPVTools. ltem 2 parallels results by (Scherer,
Kose, and Veenman) for LFT-type LPV systems.

30
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Upcoming Flight Test Plans

NASA X-56a:

e A. Hjartarson (Musyn) used LPVTools to synthesis
(nominal) LPV controllers and assess robustness.

o NASA designed their own gain-scheduled control law.
UMN mini-MUTT:
e Finish flex wing and begin flight tests.

o Validate control-oriented aeroelastic models
incorporating data from flight tests and high
fidelity CFD/CSD models.

e New approaches for model order reduction required
to obtain LPV models suitable for control design.

e Other team members (D. Schmidt, STI, Va. Tech,
CMSoft, Aurora) will play key roles in modeling,
design and analysis.

Lockheed Martin X-56a

UMN mini-MUTT

32
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Summary

Conclusions:
e More efficient, flexible aircraft require integrated flight control systems.

e IQCs can be used in time-domain dissipation-inequalities without loss of
conservatism.

Additional Details:
© http://www.aem.umn.edu/~SeilerControl/
® http://paaw.net/

34
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Brief Summary of LPV Lower Bound Algorithm

There are many exact results and computational algorithms for LTV and
periodic systems (Colaneri, Varga, Cantoni/Sandberg, many others)

The basic idea for computing a lower bound on ||G,|| is to search over periodic
parameter trajectories and apply known results for periodic systems.

G
16 = sup sup NGl G 1Geul
pPEAuFO,uELy ||UH pEA u#0,u€ Lo ||uH

where A;, C A denotes the set of admissible periodic trajectories.

Ref: T. Peni and P. Seiler, Computation of lower bounds for the induced L2 norm of LPV
systems, submitted to the 2015 CDC.

35
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Numerical example

Simple, 1-parameter LPV system:

g s—lH " o) 1’
u(t)— & y(t)

\ 4
=]
—
~
~—
A
—_

with —1 < 8(t) <1,and —E < §(t) <T

The upper bound was computed by searching for a polynomial storage function.

36
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Upper and Lower Bounds

0.8 T T T T T T T T T

B 0.7392

0.7+

0.6r

0.5

L2 norm bounds

0.3

04987

0 . . . . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 14 16 18 2
Different rate bounds (pmax)

Question: Can this approach be extended to compute lower bounds for
uncertain LPV systems?

37
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