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Aeroelasticity

Efficient aircraft design

• lightweight structures

• high aspect ratios
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Why Flexible Wings?

Breguet Range Equation

Range = V × Isp︸︷︷︸
propulsion efficiency

× Lift

Drag︸ ︷︷ ︸
glide number

× ln

(
mtakeoff

mlanding

)
︸ ︷︷ ︸

structural mass

Induced Drag for elliptic (optimal)
lift distribution:

Induced Drag =
Lift2

πΛ

 Maximize wing aspect ratio Λ

Main contributions to total mass:

mtakeoff = mstructure +mpayload +mfuel

mlanding = mstructure +mpayload

 Minimize structural mass mstructure

Light weight, high aspect ratio, flexible wings
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Classical Approach

Rigid Body
Modes

Aeroelastic
Modes

Controller Bandwidth

Frequency
Separation

Flight Dynamics,
Classical Flight Control

Flutter Analysis

0 Frequency
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Flutter

NASA Dryden Flight Research
8
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Flexible Aircraft Challenges

Rigid Body
Modes

Aeroelastic
Modes

Aeroelastic
Modes

0 Frequency

Coupling between Rigid Body and Aeroelastic Modes,
Body Freedom Flutter

Integrated Control Design
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Body Freedom Flutter

Lockheed Martin BFF
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Aeroservoelastic Model

Flight Dynamics

Aerodynamic
Forces

Inertial
Forces

Elastic
Forces

Control
Forces

Rigid Body Dynamics

• Classical 6 degree of freedom equations of motion

• Steady aerodynamics
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Aeroservoelastic Model

Aeroelasticity

Aerodynamic
Forces

Inertial
Forces

Elastic
Forces

Control
Forces

Flexible Aircraft

• Rigid body dynamics (6 DoF)

• Structural dynamics (typically 6-8 modes)

• Unsteady aerodynamics (typically 2 lag states per mode)
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Aeroservoelastic Model

Aeroservoelasticity

Aerodynamic
Forces

Inertial
Forces

Elastic
Forces

Control
Forces

High dimensional, strongly coupled models

• Rigid body dynamics (from flight dynamics)

• Structural dynamics (from finite element method)

• Unsteady aerodynamics (from potential theory)
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Body Freedom Flutter Vehicle
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mini-MUTT Aircraft at UMN

UMN mini-MUTT

Key Features:

• Low-cost, modular flight
research infrastructure

• Design based on the Lockheed
Martin BFF vehicle

• Parallels X-56 Flight test
program at NASA

• Fabricated completely in-house

• Detachable wings of various
flexibility
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Flight Test of Rigid Wing mini-MUTT
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Current Status of the Flexible Wing

Next Steps:

• Finish building flexible wings

• Flight test campaign this summer

15
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Limitation of Classical Approaches

Classical approaches are not suitable for control of flexible aircraft

Parameter Dependent Dynamics Model Uncertainty

Aerodynamics:

• Simple potential theory based model

• Rational approximation of unsteady effects

Structural Dynamics:

• Simple beam model

• Estimates of mass and inertia properties
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Aeroservoelastic Models

BFF Vehicle

Nonlinear equation of motion:

ẋ(t) = f(x(t), u(t), ρ(t))

y(t) = h(x(t), u(t), ρ(t)),

where ρ is a vector of measurable, exogenous signals,
in this case airspeed.

Parameterized Trim Points: Assume there are trim
points (x̄(ρ), ū(ρ), ȳ(ρ)) parameterized by ρ:

0 = f(x̄(ρ), ū(ρ), ρ)

ȳ(ρ) = h(x̄(ρ), ū(ρ), ρ)
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Aeroservoelastic Models

BFF Vehicle

Nonlinear equation of motion:

ẋ(t) = f(x(t), u(t), ρ(t))

y(t) = h(x(t), u(t), ρ(t)),

where ρ is a vector of measurable, exogenous signals,
in this case airspeed.

Time-Varying Linearization: Linearize around
(x̄(ρ(t)), ū(ρ(t)), ȳ(ρ(t)), ρ(t))

δ̇x = A(ρ)δx +B(ρ)δu + ∆f (δx, δu, ρ)− ˙̄x(ρ)

δ̇y = C(ρ)δx +D(ρ)δu + ∆h(δx, δu, ρ)

where A(ρ) := ∂f
∂x

(x̄(ρ), ū(ρ), ρ), etc.
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LPV Systems

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

Parameter vector ρ lies within a set of admissible trajectories

A := {ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0}

Comments:

• LPV theory is an extension of classical gain-scheduling used in industry,
e.g. flight controls.

• Large body of literature in 90s: Shamma, Packard, Gahinet, Scherer, and
many others.

• LPVTools: Toolbox developed by Balas, Packard, Seiler, and Hjartarson.
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LPV Systems

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) +D(ρ(t))u(t)

Parameter vector ρ lies within a set of admissible trajectories

A := {ρ : R+ → Rnρ : ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀t ≥ 0}

Grid based LPV systems

Gρ
uy

LFT based LPV systems

G

ρI

uy
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Integral Quadratic Constraints (IQCs)

IQCs provide a general framework for analysis of a known LTI system G under
perturbations ∆ (Megretski & Rantzer, ’97 TAC).

G

∆

de

wv

Goal: Extend framework to cases where known system is LPV, e.g. robustness
margins for flexible aircraft.
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Example: Passive System

∆
v w

w = ∆(v, t) is a passive system
(pointwise in time).

2v(t)Tw(t) ≥ 0 ∀t

[
v(t)
w(t)

]T [
0 I
I 0

] [
v(t)
w(t)

]
≥ 0 ∀t

Pointwise quadratic constraint
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Analysis: Circle Criterion

G

∆

de

wv

Theorem: Assume:

1 Interconnection is well-posed.

2 ∆ is (pointwise) passive.

3 ∃ V ≥ 0 such that

V̇ +

[
v(t)
w(t)

]T [
0 I
I 0

] [
v(t)
w(t)

]
< dT d− eT e

Then gain from d to e is ≤ 1.

Proof: Let d ∈ L[0,∞) be any input signal and x(0) = 0. Integrate:

V (x(T )) +

∫ T

0

[
v(t)
w(t)

]T [
0 I
I 0

] [
v(t)
w(t)

]
dt <

∫ T

0

d(t)T d(t)dt− e(t)T e(t)dt

Left side is ≥ 0 by V ≥ 0 and passivity.
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Analysis: Circle Criterion

G

∆

de

wv

Theorem: Assume:

1 Interconnection is well-posed.

2 ∆ is (pointwise) passive.

3 ∃ V ≥ 0 such that

V̇ +

[
v(t)
w(t)

]T [
0 I
I 0

] [
v(t)
w(t)

]
< dT d− eT e

Then gain from d to e is ≤ 1.

Comments:
1. The proof relied on V ≥ 0 and the passivity constraint. More general
integral quadratic constraints (IQCs) can be incorporated, e.g. Zames-Falb.

2. Eq (1) is a matrix inequality when G is LTI and V is quadratic. Convex
optimization can be used to efficiently search over combinations of IQCs.
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General IQCs (Megretski/Rantzer, ’97 TAC)

Time Domain:
Let Ψ be a stable, LTI system and M a
constant matrix.
∆ satisfies IQC defined by Ψ and M if∫ T

0

z(t)TMz(t)dt ≥ 0

∀v ∈ L2[0,∞), w = ∆(v), and T ≥ 0.

∆

Ψ
z

v w

Frequency Domain:
Let Π : jR→ Cm×m be Hermitian-valued.
∆ satisfies IQC defined by Π if∫ ∞

−∞

[
v̂(jω)
ŵ(jω)

]∗
Π(jω)

[
v̂(jω)
ŵ(jω)

]
dω ≥ 0

∀v ∈ L2[0,∞) and w = ∆(v).

∆
v w

A non-unique factorization Π = Ψ∼MΨ connects the two definitions.
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IQC Analysis (Megretski/Rantzer, ’97 TAC)

G

∆

Ψ

de

wv

z

Summary:

1 Analysis involves frequency domain conditions
on G and IQC multiplier(s) Π.

2 Proof uses a homotopy method.

3 Any stable factorization Π = Ψ∼MΨ and
KYP lemma leads to an LMI.

4 LMI condition can be written as:

V̇ + zTMz < dT d− eT e

Neither V ≥ 0 nor
∫ T

0
z(t)TMz(t) dt ≥ 0

holds, in general.

Question:
Is there an equivalent dissipation inequality proof?

28
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Equivalence of Approaches (Seiler, ’15 TAC)

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,
’97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Def.: Π = Ψ∼MΨ is a J-Spectral factorization if M =
[
I 0
0 −I

]
and Ψ,Ψ−1

are stable.

Thm.: If Π = Ψ∼MΨ is a J-spectral factorization then:

1 ∆ satisfies the freq. domain IQC (Π) iff it satisfies the time domain IQC
(Ψ,M).

2 All solutions of KYP LMI satisfy P ≥ 0.

Proof: Uses LQ dynamic games, (Willems. ’72 TAC) and (Engwerda, ’05).

Thm.: Partition Π =
[

Π11 Π∗
21

Π21 Π22

]
. Π has a J-spectral factorization if

Π11(jω) > 0 and Π22(jω) < 0 ∀ω ∈ R ∪ {+∞}.
Proof: Use equalizing vectors thm. of Meinsma (SCL, 1995) �.
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Utility of Time-Domain Approach

Summary:
Under some technical conditions, the frequency-domain conditions in (M/R,
’97 TAC) are equivalent to the time-domain dissipation inequality conditions.

Consequences:
The time-domain dissipation inequality conditions can be extended for:

1 LPV robustness analysis (Pfifer & Seiler, ’14 IJRNC); (Pfifer & Seiler, in
prep.)

2 LPV robust synthesis for general case (Wang, Pfifer, & Seiler, submitted
to Aut) and robust filter/feedforward synthesis (Venkataraman & Seiler, in
prep.)

3 Optimization analysis with ρ-hard IQCs (Lessard, Recht, & Packard)

4 Nonlinear analysis using SOS techniques

Item 1 has been implemented in LPVTools. Item 2 parallels results by (Scherer,
Kose, and Veenman) for LFT-type LPV systems.
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Upcoming Flight Test Plans

NASA X-56a:

• A. Hjartarson (Musyn) used LPVTools to synthesis
(nominal) LPV controllers and assess robustness.

• NASA designed their own gain-scheduled control law.

UMN mini-MUTT:

• Finish flex wing and begin flight tests.

• Validate control-oriented aeroelastic models
incorporating data from flight tests and high
fidelity CFD/CSD models.

• New approaches for model order reduction required
to obtain LPV models suitable for control design.

• Other team members (D. Schmidt, STI, Va. Tech,
CMSoft, Aurora) will play key roles in modeling,
design and analysis.

Lockheed Martin X-56a

UMN mini-MUTT
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Summary

Conclusions:

• More efficient, flexible aircraft require integrated flight control systems.

• IQCs can be used in time-domain dissipation-inequalities without loss of
conservatism.

Additional Details:

1 http://www.aem.umn.edu/∼SeilerControl/
2 http://paaw.net/
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Brief Summary of LPV Lower Bound Algorithm

There are many exact results and computational algorithms for LTV and
periodic systems (Colaneri, Varga, Cantoni/Sandberg, many others)

The basic idea for computing a lower bound on ‖Gρ‖ is to search over periodic
parameter trajectories and apply known results for periodic systems.

‖Gρ‖ := sup
ρ∈A

sup
u6=0,u∈L2

‖Gρu‖
‖u‖ ≥ sup

ρ∈Ah
sup

u6=0,u∈L2

‖Gρu‖
‖u‖

where Ah ⊂ A denotes the set of admissible periodic trajectories.

Ref: T. Peni and P. Seiler, Computation of lower bounds for the induced L2 norm of LPV
systems, submitted to the 2015 CDC.
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Numerical example

Simple, 1-parameter LPV system:

1
s+1

1
s+1

�(t)

�(t)

+

-
u(t) y(t)

with −1 ≤ δ(t) ≤ 1, and −µ ≤ δ̇(t) ≤ µ

The upper bound was computed by searching for a polynomial storage function.
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Upper and Lower Bounds

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Different rate bounds (µ
max

)

L2
 n

or
m

 b
ou

nd
s

0.0980.1087

0.33040.3342

0.470.4805

0.57520.5766

0.64160.6435

0.69040.6924

0.73920.7403

Question: Can this approach be extended to compute lower bounds for
uncertain LPV systems?
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