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Gary J. Balas (Sept. 27. 1960 — Nov. 12, 2014)
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Gary and Andy Packard
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Spreading the Word |

MUSYN Robust Control Th
Short Course (Start: 1989)
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Software Development

pu-Analysis and Synthesis (u- bt Syt

Tools) Matlab Toolbox {1930) | - 'ny Y[ BOX

For Use with MATLAB’

Robust Control Toolbox™ 3
Getting Started Guide

Gary Balas
Richard Chiang

:Al;jozcd(crd

Gary J. Balas

John C. Doyle The

Keith Glover MATH
Andy Packard WOR

Roy Smith \L‘f&;

MATLAB
u-Tools merged with the Matlab

dmevaivois | Robust Control Toolbox (2004)
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Awards

Honors and Awards

2012 Honorary Member, Hungarian Academy of Engineering

2012 Plenary Speaker, 7th IFAC Symposium on Robust Control Design, Aalborg, Denmark

2010 Prize for the Development of the Hungarian Aeronautical Science, Hungarian Scientific
Association for Transport

2010 Plenary Speaker, 2nd Workshop on Clearance of Flight Control Laws, Stockholm,
Sweden

2009 Plenary Speaker, 49th Israel Annual Conference on Aerospace Sciences, Tel Aviv and
Haifa, Israel

2007 Distinguished McKnight University Professor, University of Minnesota

2006 0. Hugo Schuck Best Paper Award, American Automatic Control Council (with T.
Keviczky)

2005 Control Systems Technology Award, IEEE Control System Society (with Prof. A.K.
Packard)

2005-2006 Fellow, Committee on Institutional Cooperation Academic Leadership Program

2005 Semi-Plenary Speaker, 16th International Federation of Automatic Control (IFAC) World
Congress, Prague, Czech Republic (with Prof. J. Bokor)

2004 Fellow, IEEE

2004 Plenary Speaker, Technical University of Delft Center for Systems and Control,
“Challenges for the 21st Century”

2003 Institute of Technology George Taylor Distinguished Research Award, University of
Minnesota

2003 Semi-Plenary Speaker, European Control Conference, Cambridge, England

2002 Associate Fellow, AIAA

2002-04 Senior Member, IEEE

2002 Session Plenary Speaker, International Council of Aeronautical Sciences Conference,
Toronto

1999 Outstanding Young Investigator Award, ASME Dynamic Systems and Control

1993-1995 McKnight-Land Grant Professorship, University of Minnesota

1989-90, 2002 American Control Conference Best Paper Presentation in Session

1986-89 MNASA Graduate Student Fellowship

1986 Donald Wills Douglas Fellowship in Aeronautics

1982-84 Hughes Aircraft Graduate Student Fellowship

1980-82 Hughes Aircraft Undergraduate Student Fellowship
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Head of Aerospace Eng. & Mechanics (7/06-1/14)

ON BEHALF OF
THE MINNEAPOLIS CHAPTER OF THE AMERICAN INSTITUTE OF ARCHITECTS,
PRESERVE MINNEAPOLIS,
AND
THE MINNEAPOLIS HERITAGE PRESERVATION COMMISSION,

THIS AWARD 1S PRESENTED IN RECOGNITION OF

AKERMAN HALL HANGAR RENOVATION

THIS PROJECT IS A MERITORIOUS EXAMPLE OF AN ADAPTIVELY REUSED HISTORIC BUILDING,
TRANSFORMED AND REINVENTED TO INCORPORATE BOTH NEW AND OLD ELEMENTS IN A WAY THAT THAT
18 RESPECTFUL OF, BUY DIFFERENT FROM, THE FORM OF THE PAST.

2011 MINNEAPOLIS HERITAGE PRESERVATION AWARDS
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Gary J. Balas

Gary ). Balls ey svade Lgravast s

while srvang = ikt ATM Daguatress
Sepuemben 27, 1940 - Naweraen 12 364 eyl o g

Gary perviom come ) 11
wbrer sod rwvassed
b el e s w1
wchelin.

ROSPACE ENGINEERING AND MECHANICS



AR UNIVERSITY OF MINNESOTA AEROSPACE ENGINEERING AND MECHANICS



Collaborations

UNIVERSITY OF MINNESOTA

On behalf of the faculties of the University of Minnesota
und colleagues in Acrospace Engineering and Mechanics

we congratuiate the

~) . o
Budapest Unibersity of
Cechnology and Weonomics

on the imtiation of the 1 oI 1) exchange and cooperation
memorandum of understanding between the two universitic

1y the spirit of collaboration continue between our two universities
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Enjoying Conferences

Robust Control Workshop 2005

Delft Center for Systems and Control
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Biking....All year round in Minnesota!
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Qutline

* Applications
Flexible Aircraft
Wind Farms

e Numerical Tools
LPVTools

 LPV Theory
Lower Bounds
Analysis with 1QCs
Model Reduction
Jacobian Linearization
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Aeroservoelasticity (ASE)

Efficient aircraft design
Lightweight structures
High aspect ratios

2

/

W Source: www.flightglobal.com
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Classical Approach

Controller Bandwidth

1 1
1 1
1 1
1 1
H
! Frequency :
i Separation l
Rigid Body Aeroelastic
Modes Modes

ﬁ
Ol ' J \ ] Frequency
|
Flight Dynamics, Flutter Analysis
Classical Flight Control
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Flutter

Source: NASA Dryden Flight Research
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Flexible Aircraft Challenges

Increasing
wing flexibility

Aeroelastic
Modes

Rigid Body
Modes

Frequency
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Flexible Aircraft Challenges

Integrated Control Design

Rigid Body Aeroelastic
Modes Modes

—
Ol y J Frequency

Coupled Rigid Body and
Aeroelastic Modes
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Body Freedom Flutter
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Performance Adaptive Aeroelastic Wing (PAAW)

* Goal: Suppress flutter, control wing shape
and alter shape to optimize performance SAurora

Funding: NASA NRA NNX14AL36A
Technical Monitor: Dr. John Bosworth

Two years of testing at UMN followed by two
years of testing on NASA’s X-56 Aircraft

Schmidt &
Associates

. [MVirginiaTech

Invent the Future®

LM/NASA X-56

| UMN Mini-Mutt | |
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Modeling and Control for Flex Aircraft

«f 200
1. Parameter Dependent Dynamics " N

Modes depend on airspeed due to g " 70

structural/aero interactions -

LPV is a natural framework.

2. Model Reduction
High fidelity CFD/CSD models have
many (millions) of states.

3. Model Uncertainty

Use of simplified low order models
OR reduced high fidelity models

Unsteady aero, mass/inertia &
structural parameters

Airspeed, knots

50

40
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Additional Details

 Webpages: All models, flight data, etc

http://paaw.net/
http://www.uav.aem.umn.edu/

e References

Burnett, et al., Ndof simulation model forflight control development with flight
test correlation, AIAA 2010.

Pfifer, et al., LPV Techniques Applied to Aeroservoelastic Aircraft: In Memory of
Gary Balas, Thursday 14:00-14:20, ThP1T1.1.

Dowell (Ed), A Modern Course in Aeroelasticity, 2004
Schmidt, Modern Flight Dynamics, 2011.

 EU H2020 Project: “Flutter Free FLight Envelope eXpansion for
ecOnomical Performance improvement” (FlexOp)

B. Vanek, PI (Sztaki) with control design supported by T. Peni (Sztaki), A. Marcos
(Bristol), and A. Wildschek (Airbus).

Inspired by the work of Gary, aiming at developing active flutter mitigation
control laws for industrial consideration.
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http://paaw.net/
http://www.uav.aem.umn.edu/

Modeling and Control for Wind Farms

1. Parameter Dependent Dynamics

Modes depend on windspeed due to
structural/aero interactions

LPV is a natural framework.

2. Model Reduction

High fidelity CFD/CSD models have
many (millions) of states.

3. Model Uncertainty

Use of simplified low order models
OR reduced high fidelity models

Refs:

J. Annoni and P. Seiler, Parameter varying dynamic mode decomposition,
Submitted to Int. Journal of Robust and Nonlinear control, 2015.

J. Annoni, P.M.O. Gebraad, and P. Seiler, Wind farm modeling using
input-output dynamic mode decomposition, Submitted to ACC, 2015.

J. Annoni, Modeling for Wind Farm Control, MS Thesis, 2014. Simulator for Wind Farm Applications, Churchfield & Lee
http://wind.nrel.gov/designcodes/simulators/SOWFEA
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http://wind.nrel.gov/designcodes/simulators/SOWFA
http://www.safl.umn.edu/
http://www.eolos.umn.edu/

Qutline

| * Applications
Flexible Aircraft
Wind Farms

e Numerical Tools
LPVTools

 LPV Theory

Lower Bounds
Analysis with IQCs
Model Reduction
Jacobian Linearization
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Classes of LPV Models

LPV systems depend on a time varying parameter p(t)
[.i'{r)] B [A{p(m B{p(r}}] [.r(r}}
v(1) C(p(r)) D(p(1)) || u(r)
Three main classes of LPV systems
Grid-based (Jacobian Linearization) Models
* A(p), B(p), C(p), and D(p) are arbitrary functions of p.
» State matrices defined on a grid of parameter values p,
Linear Fractional Transformation (LFT) Models
* A(p), B(p), C(p), and D(p) are rational functions of p.
Polytopic Models
* A(p), B(p), C(p), and D(p) are polytopic functions of p.
 Affine models as a special case.

MUSYN Inc.
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LPVTools: Matlab Toolbox for LPV Systems

* Developed by MuSyn: Balas, Packard, Seiler, Hjartarson
Funded by NASA SBIR contract #NNX12CA14C
Contract Monitor: Dr. Martin J. Brenner, NASA Armstrong.

* Goal: Unified framework for grid/LFT based LPV

Modeling
Synthesis
Analysis

Simulation

 MATLAB/Simulink integration

Compatible with Control Toolbox, Robust Control Toolbox, Simulink.
Uses MATLAB object-oriented class programming

AR UNIVERSITY OF MINNESOTA AEROSPACE ENGINEERING AND MECHANICS




(A Subset of) LPV Software Tools

o LFT

SMAC, LFR, LFRT-SLK, and Robust Feedforward Design Toolboxes
(ONERA: Magni, Biannic, Roos, Ferreres, Demourant,...)

Enhanced LFR-toolbox (DLR: Hecker, Varga, Pfifer,...)

LPV Robust Control Toolbox (Milan: De Vito, Lovera; NGC Aerospace:
Kron, de Lafontaine)

LFR-RAI (Siena: Garulli, Masi , Paoletti, Tiirkoglu)
LPV Analysis & Synthesis (Stuttgart: Scherer, Veenman, Kose, Koéroglu,...)

e Grid-based
LMI Control Toolbox, HINFSTRUCT, Simulink LPV Blocks (Matlab)

* Polytopic
TP Toolbox (Sztaki: Baranyi, Takarics,...)

AR UNIVERSITY OF MINNESOTA
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Data Structures

Object Block Matrix | System | Frequency
Type Response
y w
-— M |—
Nominal double ss frd
= A
y e u
# M

Uncertain umat uss ufrd

Nominal
Gridded
LPV

Uncertain
Gridded
LPV

LPVTools

Nominal
LFT
LPV prmatlft

Uncertain
LFT
LPV pmatlft
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LPVTools: Open Source Release

* Release 1.0:
http://www.aem.umn.edu/~SeilerControl/software.shtml
Google Search: SeilerControl
Static release under GNU Affero GPL License
Full documentation (manual, command line, Matlab “doc”)
Ref: A. Hjartarson, A. Packard, and P. Seiler, LPVTools: A Toolbox for
Modeling, Analysis, and Synthesis of Parameter Varying Control
Systems. Thursday 16:30-16:50, ThP2T1.1.

* Basic objects and results implemented
LFT Analysis and Synthesis (Packard, Scherer, Gahinet, Apkarian, ...)
Gridded Analysis and Synthesis (Wu, Packard, Becker, ... )

Model Reduction with Generalized Gramians (Wood, Glover,
Widowati, ...)

Simulink interface
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LPVTools: Open Source Release

Many gaps remain including

* LPV System identification (Toth, Verdult, Verhaegen, Lovera, van
Wingerden, Gebraad, Lee, Poolla, Bamieh, ...)

* Robust Synthesis / Full block S procedure (Scherer, Veenman, Kose,
Korogluy, ...)

e Polytopic systems (Baranyi, Takarics,...)

e Large scale model reduction (Amsallem, Farhat, Carlberg, Poussot-
Vassal,...)

* Reduced complexity controllers (Scorletti, Fromion,...)

e LPV with Delays, Saturation (Wu, Briat, ...)

e Large Scale Systems (Werner, Kulcsar, Mohammadpour, Grigoridis, ...)
* FDI (Bokor, Vanek, Szabo, Peni, Sename, ...)
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Qutline

* Applications
Flexible Aircraft
Wind Farms

e Numerical Tools
LPVTools

 LPV Theory
Lower Bounds
Analysis with IQCs
Model Reduction
Jacobian Linearization
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LPV Analysis

Gridded LPV System

©(t) = Alp(t)) z(t) + B(p(t)) d(?)
e(t) = C(p(t)) =(t) + D(p(t)) d(t)

p € A := Set of allowable trajectories

t)
t)

Induced L, Gain

€ll2
sup |Gyl = sup sup 1]
peEA pEA 0#£deLs ”d”2
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(Standard) Dissipation Inequality Condition

Theorem
If there exists V(z, p) > 0 such that

. e
V +ele <~*d'd 1 Gy [«

then supye 4 1G, Iz < 7.

Proof: Integrate the dissipation inequality

V(x(T))+V(x(0)) + / e(t) e(t)dt <~ / d(t)" d(t)dt
a,—/ W—/ 0 0

>0 =0

Comments

* Dissipation inequality can be expressed/solved as LMls.
Finite dimensional LMlIs for LFT/Polytopic LPV systems
Parameterized LMIs for Gridded LPV (requires basis functions, gridding, etc)

e Condition is IFF for LTI systems but only sufficient for LPV
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LPV Lower Bounds

* Questions: The dissipation inequality gives an upper
bound on the induced L2 gain.
Can we compute lower bounds?
Can we compute “bad” parameter trajectories?

* Simple Approach: Frozen LTI Analysis
Let Aconst denote a set of constant parameter trajectories.

The system G, is LTI for each frozen pEAconst
Evaluate H,. norm on a grid of parameter values:

1Gplloo

SUPpeA ||G,O||2—>2 2 SuppEAconst
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LPV Lower Bounds

* Questions: The dissipation inequality gives an upper
bound on the induced L2 gain.
Can we compute lower bounds?
Can we compute “bad” parameter trajectories?

* Enhanced Approach: Periodic LTV Analysis
Let Aper denote a set of PLTV parameter trajectories.

Apply results to exactly compute the induced L, gain for LTV
and periodic systems (Colaneri, Varga, Cantoni/Sandberg, etc).

Optimize lower bound over set of PLTV trajectories

SUDP pe 4 ||GpH2—>2 > SUP e A, ||GpH2—>2

Refs:
T. Peni & P. Seiler, Computation of lower bounds for the induced L, norm of LPV systems, IJRNC, 2015.

M. Cantoni & H. Sandberg, Computing the L, gain for linear periodic continuous-time systems. Aut. 2009.
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LPV Lower Bounds

* Questions: The dissipation inequality gives an upper
bound on the induced L2 gain.

Can we compute lower bounds?
Can we compute “bad” parameter trajectories?

* Enhanced Approach: Periodic LTV Analysis

* Possible Extensions
Improved algorithm (choice of bases functions, etc)
Finite Horizon LTV analysis
Uncertain LPV lower bounds

Refs:

T. Peni & P. Seiler, Computation of lower bounds for the induced L, norm of LPV systems, IJRNC, 2015.
M. Cantoni & H. Sandberg, Computing the L, gain for linear periodic continuous-time systems. Aut. 2009.
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Example: LPV Induced L, Gain

s+1

P(1)

1

4" P(1)

O— €

_.‘
_.‘

1

s+1

Note: Gain from d to e is O if p(t) is constant.
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Example: LPV Induced L, Gain

0.8

0.7

1]

0.6}

0.5

I
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1]

L2 norm bounds

0.3

1]

0.2

1]

1] 1 1]

Dissipation Ineq
Upper Bound

| | 1

Lower Bound

0.7392

s+1

A0

A0

s+1

| 1

0.2 0.4 0.6

1
0.8 1 1.2

Rate Bound
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Robustness Analysis for LPV Systems

* Goal: Assess the impact of model
. > A
uncertainty for an LPV system.
* Approach: v v
LFT Model: Separate uncertainty A o e < d
from nominal system G, . D Ple——

“Uncertainty” A can be parametric,
LTI dynamic, and/or nonlinearities (saturation, etc).

Use Integral Quadratic Constraints to model input/output
behavior (Megretski & Rantzer, TAC 1997).

Extend dissipation inequality approach for robustness analysis

* Results for Gridded Nominal system

Parallels earlier results for LFT nominal system by Scherer,
Veenman, Kése, Koroglu.
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IQC Example: Passive System

w = A(v,t) is a passive system
— 3 A |} (pointwise in time).

l

20(t) w(t) > 0Vt

U

Ol [ o] o] = 0w

Pointwise Quadratic Constraint
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General (Time Domain) IQCs

General 1QC Definition:

Let ¥ be a stable, LTI system and M a constant matrix.
A satisfies IQC defined by ¥ and M if

> o 7
[ 2T Mz(t)dt > 0
Vv € Lp[0,00), w = A(v), and T >0. v [ | w
Comments:
* Megretski & Rantzer (‘97 TAC) has a library of IQCs for various
components.

* |QCs can be equivalently specified in the freq. domain with a multiplier 11
* A non-unique factorization connects [ I=Y*MVY.
e Multiple IQCs can be used to specify behavior of A.
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|IQC Dissipation Inequality Condition

Theorem .
If A e IQC(W, M) and there exists V (x, p) > 0 such that

Y

V 4+ 2TMz+ eTe < 42d7d > A
ol w
then sup,c 4 [|Gpll2»2 < 7.
e G, | d
- —

Proof: Integrate the dissipation inequality

V(:L'(T))—I—Y(:E(O))J—I—A z(t)TMz(t)dt—l—/O e(t)Te(t)dtS'yQ/O d(t)'d(t)dt

) > ’ []
>0

" "

>0

Comment
* Dissipation inequality can be expressed/solved as LMls.

e Extends standard D/G scaling but requires selection of basis
functions for IQC.
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Less Conservative |IQC Result

Theorem , 2
. .
IdA € 1QC (¥, M)land there ex1sts|V(:c, p) > Olsuoh that >
V 4+ 2TMz+ eTe < 42d7d > A
vl w
then sup,c 4 [|Gpll2»2 < 7.
e G, | d

Technical Result

e Positive semidefinite constraint on V and time domain IQC
constraint can be dropped.

* These are replaced by a freq. domain requirement on II=Y*MY.
 Some energy is “hidden” in the 1QC.

Refs:
P. Seiler, Stability Analysis with Dissipation Inequalities and Integral Quadratic Constraints, IEEE TAC, 2015.

H. Pfifer & P. Seiler, Less Conservative Robustness Analysis of Linear Parameter Varying Systems Using
Integral Quadratic Constraints, submitted to IJRNC, 2015.
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Time-Domain Dissipation Inequality Analysis

Summary: Under some technical conditions, the frequency-domain
conditions in (M/R, ‘97 TAC) are equivalent to the time-domain
dissipation inequality conditions.

Applications:

1. LPV robustness analysis (Pfifer, Seiler, JRNC)

2. General LPV robust synthesis (Wang, Pfifer, Seiler, submitted to Aut)
3. LPV robust filtering/feedforward (Venkataraman, Seiler, in prep)

Robust filtering typically uses a duality argument. Extensions to the time domain?

4. Exponential rates of convergence (Hu,Seiler, submitted to TAC)
Motivated by optimization analysis with p-hard IQCs (Lessard, Recht, & Packard)

5. Nonlinear analysis using SOS techniques

ltem 1 has been implemented in LPVTools. Items 2 & 3 parallel
results by (Scherer, Kése, and Veenman) for LFT-type LPV systems.
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LPV Model Reduction

 Both flexible aircraft and wind farms can be modeled with
high fidelity fluid/structural models.

* LPV models can be obtained via Jacobian linearization:
z(t) = A(p(t)) (t) + B(p(t)) d(t)
e(t) = C(p(t)) z(t) + D(p(t)) d(?)
* State dimension can be extremely large (>10°)
e LPV analysis and synthesis is restricted to =50 states.
 Model reduction is required.
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LPV Balancing and Truncation

Extends balanced truncation model reduction to gridded LPV

* Solve LMIs to construct parameter-varying Gramians X (p) & X (p)

 The Hankel operator of the plant is bounded by the largest
generalized Hankel singular value.

1Pl < max, /A1 (Xe(p) Xo(0))

* Compute a parameter-varying transformation T(p) to balance
generalized Gramians. Apply coordinate transform:

s = (T(0)Alp) + T(p)) T~ (p)= + T(p) B(p)d
e=CT ' (p)z+ D(p)d
e Reduced order model can be obtained via truncation.

References
* Beck, Doyle, Glover, Model Reduction of Multi-Dimensional and Uncertain Systems, TAC, 1995.

* Wood, Control of parameter-dependent mechanical systems, Ph.D., Univ. Cambridge, 1995.
* Wood, Goddard, Glover, Approximation of linear parameter-varying systems, IEEE CDC, 1996.
* Widowati, Bambang, Model Reduction of LPV Control with Bounded Parameter Variation Rates, Asian CC, 2006.
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LPV Balancing and Truncation

Issues:

1. Solving LMIs for generalized Gramians restricts the
method to systems with moderate state order (<200).

2. Parameter-varying coordinate transformations T(p)
Introduces rate dependence in model
Destroys state consistency across parameter domain

2= (T(p)A(p) +T(p)) T~ (p) =+ T(p) B(p)d
e=CT ' (p)z + D(p)d

References

* Beck, Doyle, Glover, Model Reduction of Multi-Dimensional and Uncertain Systems, TAC, 1995.

* Wood, Control of parameter-dependent mechanical systems, Ph.D., Univ. Cambridge, 1995.

* Wood, Goddard, Glover, Approximation of linear parameter-varying systems, IEEE CDC, 1996.

* Widowati, Bambang, Model Reduction of LPV Control with Bounded Parameter Variation Rates, Asian CC, 2006.
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High Order Model Reduction

Large literature with recent results for LPV and Param. LTI

Antoulas, Amsallem, Carlberg , Gugercin, Farhat, Kutz, Loeve, Mezic, Poussot-
Vassal, Rowley, Schmid, Willcox, ...

Two new results for LPV:

1. Input-Output Dynamic Mode Decomposition
Combine subspace ID with techniques from fluids (POD/DMD).
No need for adjoint models. Can reconstruct full-order state.

2. Parameter-Varying Oblique Projection

Petrov-Galerkin approximation with constant projection space and
parameter-varying test space.
Constant projection maintains state consistency avoids rate dependence.

References
1A. Annoni & Seiler, A method to construct reduced-order parameter varying models, submitted to IJRNC, 2015.

1B. Singh & Seiler, Model Reduction using Frequency Domain Input-Output Dynamic Mode Decomposition, sub. to ‘16 ACC.
2. Theis, Seiler, & Werner, Model Order Reduction by Parameter-Varying Oblique Projection, submitted to 2016 ACC.
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Example: Wind Farm Modeling

SOWFA: Simulator for On/Offshore Wind Farm Applications
3D unsteady spatially filtered Navier-Stokes equations
Two 5MW turbines with 126 m diam separated by 5 diams.
# States=3.6 Million (=1.6M grid points x 3 vel components)

Churchfield, Lee, https://nwtc.nrel.gov/ISOWFA
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Results

e Simulated at 7 m/s with 6% turb. in neutral boundary layer

* Excited upstream blade pitch and collected measurements of
fluid flow and key turbine inputs/outputs

e Used IODMD to construct 20t order model.

Ref: Annoni, Gebraad, Seiler, Wind farm flow modeling using input-output
dynamic mode decomposition, sub. to ‘16 ACC.

Churchfield, Lee, https://nwtc.nrel.gov/ISOWFA
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Flow Simulation

Estimated Snapshot at Hub Height, Time = 100

u (m/s)

13 14 15 16 17 18 19 20 21
x/D
LES Results at Hub Height
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Compare Individual Snapshots

Estimated Snapshot at Hub Height, Time = 400 Estimated Snapshot at Hub Height, Time =470
6 6
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Qutline

* Applications
Flexible Aircraft
Wind Farms

e Numerical Tools
LPVTools

 LPV Theory
Lower Bounds
Analysis with IQCs
Model Reduction
Jacobian Linearization

AEROSPACE ENGINEERING AND MECHANICS
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LTI Jacobian Linearization

* Autonomous Nonlinear System

i(t) = f(x(t), p)

* Let{Z(p), p} be a parameterized collection of eq. points

0= f(Z(p),p)

* Assume frozen (constant) p and define 4.(t) := z(¢t) — z(p)

5.(t) = #(t) — (p)
— f(x(t), p)
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LTI Jacobian Linearization

* Autonomous Nonlinear System

i(t) = f(x(t), p)

* Let{Z(p), p} be a parameterized collection of eq. points

0= f(Z(p),p)

* Assume frozen (constant) p and define 4.(t) := z(¢t) — z(p)

0.(t) = A(p)d.(t)

Linearization is valid if solution remains near equilibrium
point specified by p.
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LPV Jacobian Linearization

* Autonomous Nonlinear System

©(t) = f(x(t), p(t))

* Let{Z(p), p} be a parameterized collection of eq. points

0= f(Z(p),p)

* Assume time-varying p(t) and define 6,(t) := z(t) — Z(p(t))

0, (t) = (1) — z(p(t))

o
= f(z(t), p(t)) — ;;(pu» o)
i Of _ 07
~ f(z(p(t)), p(t — 0(t) — — t
( (p(:)a) Pl )1+C 5 — () ap(p( ) p(t)
=A(p(t))
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LPV Jacobian Linearization

* Autonomous Nonlinear System

©(t) = f(x(t), p(t))

* Let{Z(p), p} be a parameterized collection of eq. points

0= f(Z(p),p)

* Assume time-varying p(t) and define 6,(t) := z(t) — Z(p(t))

0:(t) = Alp(t)) 0(t)|- 8—p(p(t)) p(t)

Linearization is valid if solution remains near equilibrium
manifold specified by p(t).
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Summary: Jacobian Linearization

* Linearization for Non-autonomous _Systems
z(t) = A(p(t)) x(t) + B(p(t)) d(t) — Zi(p(ﬂ) p(t)
e(t) = C(p(t)) z(t) + D(p(t)) d(t)
* Parameter variation appears as an input forcing.

* Can we develop analysis/synthesis conditions that
exploit knowledge of this forcing?

Ref: B. Takaric and P. Seiler, Gain Scheduling for Nonlinear Systems via
Integral Quadratic Constraints, ACC, 2015.

* Initial synthesis results assuming forcing is measurable disturbance.
* Also exploits IQCs to bound the effect of Taylor series errors.
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Conclusions

Gary had a significant technical
Impact in many areas.

* Applications
e Numerical Tools
 LPV Theory
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